7,264 research outputs found
An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra
A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements
Hybrid propulsion technology program: Phase 1, volume 1
A number of booster propulsion system concepts are being considered for the next generation of manned and unmanned space launch vehicles. The one propulsion system concept that has potential for reducing costs with increased safety, reliability, and performance is hybrid propulsion (HP). A HP system may be thought of as a liquid propulsion system with solid fuel or a solid propulsion system with a liquid oxidizer. The liquid propulsion features that are most attractive are the higher specific impulse, clean exhaust, separated propellants, and oxidizer loading just prior to launch. The most attractive solid propulsion features includes low life cycle costs, no rotating machinery, compact size, and a robust case. In addition, a HP system has a robust LO2 tank; provides thrust control for ignition, to alleviate flight loads, and for thrust termination; and uses an inert grain that is not sensitive to anomalies such as cracks, voids, and separations. The object is to develop the technology to enable the application of HP to manned and unmanned space launch vehicles. This program will identify the necessary technology, acquire that technology, and demonstrate that technology. This volume is the executive summary
Hybrid propulsion technology program: Phase 1. Volume 3: Thiokol Corporation Space Operations
Three candidate hybrid propulsion (HP) concepts were identified, optimized, evaluated, and refined through an iterative process that continually forced improvement to the systems with respect to safety, reliability, cost, and performance criteria. A full scale booster meeting Advanced Solid Rocket Motor (ASRM) thrust-time constraints and a booster application for 1/4 ASRM thrust were evaluated. Trade studies and analyses were performed for each of the motor elements related to SRM technology. Based on trade study results, the optimum HP concept for both full and quarter sized systems was defined. The three candidate hybrid concepts evaluated are illustrated
Fe I and Fe II Abundances of Solar-Type Dwarfs in the Pleiades Open Cluster
We have derived Fe abundances of 16 solar-type Pleiades dwarfs by means of an
equivalent width analysis of Fe I and Fe II lines in high-resolution spectra
obtained with the Hobby - Eberly Telescope and High Resolution Spectrograph.
Abundances derived from Fe II lines are larger than those derived from Fe I
lines (herein referred to as over-ionization) for stars with Teff < 5400 K, and
the discrepancy (deltaFe = [Fe II/H] - [Fe I/H]) increases dramatically with
decreasing Teff, reaching over 0.8 dex for the coolest stars of our sample. The
Pleiades joins the open clusters M 34, the Hyades, IC 2602, and IC 2391, and
the Ursa Major moving group, demonstrating ostensible over-ionization trends.
The Pleiades deltaFe abundances are correlated with Ca II infrared triplet and
Halpha chromospheric emission indicators and relative differences therein.
Oxygen abundances of our Pleiades sample derived from the high-excitation O I
triplet have been previously shown to increase with decreasing Teff, and a
comparison with the deltaFe abundances suggests that the over-excitation
(larger abundances derived from high excitation lines relative to low
excitation lines) and over-ionization effects that have been observed in cool
open cluster and disk field main sequence (MS) dwarfs share a common origin.
Star-to-star Fe I abundances have low internal scatter, but the abundances of
stars with Teff < 5400 K are systematically higher compared to the warmer
stars. The cool star [Fe I/H] abundances cannot be connected directly to
over-excitation effects, but similarities with the deltaFe and O I triplet
trends suggest the abundances are dubious. Using the [Fe I/H] abundances of
five stars with Teff > 5400 K, we derive a mean Pleiades cluster metallicity of
[Fe/H] = +0.01 +/- 0.02.Comment: 32 pages, 7 figures, 7 tables; accepted by PAS
Planting Techniques for Establishing Loblolly Pine Seedlings on Two Subsoiled Sites in Arkansas
The presence of soil compaction and root-restricting layers (e.g., plow pans) resulting from long-term agricultural practices often poses difficulties when converting these sites into loblolly pine plantations. Subsoiling is usually prescribed to alleviate any problems with soil strength. Subsoiling also creates soil conditions that may aid or hinder planting seedlings. The interaction of planting location. either in the furrow or the adjacent 0.3. 0.9 or 1.5 ft, and planting depth on 2 marginal crop lands was assessed in this study. Planting seedlings in the furrow and deep planting (to the terminal bud) resulted in better growth and increased survival after the first growing season compared to planting outside the furrow and shallow to moderately deep planting. respectivel
Li I and K I Scatter in Cool Pleiades Dwarfs
We utilize high-resolution (R~60,000), high S/N (~100) spectroscopy of 17
cool Pleiades dwarfs to examine the confounding star-to-star scatter in the
6707 Li I line strengths in this young cluster. Our Pleiads, selected for their
small projected rotational velocity and modest chromospheric emission, evince
substantial scatter in the linestrengths of 6707 Li I feature that is absent in
the 7699 K I resonance line. The Li I scatter is not correlated with that in
the high-excitation 7774 O I feature, and the magnitude of the former is
greater than the latter despite the larger temperature sensitivity of the O I
feature. These results suggest that systematic errors in linestrength
measurements due to blending, color (or color-based T_eff) errors, or line
formation effects related to an overlying chromosphere are not the principal
source of Li I scatter in our stars. There do exist analytic spot models that
can produce the observed Li scatter without introducing scatter in the K I line
strengths or the color-magnitude diagram. However, these models predict factor
of >3 differences in abundances derived from the subordinate 6104 and resonance
6707 Li I features; we find no difference in the abundances determined from
these two features. These analytic spot models also predict CN line strengths
significantly larger than we observe in our spectra. The simplest explanation
of the Li, K, CN, and photometric data is that there must be a real abundance
component to the Pleiades Li dispersion. We suggest that this real abundance
component is the manifestation of relic differences in erstwhile
pre-main-sequence Li burning caused by effects of surface activity on stellar
structure. We discuss observational predictions of these effects.Comment: 35 pages, 7 figures; accepted by Ap
Measurement of ocean wave spectra using polarimetric AIRSAR data
A polarimetric technique for improving the visibility of waves, whose propagation direction has an azimuthal component, in RAR (real aperture radar) or SAR (synthetic aperture radar) images has been investigated. The technique shows promise as a means of producing more accurate 2-D polarimetric RAR ocean wave spectra. For SAR applications domination by velocity-bunching effects may limit its usefulness to long ocean swell. A modification of this technique involving measurement of polarization signature modulations in the image is useful for detecting waves in SAR images and, potentially, estimating RMS wave slopes
- …