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Computational Complexity of interacting electrons

and fundamental limitations of Density Functional Theory
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One of the central problems in quantum me-
chanics is to determine the ground state proper-
ties of a system of electrons interacting via the
Coulomb potential. Since its introduction by Ho-
henberg, Kohn, and Sham1,2, Density Functional
Theory (DFT) has become the most widely used
and successful method for simulating systems of
interacting electrons, making their original work
one of the most cited in physics. In this letter,
we show that the field of computational complex-
ity imposes fundamental limitations on DFT, as
an efficient description of the associated univer-
sal functional would allow to solve any problem in
the class QMA (the quantum version of NP) and
thus particularly any problem in NP in polyno-
mial time. This follows from the fact that finding
the ground state energy of the Hubbard model in
an external magnetic field is a hard problem even
for a quantum computer, while given the univer-
sal functional it can be computed efficiently us-
ing DFT. This provides a clear illustration how
the field of quantum computing is useful even if
quantum computers would never be built.
The difficulty of finding the ground state properties

of a large system of interacting electrons originates both
from the exponential dimension of the underlying Hilbert
space and from the fermionic nature of the wave function.
It is a problem encountered virtually everywhere in quan-
tum chemistry as well as in condensed matter physics:
for instance, the spatial configuration of a molecule is
the one for which the energy of the interacting electrons
moving in the nuclear potential, together with the elec-
trostatic energy of the nuclei, becomes minimal. Simi-
larly, a rich variety of phenomena in solid state physics,
in particular conductance and magnetic phenomena, can
be understood by considering electrons moving in the
periodic lattice potential, including such exciting phe-
nomena as high-temperature superconductivity and the
fractional quantum Hall effect.
A system of N electrons is described by the Hamilto-

nian

H = − 1
2

N∑

i=1

∆i

︸ ︷︷ ︸

=:T

+
∑

1≤i<j≤N

γ

|ri − rj |
︸ ︷︷ ︸

=:I

+
∑

i

V (xi) (1)

(γ > 0, and xi = (ri, si) with ri position and si spin),
where the potential V contains both an electrostatic

field φ(r) and a magnetic field ~B(r) which couples to
the spin (the coupling to the orbit can be neglected
for our purposes, see Supplementary Material), and the
problem is to find the ground state within the set of
fermionic (i.e. antisymmetric) quantum states. Following

the early work of Slater3, Hohenberg, Kohn, and Sham1,2

showed that this problem could be rephrased as a single-
particle minimization problem, for the reason that the
only problem-dependent part is the external potential V
whose expectation value only depends on the local den-
sity, while the kinetic and interaction terms T and I are
fixed and universal for all systems. Thus, the ground
state energy is given by

E0 = min
ρ

{tr(V ρ) + F [ρ]} , (2)

where ρ is a single-electron density, and the functional F
contains the problem-independent minimization over T
and I,

F [ρ] = min
Ω→ρ

tr [(T + I)Ω] . (3)

Here, the minimization runs over all N -electron density
operators Ω which give rise to the reduced density ρ. The
central requirement for a good DFT algorithm is to find
a suitable approximation to the universal functional, and
indeed better and better techniques have been developed,
making DFT the most widely used and most successful
algorithm for treating interacting electrons.
However, as we show in this letter, there exist funda-

mental limits which constrain the ability to find a gener-
ally applicable and efficiently computable approximation
to the universal functional, and thus put bounds on the
applicability of DFT. To this end, we consider the 2D
Hubbard model with local magnetic fields, which arises
from the problem of interacting electrons for a specifi-
cally chosen lattice potential, and can thus be simulated
using DFT. We first determine the computational com-
plexity of solving the Hubbard model and show that it
is among the hardest problems in the complexity class
QMA, Quantum Merlin Arthur. QMA contains problems
which are believed to be hard to solve even by quan-
tum computers, but once a solution is found, it can be
checked efficiently by a quantum computer. Thus, QMA

