250 research outputs found

    How much potential biodiversity and conservation value can a regenerating rainforest provide? A ‘best-case scenario’ approach from the Peruvian Amazon

    Get PDF
    The structure and underlying functions of the majority of the world’s tropical forests have been disrupted by human impacts, but the potential biodiversity and conservation value of regenerating forests is still debated. One review suggests that on average, regenerating tropical forests hold 57% (±2.6%) of primary forest species richness, raising doubt about a viable second chance to conserve biodiversity through rainforest regeneration. Average values, however, likely underestimate the potential benefit to biodiversity and conservation because they are drawn from many studies of short-term regeneration and studies confounded by on-going human disturbance. We suggest that the true potential biodiversity and conservation value of regenerating rainforest could be better assessed in the absence of such factors and present a multi-taxa case study of faunal biodiversity in regenerating tropical forest in lowland Amazonia. We found that biodiversity of this regenerating site was higher than might have been expected, reaching 87% (±3.5%) of primary forest alpha diversity and an average of 83% (±6.7) of species estimated to have occurred in the region before disturbance. Further, the regenerating forest held 37 species of special conservation concern, representing 88% of species of highest conservation importance predicted to exist in primary forest from the region. We conclude that this specific regenerating rainforest has high biodiversity and conservation value, and that whilst preserving primary forest is essential, our results suggest that under a best-case scenario of effective conservation management, high levels of biodiversity can return to heavily disturbed tropical forest ecosystems. © Andrew Whitworth, Roger Downie, Rudolf von May, Jaime Villacampa and Ross MacLeod

    Evolution of breeding plumages in birds: A multiple-step pathway to seasonal dichromatism in New World warblers (Aves: Parulidae)

    Get PDF
    Ecology and Evolution published by John Wiley & Sons Ltd Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life-history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life-history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life-history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life-history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two-step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life-history strategies and a birds\u27 environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration

    RNAi targeting of rootworm \u3ci\u3eTroponin I\u3c/i\u3e transcripts confers root protection in maize

    Get PDF
    Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize

    Mediators and Moderators of Parental Involvement on Substance Use: A National Study of Adolescents

    Full text link
    Current social developmental theories of drug use often incorporate mediation processes, but it is generally unknown whether these mediation processes generalize across ethnicity and gender. In the present study, we developed a mediation model of substance use based on current theory and research and then tested the extent to which the model was moderated by gender and ethnicity (African American, European American, and Hispanic American), separately for 8th and 10th graders. The respondents were adolescents from the 1994, 1995, and 1996 cohorts of the Monitoring the Future (MTF) project, which conducts yearly in-school surveys with nationally representative samples. Multi-group, structural equation modeling (SEM) results indicated much similarity across gender and ethnicity for school success and time spent with friends as partial mediators of risk taking and parental involvement on drug use (controlling for parental education). However, there were some differences in the magnitude of indirect effects of parental involvement and risk taking on substance use for 8th-grade African American girls. Discussion focuses on the potential success of prevention efforts across different ethnicities and gender that target parent–child relationship improvement and risk taking, and considers possible culture- and gender-specific issues.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45503/1/11121_2005_Article_19.pd

    Peer Effects in Drug Use and Sex Among College Students

    Full text link
    Past research suggests that congregating delinquent youth increases their likelihood of problem behavior. We test for analogous peer effects in the drug use and sexual behavior of male ( n = 279) and female ( n = 435) college students, using data on the characteristics of first-year roommates to whom they were randomly assigned. We find that males who reported binge drinking in high school drink much more in college if assigned a roommate who also binge drank in high school than if assigned a nonbinge-drinking roommate. No such multiplier effect is observed for females, nor are multiplier effects observed for marijuana use or sexual behavior for either males or females. Students who did not engage in these behaviors in high school do not appear to be affected by their roommates’ high school behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44594/1/10802_2005_Article_3576.pd

    Macroscopic entanglement jumps in model spin systems

    Get PDF
    In this paper, we consider some frustrated spin models for which the ground states are known exactly. The concurrence, a measure of the amount of entanglement can be calculated exactly for entangled spin pairs. Quantum phase transitions involving macroscopic magnetization changes at critical values of the magnetic field are accompanied by macroscopic jumps in the (T=0) entanglement. A specific example is given in which magnetization plateaus give rise to a plateau structure in the amount of entanglement associated with nearest-neighbour bonds. We further show that macroscopic entanglement changes can occur in quantum phase transitions brought about by the tuning of exchange interaction strengths.Comment: 11 pages, 4 figures, Latex, communicated to Phys. Rev.

    A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts

    Get PDF
    Research ArticleThere are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressedinfo:eu-repo/semantics/publishedVersio

    Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

    Get PDF
    4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd1 = 0.395 µM and Kd2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD
    corecore