893 research outputs found

    Information propagation for interacting particle systems

    Get PDF
    We show that excitations of interacting quantum particles in lattice models always propagate with a finite speed of sound. Our argument is simple yet general and shows that by focusing on the physically relevant observables one can generally expect a bounded speed of information propagation. The argument applies equally to quantum spins, bosons such as in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum fields. Our result can be seen as a meaningful analogue of the Lieb-Robinson bound for strongly correlated models.Comment: 4 pages, 1 figure, minor change

    Constructing topological models by symmetrization: A PEPS study

    Get PDF
    Symmetrization of topologically ordered wavefunctions is a powerful method for constructing new topological models. Here, we study wavefunctions obtained by symmetrizing quantum double models of a group GG in the Projected Entangled Pair States (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G~\tilde G which is always non-abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wavefunctions in the same phase as the double model of G~\tilde G. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G~\tilde G.Comment: 10 pages. v2: accepted versio

    Edge theories in Projected Entangled Pair State models

    Get PDF
    We study the edge physics of gapped quantum systems in the framework of Projected Entangled Pair State (PEPS) models. We show that the effective low-energy model for any region acts on the entanglement degrees of freedom at the boundary, corresponding to physical excitations located at the edge. This allows us to determine the edge Hamiltonian in the vicinity of PEPS models, and we demonstrate that by choosing the appropriate bulk perturbation, the edge Hamiltonian can exhibit a rich phase diagram and phase transitions. While for models in the trivial phase any Hamiltonian can be realized at the edge, we show that for topological models, the edge Hamiltonian is constrained by the topological order in the bulk which can e.g. protect a ferromagnetic Ising chain at the edge against spontaneous symmetry breaking.Comment: 5 pages, 4 figure

    Coherent states of a charged particle in a uniform magnetic field

    Full text link
    The coherent states are constructed for a charged particle in a uniform magnetic field based on coherent states for the circular motion which have recently been introduced by the authors.Comment: 2 eps figure

    Computational Complexity of interacting electrons and fundamental limitations of Density Functional Theory

    Get PDF
    One of the central problems in quantum mechanics is to determine the ground state properties of a system of electrons interacting via the Coulomb potential. Since its introduction by Hohenberg, Kohn, and Sham, Density Functional Theory (DFT) has become the most widely used and successful method for simulating systems of interacting electrons, making their original work one of the most cited in physics. In this letter, we show that the field of computational complexity imposes fundamental limitations on DFT, as an efficient description of the associated universal functional would allow to solve any problem in the class QMA (the quantum version of NP) and thus particularly any problem in NP in polynomial time. This follows from the fact that finding the ground state energy of the Hubbard model in an external magnetic field is a hard problem even for a quantum computer, while given the universal functional it can be computed efficiently using DFT. This provides a clear illustration how the field of quantum computing is useful even if quantum computers would never be built.Comment: 8 pages, 3 figures. v2: Version accepted at Nature Physics; differs significantly from v1 (including new title). Includes an extra appendix (not contained in the journal version) on the NP-completeness of Hartree-Fock, which is taken from v

    Cosmic ray short burst observed with the Global Muon Detector Network (GMDN) on June 22, 2015

    Get PDF
    We analyze the short cosmic ray intensity increase ("cosmic ray burst": CRB) on June 22, 2015 utilizing a global network of muon detectors and derive the global anisotropy of cosmic ray intensity and the density (i.e. the omnidirectional intensity) with 10-minute time resolution. We find that the CRB was caused by a local density maximum and an enhanced anisotropy of cosmic rays both of which appeared in association with Earth's crossing of the heliospheric current sheet (HCS). This enhanced anisotropy was normal to the HCS and consistent with a diamagnetic drift arising from the spatial gradient of cosmic ray density, which indicates that cosmic rays were drifting along the HCS from the north of Earth. We also find a significant anisotropy along the HCS, lasting a few hours after the HCS crossing, indicating that cosmic rays penetrated into the inner heliosphere along the HCS. Based on the latest geomagnetic field model, we quantitatively evaluate the reduction of the geomagnetic cut-off rigidity and the variation of the asymptotic viewing direction of cosmic rays due to a major geomagnetic storm which occurred during the CRB and conclude that the CRB is not caused by the geomagnetic storm, but by a rapid change in the cosmic ray anisotropy and density outside the magnetosphere.Comment: accepted for the publication in the Astrophysical Journa

    The role of depression in the association between mobilisation timing and live discharge after hip fracture surgery: Secondary analysis of the UK National Hip Fracture Database

    Get PDF
    Purpose The aim was to compare the probability of discharge after hip fracture surgery conditional on being alive and in hospital between patients mobilised within and beyond 36-hours of surgery across groups defined by depression. Methods Data were taken from the National Hip Fracture Database and included patients 60 years of age or older who underwent hip fracture surgery in England and Wales between 2014 and 2016. The conditional probability of postsurgical live discharge was estimated for patients mobilised early and for patients mobilised late across groups with and without depression. The association between mobilisation timing and the conditional probability of live discharge were also estimated separately through adjusted generalized linear models. Results Data were analysed for 116,274 patients. A diagnosis of depression was present in 8.31% patients. In those with depression, 7,412 (76.7%) patients mobilised early. In those without depression, 84,085 (78.9%) patients mobilised early. By day 30 after surgery, the adjusted odds ratio of discharge among those who mobilised early compared to late was 1.79 (95% CI: 1.56–2.05, p<0.001) and 1.92 (95% CI: 1.84–2.00, p<0.001) for those with and without depression, respectively. Conclusion A similar proportion of patients with depression mobilised early after hip fracture surgery when compared to those without a diagnosis of depression. The association between mobilisation timing and time to live discharge was observed for patients with and without depression

    Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

    Full text link
    We prove Lieb-Robinson bounds for the dynamics of systems with an infinite dimensional Hilbert space and generated by unbounded Hamiltonians. In particular, we consider quantum harmonic and certain anharmonic lattice systems

    Single Transfer-Excitation Resonance Observed Via the Two-Photon Decay in He-like Ge³⁰âș

    Get PDF
    We measured the 2E1 decay of the 1s2s 1S0 →1s2 1S0 transition in He-like germanium for 12- to 19-MeV/u Ge31+ +H2 collisions. The resonant population of the 2s2p 1P1 state by transfer excitation was isolated due to its cascading to the 1s2s 1S0 state. The experimental cross sections compare well with calculations using dielectronic recombination rates. The method gives the unique possibility to populate selectively the 1S0 state in heavy He-like ions
    • 

    corecore