encompasses the complexity class NP. We compare this
to the difficulty of solving the Hubbard model using DFT
with a suitable approximation of the functional at hand,
and find that in that case the Hubbard model can be
solved by a classical computer in a time polynomial in
the number of electrons. This means that the existence
of an efficient approximation to the functional would im-
ply QMA=P, i.e. computing the functional to polynomial
accuracy in the number of electrons is a QMA-hard prob-
lem, which poses fundamental limitations on the ability
to approximate the functional in DFT. Of course, this
does not mean that DFT is not applicable in practice:
much lower (e.g. constant) accuracies will typically suf-
fice, and DFT is indeed a highly successful method.
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FIG. 1: The relevant complexity classes and their relations.
While P and BQP are the classes of problems efficiently solv-
able by classical and quantum computers, respectively, NP

(QMA) contains decision problems which are likely to be hard
to solve by classical (quantum) computers, but where for pos-
itive instances, classical (quantum) proofs exist which can be
checked efficiently by a classical (quantum) computer. All in-
clusions are believed to be strict. We show that solving the
Hubbard model is among the hardest problems in QMA, while
the existence of an efficient description of the universal func-
tional in DFT would put it in P, leading to the collapse of all
aforementioned complexity classes. This puts tight bounds
on the existence of such functionals.

The 2D Hubbard model4,5 describes a system of
fermions hopping on a lattice. Although it typically ap-
pears as a phenomenological model for strongly bound
electrons in solid state physics6, it can be derived rigor-
ously from (1) for an appropriate potential, as we show in
the Supplementary Material. The Hubbard model with
local magnetic fields is given by the Hamiltonian

HHubb = −t
∑

<i,j>,s

a†i,saj,s+U
∑

i

ni,↑ni,↓−
∑

i

~σi · ~Bi , (4)

where a†i,s creates an electron of spin s ∈ {↑, ↓} on
lattice site i, <i, j> denotes nearest neighbors on the
2D square lattice, n = a†a, ~σi = (σx,i, σy,i, σz,i), and

σα,i =
∑

s,s′ σ
α
ss′a

†
i,sai,s′ with σ

α the Pauli matrices. The
first term describes an electron tunneling from one site
to the adjacent one without changing its spin, the second
the on-site Coulomb repulsion between two electrons of
different spin sitting on the same site, and the rightmost
term contains the contribution from the magnetic field
which imposes a local field at each site i – this is the
only term which we can tune locally.
The 2D Hubbard model is of large interest on its own,

as it is the minimal model that is believed to describe
the physics arising in high-temperature superconductiv-
ity, quantum magnetism, and heavy fermions. Indeed,
it is one of the most intensively studied models in solid
state physics, making the investigation of its computa-
tional complexity interesting on its own. In the following,
we show that computing its ground state energy up to
polynomial accuracy is complete for the complexity class
QMA, the quantum analogue of NP. A decision problem
is in QMA if – although possibly hard to solve even by a
quantum computer – every positive instance has a quan-

tum proof which can be checked efficiently by a quantum
computer. In particular, finding the ground state energy
of a local spin system with an accuracy polynomial in
the lattice size is in QMA: The ground state serves as
a proof, as expectation values of local Hamiltonians can
be estimated efficiently. Conversely, it has been shown
that any circuit verifying a QMA proof can be encoded
as a ground state problem7,8, i.e., ground state problems

are QMA-complete. (A problem is called complete for a
class if it is among the hardest problems in this class,
i.e., if any problem in the class can be reduced to it.)
Using the same argument as before, finding the ground
state energy of the Hubbard model is inside QMA, since
it can be mapped to a spin system via the Jordan-Wigner
transform: This allows to specify its ground state using
spins, in such a way that it is possible to measure the
ground state energy efficiently9.
In the following, we show that the Hubbard model with

magnetic fields is also a hard problem for QMA, and thus
QMA-complete. To this end, we start from a class of
Hamiltonians for which finding the ground state energy is
known to be QMA-complete – i.e., as hard as finding the
ground state energy of any local Hamilonian – and show
that this problem can be reduced to finding the ground
state energy of the Hubbard model with local magnetic
fields. This is accomplished by a sequence of reductions,
each of which reduces the previous Hamiltonian problem
to a more restricted class of Hamiltonians. Each step
makes use of perturbation theory constructions (so-called
gadgets) such that the original Hamiltonian arises as the
effective low-energy theory of the new Hamiltonian.
We start off with the Hamiltonian

