141 research outputs found

    On groundwater fluctuations, evapotranspiration, and understory removal in riparian corridors

    Full text link
    This study utilizes 7 years of continuously monitored groundwater-level data from four sites along the Río Grande riparian corridor in central New Mexico to calculate evapotranspiration from groundwater and assess impacts of understory vegetation removal during a restoration project. Diurnal groundwater fluctuation measurements were used to compare the well-known White method for estimating evapotranspiration from groundwater (ETg) to colocated measurements of total riparian evapotranspiration (ET) measured using the eddy covariance method. On average, the two methods were linearly correlated and had similar variability, but groundwater hydrograph estimates of ET g tended to be larger than tower ET estimates. Average ETg estimates for two wells at one site ranged from 91.45% to 164.77% of measured tower ET estimates, but were also shown to range from 57.35% to 254.34% at another site. Comparisons between the methods improved with deeper water tables, reduced groundwater and river connectivity, and where soil profiles were dominated by coarse-sized particles. Using a range of texture-based estimates of specific yield (Sy) with water table position improves the field application of the White method. River-induced fluctuations in groundwater increased the variability of ETg measurements. Removal of understory vegetation at one site resulted in a small but significant reduction in diel groundwater fluctuation amplitude of 19-21%. Caution is required when understory vegetation removal is used as a means to decrease overall riparian ET. Diel groundwater fluctuation amplitudes can be useful in gauging the hydrological effects of vegetation removal. Riparian groundwater hydrographs are critical to investigating the hydrologic connectivity between river and shallow groundwater, the temporal patterns of vegetative consumption, and monitoring changes to the vegetation community. Copyright 2009 by the American Geophysical Union

    A Dynamical Model of Oocyte Maturation Unveils Precisely Orchestrated Meiotic Decisions

    Get PDF
    Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions

    suPAR as a prognostic biomarker in sepsis

    Get PDF
    Sepsis is the clinical syndrome derived from the host response to an infection and severe sepsis is the leading cause of death in critically ill patients. Several biomarkers have been tested for use in diagnosis and prognostication in patients with sepsis. Soluble urokinase-type plasminogen activator receptor (suPAR) levels are increased in various infectious diseases, in the blood and also in other tissues. However, the diagnostic value of suPAR in sepsis has not been well defined, especially compared to other more established biomarkers, such as C-reactive protein (CRP) and procalcitonin (PCT). On the other hand, suPAR levels have been shown to predict outcome in various kinds of bacteremia and recent data suggest they may have predictive value, similar to that of severity scores, in critically ill patients. This narrative review provides a descriptive overview of the clinical value of this biomarker in the diagnosis, prognosis and therapeutic guidance of sepsis

    Classification of ductal carcinoma in situ by gene expression profiling

    Get PDF
    INTRODUCTION: Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas. METHODS: Gene expression profiling using microarray analysis has been performed on 40 in situ and 40 invasive breast cancer cases. RESULTS: DCIS cases were classified as well- (n = 6), intermediately (n = 18), and poorly (n = 14) differentiated type. Of the 40 invasive breast cancer samples, five samples were grade I, 11 samples were grade II, and 24 samples were grade III. Using two-dimensional hierarchical clustering, the basal-like type, ERB-B2 type, and the luminal-type tumours originally described for invasive breast cancer could also be identified in DCIS. CONCLUSION: Using supervised classification, we identified a gene expression classifier of 35 genes, which differed between DCIS and invasive breast cancer; a classifier of 43 genes could be identified separating between well- and poorly differentiated DCIS samples

    Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Get PDF
    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently.The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3.PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication

