559 research outputs found

    Principles of moment distribution applied to stability of structures composed of bars or plates

    Get PDF
    The principles of the cross method of moment distribution, which have previously been applied to the stability of structures composed of bars under axial load, are applied to the stability of structures composed of long plates under longitudinal load. A brief theoretical treatment of the subject, as applied to structures composed of either bars or plates, is included, together with an illustrative example for each of these two types of structure. An appendix presents the derivation of the formulas for the various stiffnesses and carry-over factors used in solving problems in the stability of structures composed of long plates

    Principles of moment distribution applied to stability of structures composed of bars or plates

    Get PDF
    Principles of the cross method of moment distribution, which have previously been applied to the stability of structures composed of bars under axial load, are applied to the stability of structures composed of long plates under longitudinal load

    Habitat shifts in response to predation risk are constrained by competition within a grazing guild

    Get PDF
    Predators can affect prey not only by killing them, but also by causing them to alter their behavior, including patterns of habitat selection. Prey can reduce the risk of predation by moving to habitats where predators are less likely to detect them, less likely to attack, or less likely to succeed. The interaction of such responses to risk with other ecological processes remains relatively unstudied, but in some cases, changes in habitat use to avoid predation may be constrained by competition: larger, dominant competitors should respond freely to predation risk, but the responses of smaller, subordinate competitors may be constrained by the responses of dominant competitors. For large grazing herbivores, an alternative hypothesis proposes that smaller prey species are vulnerable to more predators, and thus should respond more strongly to predation risk. Here, we tested these two hypotheses with 775 observations of habitat selection by four species of obligate grazers (zebra, wildebeest, puku and oribi) in the immediate presence or absence of four large carnivores (lion, spotted hyena, African wild dog and cheetah) in three ecosystems (Greater Liuwa, Greater Kafue and Luangwa Valley). Patterns of predation within this set were described by observation of 1,105 kills. Our results support the hypothesis that responses to predation risk are strongest for larger, dominant competitors. Even though zebras were killed least often, they showed the strongest shift into cover when carnivores were present. Wildebeest, puku and oribi showed weaker habitat shifts, even though they were more frequently killed. These patterns remained consistent in models that controlled for differences in the hunting mode of the predator (stalking, coursing, or intermediate) and for differences among ecosystems. There was no evidence that smaller species were subject to predation by a broader set of predators. Instead, smaller prey were killed often by smaller predators, and larger prey were killed often by larger predators. Broadly, our results show that responses to predation risk interact with interspecific competition. Accounting for such interactions should help to explain the considerable variation in the strength of responses to predation risk that has been observed

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far
    corecore