HPauli =
∑

<i,j>

λijA(ij) ⊗B(ij) (5)

defined on a 2D lattice with N spins, with A(ij) and B(ij)

Pauli matrices and |λ| ≤ 1, for which it has been proven
that finding the ground state energy up to a polynomial
accuracy 1/q(N) is QMA-hard10. Following Ref.10, we
call interactions of the form λijA(ij) ⊗ B(ij) Pauli inter-
actions.
We first show how the Pauli Hamiltonian (5) can be

reduced to the 2D Heisenberg lattice with local fields (see
Supplementary Material for details). To this end, we em-
ploy a chain of gadgets, all of which replace a two-qubit
coupling by a chain of three qubits with a more restricted
coupling. The idea is that by imposing a strong local field
on the central (“mediator”) qubit, the system will essen-
tially be in the ground state of the central qubit – but
there will be second-order processes in which an excita-
tion hops from the left qubit to the central one and then
to the right, or vice versa, yielding an effective coupling
between the outer qubits. (The excitation can also hop
back and give an extra local term, which however can
easily be compensated by adjusting the local magnetic
field.) Note that similar gadgets have already been used,
e.g., in Refs.10,15.
The full sequence of reductions to the Heisenberg lat-

tice is illustrated in Fig. 2. In a first step, we reduce
arbitrary Pauli couplings λA ⊗ B to Pauli couplings
with constant λ and A 6= B. We illustrate this with
a λYl ⊗ Zr coupling (we use X for σx etc. in the follow-
ing), which is obtained from three qubits with couplings
Yl ⊗Xm ⊗ 11r + 11l ⊗ Ym ⊗Zr by putting a strong field in
the XY plane on the central qubit: A short calculation
shows that this indeed gives a Yl ⊗ Zr coupling, where
the strength is given by the angle in the XY plane. The
intuition behind is that e.g. a Yl on the left qubit can ex-
cite the central qubit, and the excitation then hops to the



3

FIG. 2: Gadgets to reduce Pauli couplings to Heisenberg
couplings. Each gadget works by inserting an extra spin in
the middle which is subject to a strong local field, yielding
the desired interaction in second order perturbation theory.
A and B are Pauli matrices.

right qubit as a Zr. In order for this hopping to be possi-
ble, the central field must not be along the X or Y axis,
and correspondingly, the hopping amplitude is controlled
by the overlap of the field with X and Y eigenvectors.
The second gadget reduces Pauli couplings A⊗B (A 6=

B) to Ising couplings. This is achieved by essentially the
same gadget as before: For Xl⊗Yr, take Xl⊗Xm⊗11r+
11l ⊗ Ym ⊗ Yr and place a strong field in X + Y direction
on the m qubit. In a next gadget, Ising couplings are
reduced to two X ⊗ X + Y ⊗ Y couplings: Placing a
strong Y field on the central qubits only allows for the
hopping of excitations via the X⊗X part of the coupling.
Similarly, the above coupling is reduced to the Heisenberg
interaction X ⊗ X + Y ⊗ Y + Z ⊗ Z: A strong Z field
prohibits hopping via the Z ⊗Z term, whereas X ⊗X +
Y ⊗ Y describes hopping in the {|01〉, |10〉} subspace,
which to second order yields the very same hopping term
between the two outer qubits.
Putting these gadgets together, we have managed to

reduce the QMA-complete Hamiltonian (5) to the Heisen-
berg Hamiltonian in a magnetic field on a sparse lattice.
This can, in turn, be reduced to the full 2D Heisenberg
lattice by using an “erasure gadget”: putting strong fields
on the qubits to be erased decouples them up to polyno-
mial precision. We have thus shown that the 2D Heisen-
berg Hamiltonian in a magnetic field on a 2D square lat-
tice,