    Get PDF
    Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability

    Activity-Based Funding of Hospitals and Its Impact on Mortality, Readmission, Discharge Destination, Severity of Illness, and Volume of Care: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Activity-based funding (ABF) of hospitals is a policy intervention intended to re-shape incentives across health systems through the use of diagnosis-related groups. Many countries are adopting or actively promoting ABF. We assessed the effect of ABF on key measures potentially affecting patients and health care systems: mortality (acute and post-acute care); readmission rates; discharge rate to post-acute care following hospitalization; severity of illness; volume of care.     Methods: We undertook a systematic review and meta-analysis of the worldwide evidence produced since 1980. We included all studies reporting original quantitative data comparing the impact of ABF versus alternative funding systems in acute care settings, regardless of language. We searched 9 electronic databases (OVID MEDLINE, EMBASE, OVID Healthstar, CINAHL, Cochrane CENTRAL, Health Technology Assessment, NHS Economic Evaluation Database, Cochrane Database of Systematic Reviews, and Business Source), hand-searched reference lists, and consulted with experts. Paired reviewers independently screened for eligibility, abstracted data, and assessed study credibility according to a pre-defined scoring system, resolving conflicts by discussion or adjudication.     Results: Of 16,565 unique citations, 50 US studies and 15 studies from 9 other countries proved eligible (i.e. Australia, Austria, England, Germany, Israel, Italy, Scotland, Sweden, Switzerland). We found consistent and robust differences between ABF and no-ABF in discharge to post-acute care, showing a 24% increase with ABF (pooled relative risk = 1.24, 95% CI 1.18–1.31). Results also suggested a possible increase in readmission with ABF, and an apparent increase in severity of illness, perhaps reflecting differences in diagnostic coding. Although we found no consistent, systematic differences in mortality rates and volume of care, results varied widely across studies, some suggesting appreciable benefits from ABF, and others suggesting deleterious consequences.     Conclusions: Transitioning to ABF is associated with important policy- and clinically-relevant changes. Evidence suggests substantial increases in admissions to post-acute care following hospitalization, with implications for system capacity and equitable access to care. High variability in results of other outcomes leaves the impact in particular settings uncertain, and may not allow a jurisdiction to predict if ABF would be harmless. Decision-makers considering ABF should plan for likely increases in post-acute care admissions, and be aware of the large uncertainty around impacts on other critical outcomes

    Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants

    Full text link
    The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.This work was supported by grant BFU2011-30197-C03-03 from the Ministerio de Ciencia e Innovacion (Spain). V.L.-T. is supported by a fellowship from the Universidad Politecnica de Valencia. C. P. is supported by a fellowship from the Consejo Superior de Investigaciones Cientificas (Spain).Mulet Salort, JM.; Llopis Torregrosa, V.; Primo Planta, C.; Marques Romero, MC.; Yenush, L. (2013). Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics. 59(4):207-230. https://doi.org/10.1007/s00294-013-0401-2S207230594Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103:667–673. doi: 10.1172/JCI5713Alesutan I, Munoz C, Sopjani M, Dërmaku-Sopjani M, Michael D, Fraser S, Kemp BE, Seebohm G, Föller M, Lang F (2011) Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochem Biophys Res Commun 408:505–510. doi: 10.1016/j.bbrc.2011.04.015Alvarez CE (2008) On the origins of arrestin and rhodopsin. BMC Evol Biol 8:222. doi: 10.1186/1471-2148-8-222Amerik AY, Nowak J, Swaminathan S, Hochstrasser M (2000) The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell 11:3365–3380Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740Anderson JA, Nakamura RL, Gaber RF (1994) Heterologous expression of K+ channels in Saccharomyces cerevisiae: strategies for molecular analysis of structure and function. Symp Soc Exp Biol 48:85–97Aniento F, Gu F, Parton RG, Gruenberg J (1996) An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 133:29–41Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol mol biol rev 74:95–120. doi: 10.1128/mmbr.00042-09Arnason TG, Pisclevich MG, Dash MD, Davies GF, Harkness TA (2005) Novel interaction between Apc5p and Rsp5p in an intracellular signaling pathway in Saccharomyces cerevisiae. Eukaryot Cell 4:134–146. doi: 10.1128/EC.4.1.134-146.2005Arroyo JP, Lagnaz D, Ronzaud C, Vázquez N, Ko BS, Moddes L, Ruffieux-Daidié D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O (2011) Nedd4-2 modulates renal Na+ –Cl– cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 22:1707–1719. doi: 10.1681/ASN.2011020132Azmi IF, Davies BA, Xiao J, Babst M, Xu Z, Katzmann DJ (2008) ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev Cell 14:50–61. doi: 10.1016/j.devcel.2007.10.021Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002a) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002b) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289Bache KG, Slagsvold T, Cabezas A, Rosendal KR, Raiborg C, Stenmark H (2004) The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor down-regulation. Mol Biol Cell 15:4337–4346. doi: 10.1091/mbc.E04-03-0250Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685. doi: 10.1038/ncb2502Barajas D, Nagy PD (2010) Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology 397:358–368. doi: 10.1016/j.virol.2009.11.010Barajas D, Jiang Y, Nagy PD (2009) A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLoS Pathog 5:e1000705. doi: 10.1371/journal.ppat.1000705Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108:E450–E458. doi: 10.1073/pnas.1100659108Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142. doi: 10.1105/tpc.111.095273Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239. doi: 10.1105/tpc.110.079426Beaudenon SL, Huacani MR, Wang G, McDonnell DP, Huibregtse JM (1999) Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 19:6972–6979Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, Haguenauer-Tsapis R, Vincent O, Paiva S, Léon S (2012) A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol 196:247–259. doi: 10.1083/jcb.201109113Belgareh-Touzé N, Léon S, Erpapazoglou Z, Stawiecka-Mirota M, Urban-Grimal D, Haguenauer-Tsapis R (2008) Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem Soc Trans 36:791–796. doi: 10.1042/BST0360791Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR (2006) AMP-activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4-2. J Biol Chem 281:26159–26169. doi: 10.1074/jbc.M606045200Blondel MO, Morvan J, Dupre S, Urban-Grimal D, Haguenauer-Tsapis R, Volland C (2004) Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. Mol Biol Cell 15:883–895. doi: 10.1091/mbc.E03-04-0202Boase NA, Rychkov GY, Townley SL, Dinudom A, Candi E, Voss AK, Tsoutsman T, Semsarian C, Melino G, Koentgen F, Cook DI, Kumar S (2011) Respiratory distress and perinatal lethality in Nedd4-2-deficient mice. Nat Commun 2:287. doi: 10.1038/ncomms1284Boehmer C, Laufer J, Jeyaraj S, Klaus F, Lindner R, Lang F, Palmada M (2008) Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination. Cell Physiol Biochem 22:591–600. doi: 10.1159/000185543Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447. doi: 