5,489 research outputs found

    An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra

    Get PDF
    A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements

    Hybrid propulsion technology program: Phase 1, volume 1

    Get PDF
    A number of booster propulsion system concepts are being considered for the next generation of manned and unmanned space launch vehicles. The one propulsion system concept that has potential for reducing costs with increased safety, reliability, and performance is hybrid propulsion (HP). A HP system may be thought of as a liquid propulsion system with solid fuel or a solid propulsion system with a liquid oxidizer. The liquid propulsion features that are most attractive are the higher specific impulse, clean exhaust, separated propellants, and oxidizer loading just prior to launch. The most attractive solid propulsion features includes low life cycle costs, no rotating machinery, compact size, and a robust case. In addition, a HP system has a robust LO2 tank; provides thrust control for ignition, to alleviate flight loads, and for thrust termination; and uses an inert grain that is not sensitive to anomalies such as cracks, voids, and separations. The object is to develop the technology to enable the application of HP to manned and unmanned space launch vehicles. This program will identify the necessary technology, acquire that technology, and demonstrate that technology. This volume is the executive summary

    Hybrid propulsion technology program: Phase 1. Volume 3: Thiokol Corporation Space Operations

    Get PDF
    Three candidate hybrid propulsion (HP) concepts were identified, optimized, evaluated, and refined through an iterative process that continually forced improvement to the systems with respect to safety, reliability, cost, and performance criteria. A full scale booster meeting Advanced Solid Rocket Motor (ASRM) thrust-time constraints and a booster application for 1/4 ASRM thrust were evaluated. Trade studies and analyses were performed for each of the motor elements related to SRM technology. Based on trade study results, the optimum HP concept for both full and quarter sized systems was defined. The three candidate hybrid concepts evaluated are illustrated

    Measurement of ocean wave spectra using polarimetric AIRSAR data

    Get PDF
    A polarimetric technique for improving the visibility of waves, whose propagation direction has an azimuthal component, in RAR (real aperture radar) or SAR (synthetic aperture radar) images has been investigated. The technique shows promise as a means of producing more accurate 2-D polarimetric RAR ocean wave spectra. For SAR applications domination by velocity-bunching effects may limit its usefulness to long ocean swell. A modification of this technique involving measurement of polarization signature modulations in the image is useful for detecting waves in SAR images and, potentially, estimating RMS wave slopes

    Constriction size distributions of granular filters: a numerical study

    Get PDF
    The retention capability of granular filters is controlled by the narrow constrictions connecting the voids within the filter. The theoretical justification for empirical filter rules used in practice includes consideration of an idealised soil fabric in which constrictions form between co-planar combinations of spherical filter particles. This idealised fabric has not been confirmed by experimental or numerical observations of real constrictions. This paper reports the results of direct, particle-scale measurement of the constriction size distribution (CSD) within virtual samples of granular filters created using the discrete-element method (DEM). A previously proposed analytical method that predicts the full CSD using inscribed circles to estimate constriction sizes is found to poorly predict the CSD for widely graded filters due to an over-idealisation of the soil fabric. The DEM data generated are used to explore quantitatively the influence of the coefficient of uniformity, particle size distribution and relative density of the filter on the CSD. For a given relative density CSDs form a narrow band of similarly shaped curves when normalised by characteristic filter diameters. This lends support to the practical use of characteristic diameters to assess filter retention capability

    Wood furniture components: Implementation of flow-line technology based on lean manufacturing concepts

    Get PDF
    This case study is #3 in a series of studies that relate specifically to the development and application of lean manufacturing techniques for the furniture and wood component supplying industries. Case study #3 is an example of how productivity can be increased in a furniture manufacturing organization by using flow-line technology. This case study provides information about lean manufacturing and how a lean manufacturing system can be implemented, followed by a detailed case study of a wood component manufacturing company’s adoption of a new flow-line technology based on lean manufacturing concepts

    A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila

    No full text
    In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive

    Publisher’s Note: Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy [Phys. Rev. Lett. 111, 106103 (2013)]

    Get PDF
    We measured the adsorption geometry of single molecules with intramolecular resolution using noncontact atomic force microscopy with functionalized tips. The lateral adsorption position was determined with atomic resolution, adsorption height differences with a precision of 3 pm, and tilts of the molecular plane within 0.2°. The method was applied to five π-conjugated molecules, including three molecules from the olympicene family, adsorbed on Cu(111). For the olympicenes, we found that the substitution of a single atom leads to strong variations of the adsorption height, as predicted by state-of-the-art density-functional theory, including van der Waals interactions with collective substrate response effects
    corecore