HHeis = J
∑

<i,j>

~σi · ~σj −
∑

i

~Bi · ~σi , (6)

is QMA-complete, both for J > 0 (which we use further
on) and J < 0. Note that the presence of a magnetic
field is crucial for the construction, as it is the only set of
parameters available to encode a computational problem.
The final step is to reduce the Heisenberg lattice to the

Hubbard model (4). The procedure can be found, e.g., in
Ref.6, and has been included in the supplementary mate-
rial: In (4), one chooses an on-site repulsion U very large
as compared to t, and operates the system in the so-called
half-occupancy regime where there are as many electrons
as sites. (Note that this implies that a polynomial scal-
ing in the lattice size equals a polynomial scaling in the
number of electrons.) The tunneling is supressed as t/U ,
so that in the ground state each site will be occupied by

FIG. 3: The sparse Heisenberg lattice as obtained from H2D,
Eq. (5), using a sequence of gadgets. It can be reduced to a
2D Heisenberg lattice using the erasure gadget, where strong
local fields are used to decouple unwanted qubits to leading
order, as shown in the inset.

exactly one electron, providing the desired spin degree
of freedom. The coupling between the spins is achieved
by a second-order process where one electron tunnels to
an adjacent site, interacts with the other electron, and
tunnels back. However, this can only take place if the
spins form a singlet, giving rise to the effective Hamilto-
nian (6) up to a constant. As the process is of second
order, we have that J = t2/U > 0, and the error from
higher order processes is O(N3t3/U2); thus, U/t has to
grow polynomially with the system size N .

All these gadgets can be combined straightforwardly:
Firstly, the gadgets in one layer do not interact, as they
never share a coupling term. It can thus be checked
straightforwardly that to second order perturbation the-
ory, there will be no cross-talk between the gadgets. Sec-
ondly, all gadget layers can be applied one after another,
as long as the total strength of the previous gadgets is
sufficiently smaller than the strong local fields of the new
gadgets. Since the number of layers is constant, this can
be achieved by choosing poly-scale field strengths, which
allows for a polynomial scaling of the interaction strength
as well as an arbitrary polynomial precision in energy.
(See Supplementary Materials for details.)

Let us now turn our attention back to DFT and the
problem of interacting electrons. As we show in the
Supplementary Material, the Hubbard model (4) with
arbitrary local fields arises from (1) for an appropri-
ately chosen V . For this particular potential, one can
explicitly write down the wave function wi(r) of each
mode ai to sufficient precision. Thus, the ground state
wave function of the Hubbard model is supported by the
wi(r), and consequently the single-electron density for
the ground state of the Hubbard model must be of the
form ρ(r) =

∑
λi,s,s′ |wi(r)|2|s〉〈s′|. Since the functional

(3) is convex and the physical λi,s,s′ form a convex set in
R

4N , the minimization (up to polynomial accuracy) can
be carried out efficiently,16 i.e., finding the ground state
energy of the Hubbard model is in P. This implies that
P
UF = QMA with UF an oracle for the universal func-

tional, i.e. computing the functional is QMA-hard under
Turing reductions.
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Let us note that there are alternative ways to de-
fine F [ρ], e.g. as the minimum over all pure N -electron
states11,12, in which case F is not convex. Yet, efficient
computability (or even certifiablity) of F would still im-
ply that one could give a certificate for the ground state
energy, i.e. QMA would collapse to NP. This is considered
very unlikely, thus implying that any reasonably defined
F cannot be computed in NP.

Finally, DFT can also be based on a functional defined
on two-electron densities, which can be computed effi-
ciently11,12. In this case, the QMA-hardness of the prob-
lem arises from the fact that characterizing the set of al-
lowed two-electron reduced states, the N -representability
problem, is QMA-hard9; in fact, this provides an alterna-
tive proof of its hardness.
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APPENDIX: NP-completeness of Hartree-Fock

One of the precursors of DFT which is still widely used
is the Hartree-Fock method. It is similar to DFT in that
it reduces the N -electron equation to a problem of in-
dividual electrons moving in an external field which de-
pends only on the average electron distribution. Different
from DFT, Hartree-Fock is based on a particular ansatz
for the wave function and is therefore not guaranteed to
give the true ground state energy; on the other hand, it is
an iterative method which can be applied without prior
assumptions, whereas in DFT some a priori guess on the
form of the universal functional has to be made.
The starting point is a Hamiltonian