10.1146/annurev.biochem.72.121801.161800Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405. doi: 10.1091/mbc.E04-11-0999Cao XR, Lill NL, Boase N, Shi PP, Croucher DR, Shan H, Qu J, Sweezer EM, Place T, Kirby PA, Daly RJ, Kumar S, Yang B (2008) Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal 1:ra5. doi: 10.1126/scisignal.1160940Carrasquillo R, Tian D, Krishna S, Pollak MR, Greka A, Schlöndorff J (2012) SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity. BMC Cell Biol 13:33. doi: 10.1186/1471-2121-13-33Chen L, Hellmann H (2013) Plant E3 Ligases: flexible enzymes in a sessile world1. Mol Plant. doi: 10.1093/mp/sst005Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500. doi: 10.1038/nature05999Christie KJ, Martinez JA, Zochodne DW (2012) Disruption of E3 ligase NEDD4 in peripheral neurons interrupts axon outgrowth: linkage to PTEN. Mol Cell Neurosci 50:179–192. doi: 10.1016/j.mcn.2012.04.006Clague MJ, Liu H, Urbé S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23:457–467. doi: 10.1016/j.devcel.2012.08.011Clancy JL, Henderson MJ, Russell AJ, Anderson DW, Bova RJ, Campbell IG, Choong DY, Macdonald GA, Mann GJ, Nolan T, Brady G, Olopade OI, Woollatt E, Davies MJ, Segara D, Hacker NF, Henshall SM, Sutherland RL, Watts CK (2003) EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer. Oncogene 22:5070–5081. doi: 10.1038/sj.onc.1206775Coonrod EM, Stevens TH (2010) The yeast vps class E mutants: the beginning of the molecular genetic analysis of multivesicular body biogenesis. Mol Biol Cell 21:4057–4060. doi: 10.1091/mbc.E09-07-0603Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444. doi: 10.1074/jbc.M103601200Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Münster C, Chraïbi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20:7052–7059. doi: 10.1093/emboj/20.24.7052Downes BP, Stupar RM, Gingerich DJ, Vierstra RD (2003) The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J 35:729–742Eisenach C, Chen ZH, Grefen C, Blatt MR (2012) The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J 69:241–251. doi: 10.1111/j.1365-313X.2011.04786.xEkberg J, Schuetz F, Boase NA, Conroy SJ, Manning J, Kumar S, Poronnik P, Adams DJ (2007) Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2. J Biol Chem 282:12135–12142. doi: 10.1074/jbc.M609385200Faresse N, Lagnaz D, Debonneville A, Ismailji A, Maillard M, Fejes-Toth G, Náray-Fejes-Tóth A, Staub O (2012) Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol 302:F977–F985. doi: 10.1152/ajprenal.00535.2011Field MC, Gabernet-Castello C, Dacks JB (2007) Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv Exp Med Biol 607:84–96. doi: 10.1007/978-0-387-74021-8_7Fisk HA, Yaffe MP (1999) A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol 145:1199–1208Flinn RJ, Yan Y, Goswami S, Parker PJ, Backer JM (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21:833–841. doi: 10.1091/mbc.E09-09-0756Fotia AB, Ekberg J, Adams DJ, Cook DI, Poronnik P, Kumar S (2004) Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2. J Biol Chem 279:28930–28935. doi: 10.1074/jbc.M402820200Futter CE, White IJ (2007) Annexins and endocytosis. Traffic 8:951–958. doi: 10.1111/j.1600-0854.2007.00590.xGabriely G, Kama R, Gerst JE (2007) Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol Cell Biol 27:526–540. doi: 10.1128/MCB.00577-06Gajewska B, Shcherbik N, Oficjalska D, Haines DS, Zoladek T (2003) Functional analysis of the human orthologue of the RSP5-encoded ubiquitin protein ligase, hNedd4, in yeast. Curr Genet 43:1–10. doi: 10.1007/s00294-003-0371-xGalan JM, Moreau V, Andre B, Volland C, Haguenauer-Tsapis R (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271:10946–10952Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A, Ren J, Xue Y (2013) UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 41:D445–D451. doi: 10.1093/nar/gks1103Geldner N (2004) The plant endosomal system—its structure and role in signal transduction and plant development. Planta 219:547–560. doi: 10.1007/s00425-004-1302-xGitan RS, Eide DJ (2000) Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J 346:329–336. doi: 10.1042/0264-6021:3460329Gitan RS, Luo H, Rodgers J, Broderius M, Eide D (1998) Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem 273:28617–28624Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011Gong X, Chang A (2001) A mutant plasma membrane ATPase, Pma1-10, is defective in stability at the yeast cell surface. Proc Natl Acad Sci USA 98:9104–9109. doi: 10.1073/pnas.161282998Guo J, Wang T, Li X, Shallow H, Yang T, Li W, Xu J, Fridman MD, Yang X, Zhang S (2012) Cell surface expression of human ether-a-go–go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. J Biol Chem 287:33132–33141. doi: 