192 research outputs found

    Large low-frequency orbiting radio telescope

    Get PDF
    Feasibility of orbiting paraboloidal antenna for low frequency radio astronom

    Axisymmetric and cylindrical isostabiloids

    Get PDF
    Differential equations for compression loaded axisymmetric cylindrical structure

    Coupling between tidal mudflats and salt marshes affects marsh morphology

    Get PDF
    It is generally assumed that coastal salt marshes are capable of adapting to moderately fast rising sea levels although local sediment availability crucially affects this capability. While there is an increasing awareness that local sediment availability is inherently related to sediment dynamics on the adjacent tidal mudflat, our current understanding of the interactions between salt marshes and tidal flats is very limited. To address this knowledge gap, we measured suspended sediment concentrations alongside hydrodynamic, morphological and sediment deposition measurements over a total period of 16weeks in a wave-exposed macro-tidal mudflat-salt marsh system on the UK east coast (Tillingham). Our results show that local sediment supply to the salt marsh is strongly linked to intertidal sediment dynamics and that the vast majority of suspended sediment deposited on the marsh originates from wind-wave induced intertidal sediment resuspension in very close vicinity (5mmyr⁠−1, thereby increasing the slope of the tidal mudflat-salt marsh transition and making the salt marsh susceptible to lateral erosion. Consequently, the marsh edge retreats at a rate of approximately 0.8myr⁠−1. Our study shows that the response of coastal salt marshes to climate change is a function of the coupled tidal mudflat-salt marsh system, rather than their vertical sediment accretion rates alone. Therefore, the idea that salt marsh adaptability relies on local sediment supply needs to be expanded, incorporating the morphology and long-term evolution of the adjacent tidal mudflats.NERC-funded projects Coastal Biodiversity and Ecosystem Services Sustainability (CBESS; grant no: NE/J015423/1) and BLUE-coast (grant no: NE/N015878/1)

    Future response of global coastal wetlands to sea-level rise

    Get PDF
    The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services(1-3). These projections do not necessarily take into account all essential geomorphological(4-7) and socio-economic system feedbacks(8). Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies(1-3), we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management

    The effect of vegetation height and biomass on the sediment budget of a European saltmarsh

    Get PDF
    Sediment retention in saltmarshes is often attributed to the presence of vegetation, which enhances accretion by slowing water flow, reduces erosion by attenuating wave energy and increases surface stability through the presence of organic matter. Saltmarsh vegetation morphology varies considerably on a range of spatial and temporal scales, but the effect of different above ground morphologies on sediment retention is not well characterised. Understanding the biophysical interaction between the canopy and sediment trapping in situ is important for improving numerical shoreline models. In a novel field flume study, we measured the effect of vegetation height and biomass on sediment trapping using a mass balance approach. Suspended sediment profilers were placed at both openings of a field flume built across-shore on the seaward boundary of an intertidal saltmarsh in the Dengie Peninsula, UK. Sequential removal of plant material from within the flume resulted in incremental loss of vegetation height and biomass. The difference between the concentration of suspended sediment measured at each profiler was used to determine the sediment budget within the flume. Deposition of material on the plant/soil surfaces within the flume occurred during flood tides, while ebb flow resulted in erosion (to a lesser degree) from the flume area, with a positive sediment budget of on average 6.5 g m-2 tide-1 with no significant relationship between sediment trapping efficiency and canopy morphology. Deposition (and erosion) rates were positively correlated to maximum inundation depth. Our results suggest that during periods of calm conditions, changes to canopy morphology do not result in significant changes in sediment budgets in marshes

    Heliogyro solar sailer Summary report

    Get PDF
    Large solar sail vehicle to operate in manner of helicopter roto

    The effect of long-term and decadal climate and hydrology variations on estuarine marsh dynamics: An identifying case study from the Río de la Plata

    Get PDF
    The vertical growth of coastal wetlands is known to primarily be controlled by local tidal range and sediment availability as well as the occurrence of storm events. In estuaries, sediment availability additionally depends on riverine sediment input, the effect of which may be more pronounced in some parts of the estuary, thereby introducing a distinct spatial pattern that depends on the estuary's shape as well as the riverine sediment input and the hydro-meteorological regime. In the present study, we investigate how estuarine marshes along the whole Río de la Plata (RdlP) are affected by decadal and long-term variations in river discharge and storm activity. The El Niño Southern Oscillation (ENSO), in this context, appears to introduce a pronounced decadal variability on sediment loads brought into the RdlP. Based on 15 sediment cores, recovered along the RdlP and adjacent Atlantic coast, vertical marsh growth rates were studied using radionuclide dating (210Pb and 137Cs) and grain size distributions. By comparing these sedimentological records with historic river discharge and storm surge data, we spatially interpret the relative importance of temporal variations in river discharge and storm activity on estuarine marsh growth. By delivering the first estimates for vertical growth rates of the RdlP marshes, we conclude that with average vertical marsh growth rates between 0.4 and 2.6 cm year− 1, the RdlP marshes are highly resilient against drowning under present and future sea-level rise (SLR) conditions. Furthermore, our results confirm a large spatial variability of the drivers for vertical marsh growth; extreme storm surges appear to play a role in the development of the outer RdlP marshes whereas the temporal variations in river discharge seem to be hierarchically more important for the marshes in the inner estuary.This project was financially supported by a grant of the Cluster of Excellence 80 ‘The Future Ocean’ to Mark Schuerch (grant CP1211). ‘The Future Ocean’ is funded within the framework of the Excellence Initiative by the ‘Deutsche Forschungsgemeinschaft’ (DFG) on behalf of the German federal and state governments (EXC 80). Felipe García-Rodríguez acknowledges ‘Agencia Nacional de Investigación e Innovación’ (ANII) and PEDECIBA. Jan Scholten acknowledges the support provided by the FP7 EU Marie Curie Career Integration Grant (grant PCIG09-GA-2011-293499).This is the author accepted manuscript. The final version is available from Elsevier at http://dx.doi.org/10.1016/j.geomorph.2016.06.029

    Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model

    Get PDF
    The Dynamic Interactive Vulnerability Assessment Wetland Change Model (DIVA_WCM) comprises a dataset of contemporary global coastal wetland stocks (estimated at 756 × 10^3 km^2 (in 2011)), mapped to a one-dimensional global database, and a model of the macro-scale controls on wetland response to sea-level rise. Three key drivers of wetland response to sea-level rise are considered: 1) rate of sea-level rise relative to tidal range; 2) lateral accommodation space; and 3) sediment supply. The model is tuned by expert knowledge, parameterised with quantitative data where possible, and validated against mapping associated with two large-scale mangrove and saltmarsh vulnerability studies. It is applied across 12,148 coastal segments (mean length 85 km) to the year 2100. The model provides better-informed macro-scale projections of likely patterns of future coastal wetland losses across a range of sea-level rise scenarios and varying assumptions about the construction of coastal dikes to prevent sea flooding (as dikes limit lateral accommodation space and cause coastal squeeze). With 50 cm of sea-level rise by 2100, the model predicts a loss of 46–59% of global coastal wetland stocks. A global coastal wetland loss of 78% is estimated under high sea-level rise (110 cm by 2100) accompanied by maximum dike construction. The primary driver for high vulnerability of coastal wetlands to sea-level rise is coastal squeeze, a consequence of long-term coastal protection strategies. Under low sea-level rise (29 cm by 2100) losses do not exceed ca. 50% of the total stock, even for the same adverse dike construction assumptions. The model results confirm that the widespread paradigm that wetlands subject to a micro-tidal regime are likely to be more vulnerable to loss than macro-tidal environments. Countering these potential losses will require both climate mitigation (a global response) to minimise sea-level rise and maximisation of accommodation space and sediment supply (a regional response) on low-lying coasts.The authors gratefully acknowledge funding from the European Union under contract number EVK2-2000-22024. They thank all their partners in the DINAS-COAST project Dynamic and Interactive Assessment of National, Regional and Global Vulnerability of Coastal Zones to Climate Change and Sea-level rise. We are grateful to staff at UNEP-WCMC for generous access to evolving databases on global coastal wetland extent: Jon Hutton, Hannah Thomas, Jan-Willem van Bochove, Simon Blyth and Chris McOwen. Current wetland databases held at WCMC build upon the pioneering efforts of Mark Spalding and Carmen Lacambra.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.gloplacha.2015.12.01

    Linking patterns of freshwater discharge and sources of organic matter within the Río de la Plata estuary and adjacent marshes

    Get PDF
    We investigated carbon isotopic ratios (δ13C) v. carbon to nitrogen (C : N) ratios for surface sediments throughout a large estuarine system (Río de la Plata, RdlP), combined with sediment cores from adjacent marshes to infer main carbon sources. We also evaluated the influence of the El Niño–Southern Oscillation (ENSO) and associated high freshwater-discharge events on the organic-matter transport within the estuary. The isotopic pattern in surface sediments of the RdlP showed the upper reaches to be influenced by riverine particulate matter (δ13C range: –24 to –26‰). Similarly, in the sediment cores from marshes of the upper reaches, δ13C values decreased from –24‰ in ancient sediments to –28‰ in recent sediments, reflecting an increased contribution of organic matter from land, including C3 plants and freshwater phytoplankton, during the past 50 years. However, the lower reaches represent a depositional environment of marine algae (δ13C range: –21 to –23‰), with no influence of detritus from adjacent marshes, indicating minor erosion of the marshes in the lower reaches operating as carbon-sink habitats. Our isotopic analysis showed that the transport and deposition of terrigenous organic matter within the RdlP and adjacent marsh habitat appear to be both temporally and spatially linked to hydrology patterns.This work was partly funded by PEDECIBA–Geociencias and Agenica Nacional de Investigación en Innovación (SNI–ANII). This paper is part of the M.Sc. Thesis of A. Tudurí. This project (CP1211) was financially supported by a grant of the Cluster of Excellence 80 ‘The Future Ocean’ to Mark Schuerch. ‘The Future Ocean’ is funded within the framework of the Excellence Initiative by the ‘Deutsche Forschungsgemeinschaft’ (DFG) on behalf of the German federal and state governments. L. Bergamino thanks CSIC-Program ‘Contratación de Científicos Provenientes del Exterior’
    corecore