H =
∑

H
(1)
i,j a

†
iaj +

∑

H
(2)
ij,kla

†
ia

†
jakal + . . . , (7)

which is local, meaning the series terminates at some
fixed H(r), and with a number of fermionic modes M ≥
N ; if it is derived from two-particle interactions as in
the Schrödinger equation (1), r = 2. The Hartree-Fock
method approximates the ground state of this Hamil-

tonian using the ansatz b†N · · · b†1|Ω〉 with bi =
∑
uijaj

(where |Ω〉 is the vacuum). Note that this corresponds to
an antisymmetrized product of single-particle wave func-
tions, which is how Hartree-Fock is usually presented.
In the following, we show that approximating the

ground state energy using the Hartree-Fock method is
an NP-complete problem. More precisely, we consider
the problem of deciding whether the lowest energy of
(7) within the Hartree-Fock ansatz is below some a or
above some b > a. We show that the problem is inside
NP for up to an exponential accuracy b − a and for any
r, and that for NP-completeness a polynomial accuracy
b− a < 1/poly(N) and r = 2 are sufficient.
To see that the problem is in NP, note that a Hartree-

Fock state is fully characterized by the uij ’s, and that
from there its energy can be computed efficiently. Con-
versely, the problem is shown to be NP-hard by mapping
it to the ground state problem for Ising spin glasses which
is known to be NP-hard: Given an L × L × 2 lattice of
two-level spins Si = ±1 with a nearest neighbor Ising
coupling H =

∑
JijSiSj , Jij ∈ {0,−1, 1}, determine

whether the ground state energy is the minimum one
allowed by the individual Jij ’s or not. Therefore, embed
the N = 2L2 classical spins into a fermionic system with
2N modes occupied by N fermions. The modes come in
pairs (a2i, a2i+1), and a Hamiltonian term λn2in2i+1, λ =
O(N2) penalizes double occupancy, so that in the ground
state exactly one mode per pair is occupied, giving an ef-
fective spin degree of freedom9; the coupling JijSiSj of
these spins is realized as Jij

∑

p,q=0,1(−1)p+qn2i+pn2j+q.
As the ground state of the system is a classical spin state,
it can be expressed as a Hartree-Fock state where bi = a2i
or bi = a2i+1, respectively, and since the classical Hamil-
tonian has a constant gap while perturbations from the
penalized subspace are at most O(1/λ2), a polynomial
accuracy is sufficient to make the problem NP-hard.

http://arxiv.org/abs/quant-ph/0210077
http://arxiv.org/abs/quant-ph/0609125
http://arxiv.org/abs/quant-ph/0504050
http://arxiv.org/abs/quant-ph/0406180
http://arxiv.org/abs/0803.2686
http://arxiv.org/abs/0704.1287
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SUPPLEMENTARY MATERIAL

1. Second order perturbation theory

We start with a Hamiltonian H = H0 ⊕ H1 and a
perturbation

V =

(
V0 V01
V10 V1

)

with ‖H0‖, ‖V ‖ ≤ v and H1 ≥ ∆ ≫ v, and want to show
that the low-energy spectrum of Htot = H + V is well
approximated by Heff = H0 + V0 − V01H

−1
1 V10. To this

end, rotate Htot by a unitary U = eS ,

S =

(
0 X

−X† 0

)

,

where X = −V01H−1
1 + V01H

−1
1 V1H

−1
1 − V0V01H

−2
1 −

H0V01H
−2
1 is chosen such as to make the Hamiltonian

as diagonal as possible. For systematic constructions of
S for any order of perturbation theory, see Ref.14. By
expanding S to second order in v/∆, we obtain a new
Hamiltonian

H̃tot = UHtotU
† =

(

Heff +O( v3

∆2 ) O( v3

∆2 )

O( v3

∆2 ) H1 + V1 +O(v
2

∆ )

)