10.1074/jbc.M112.389643Gwizdek C, Hobeika M, Kus B, Ossareh-Nazari B, Dargemont C, Rodriguez MS (2005) The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation. J Biol Chem 280:13401–13405. doi: 10.1074/jbc.C500040200Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19:1295–1312. doi: 10.1105/tpc.106.049346Harkness TA, Davies GF, Ramaswamy V, Arnason TG (2002) The ubiquitin-dependent targeting pathway in Saccharomyces cerevisiae plays a critical role in multiple chromatin assembly regulatory steps. Genetics 162:615–632Hasenbrink G, Schwarzer S, Kolacna L, Ludwig J, Sychrova H, Lichtenberg-Fraté H (2005) Analysis of the mKir2.1 channel activity in potassium influx defective Saccharomyces cerevisiae strains determined as changes in growth characteristics. FEBS Lett 579:1723–1731. doi: 10.1016/j.febslet.2005.02.025Hatakeyama R, Kamiya M, Takahara T, Maeda T (2010) Endocytosis of the aspartic acid/glutamic acid transporter Dip5 is triggered by substrate-dependent recruitment of the Rsp5 ubiquitin ligase via the arrestin-like protein Aly2. Mol Cell Biol 30:5598–5607. doi: 10.1128/MCB.00464-10Hayashi M, Fukuzawa T, Sorimachi H, Maeda T (2005) Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 25:9478–9490. doi: 10.1128/mcb.25.21.9478-9490.2005He P, Lee SJ, Lin S, Seidler U, Lang F, Fejes-Toth G, Naray-Fejes-Toth A, Yun CC (2011) Serum- and glucocorticoid-induced kinase 3 in recycling endosomes mediates acute activation of Na+/H+ exchanger NHE3 by glucocorticoids. Mol Biol Cell 22:3812–3825. doi: 10.1091/mbc.E11-04-0328Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222. doi: 10.1073/pnas.0705306104Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, André B (1995) NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18:77–87Henke G, Maier G, Wallisch S, Boehmer C, Lang F (2004) Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 199:194–199. doi: 10.1002/jcp.10430Herberth S, Shahriari M, Bruderek M, Hessner F, Müller B, Hülskamp M, Schellmann S (2012) Artificial ubiquitylation is sufficient for sorting of a plasma membrane ATPase to the vacuolar lumen of Arabidopsis cells. Planta 236:63–77. doi: 10.1007/s00425-012-1587-0Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172. doi: 10.1146/annurev.cellbio.19.110701.154617Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287Hicke L, Zanolari B, Riezman H (1998) Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J Cell Biol 141:349–358Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577–586Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189:223–232. doi: 10.1083/jcb.200911018Hu G, Caza M, Cadieux B, Chan V, Liu V, Kronstad J (2013) Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 81:292–302. doi: 10.1128/IAI.01037-12Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21:737–748. doi: 10.1016/j.molcel.2006.02.018Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci USA 104:16904–16909. doi: 10.1073/pnas.0707416104Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:2563–2567Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J 37:391–397Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322. doi: 10.1146/annurev-biochem-051810-094654Ibl V, Csaszar E, Schlager N, Neubert S, Spitzer C, Hauser MT (2012) Interactome of the plant-specific ESCRT-III component AtVPS2.2 in Arabidopsis thaliana. J Proteome Res 11:397–411. doi: 10.1021/pr200845nIchimura T, Yamamura H, Sasamoto K, Tominaga Y, Taoka M, Kakiuchi K, Shinkawa T, Takahashi N, Shimada S, Isobe T (2005) 14-3-3 proteins modulate the expression of epithelial Na + channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J Biol Chem 280:13187–13194. doi: 10.1074/jbc.M412884200Jegla TJ, Zmasek CM, Batalov S, Nayak SK (2009) Evolution of the human ion channel set. Comb Chem High Throughput Screen 12:2–23Jenness DD, Li Y, Tipper C, Spatrick P (1997) Elimination of defective alpha-factor pheromone receptors. Mol Cell Biol 17:6236–6245Jespersen T, Membrez M, Nicolas CS, Pitard B, Staub O, Olesen SP, Baró I, Abriel H (2007) The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovasc Res 74:64–74. doi: 10.1016/j.cardiores.2007.01.008Jolliffe CN, Harvey KF, Haines BP, Parasivam G, Kumar S (2000) Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochem J 351(Pt 3):557–565Kallay LM, Brett CL, Tukaye DN, Wemmer MA, Chyou A, Odorizzi G, Rao R (2011) Endosomal Na+(K+)/H+ exchanger Nhx1/Vps44 functions independently and downstream of multivesicular body formation. J Biol Chem 286:44067–44077. doi: 10.1074/jbc.M111.282319Kamsteeg EJ, Savelkoul PJ, Hendriks G, Konings IB, Nivillac NM, Lagendijk AK, van der Sluijs P, Deen PM (2008) Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphoryla

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs
    corecore