,

where all O(·) symbols are bounds in operator norm.
Now compare this Hamiltonian with the block-diagonal
Hamiltonian H̃diag obtained from H̃tot by setting the
off-diagonal blocks to zero: The low-energy spectrum

of H̃diag is given by Heff + O( v3

∆2 ), and since ‖H̃diag −
H̃tot‖op = O( v3

∆2 ), it follows that all eigenvalues are

O( v3

∆2 ) - close to each other, and thus the low-energy spec-
trum of H + V is given by

Heff = H0 + V0 − V01H
−1
1 V10 +O( v3

∆2 ) . (8)

Note that when applying the gadgets to an N -qubit sys-
tem with an extensive number of local perturbations, the
error bound will depend on N since v ∝ N .

2. Gadgets

Let us now turn towards the gadget constructions.
Starting from (5), we want to show how its low-energy
subsector can be obtained as an effective theory from
(4). Let us first note that all perturbation gadgets of one
level can be applied simultaneously, since they are sec-
ond order gadgets and the transition term V10 is a sum
of two-body terms which excite one qubit only; to return
to the ground state subspace in the next step, this ex-
citation has to hop to one of the adjacent sites. Thus,
there will be no cross-gadget terms and the action of each
layer of gadgets can be investigated on the level of a single
gadget.
We aim to approximate (5) with strength λij ≤ 1 up

to a precision O(1/q), with q ≡ q(N) a polynomial in N
(we will in the following omit the parameter N for most

polynomials). For A and B Pauli matrices, we can obtain
a tunable Pauli coupling λTA⊗B from

V = λPA⊗X ⊗ 11 + λP 11⊗ Y ⊗B , (9)

by acting with a Hamiltonian H = BP |eφ〉〈eφ|, BP ≫
λP , and the excited state |eφ〉 = |0〉 − eiφ|1〉. Then,
to second order, the system is described by the effective
Hamiltonian

HT = +2λ2P /BP sinφ cosφ A⊗B +O(λ3P /B
2
P )

(up to a constant, and times the ground state projec-
tor on the middle qubit); note that when combining the
gadgets, the total error grows with the third power of
the total strength of V , and thus as N3. As we aim to
implement any |λT | ≤ 1, we set λ2P = BP and tune the
actual value using φ. Choosing λP = N4q, BP = N8q2

[N4q ≡ N4q(N)], we find that the total error is at most
N3O(λ3P /B

2
P ) = O(1/Nq) and thus much below the tar-

geted precision O(1/q). Note that in particular, this al-
lows to split any Pauli interaction in two interactions of
the form X ⊗ Y , i.e. with two different Pauli matrices
and positive sign.
Let us now show how such an X ⊗ Y coupling as in

Eq. (9) can be reduced to Ising interactions. To this end,
consider the Hamiltonian

V = −λIX ⊗X ⊗ 11− λI11⊗ Y ⊗ Y +Hloc (10)

and apply a field H = BI |eπ/4〉〈eπ/4|. Here, Hloc rep-
resents the local fields of the preceding gadget layers.
They act on the qubits remaining after the present gad-
get, i.e. do not induce transitions to excited states, and
are thus first-order terms which are left untouched in (8).
We choose BI = N20q5 ≫ NλI , and λI = N12q3 ≫
‖Hloc‖ = BP = N9q2, which results in an effective
Hamiltonian

HP = +λ2I/BIX ⊗ Y +O(λ3I/B
2
I ) +Hloc ,

for which λ2I/BI = λP , and N3O(λ3I/B
2
I ) = 1/Nq ≪

O(1/q). Note that due to rotational invariance, this con-
struction holds for any type of Pauli coupling.
Ising interactions Eq. (10) can in turn be reduced to

XX-type interactions,

V = −λXX(X⊗X+Y ⊗Y )⊗11−11⊗(X⊗X+Y⊗Y )+Hloc

(11)
by putting a field in the Y direction, H = BXX(11−Y )/2.
This cancels all Y contributions in the Hamiltonian, since
〈0y|Y |1y〉 = 0, and one remains with the X part of V ,

HXX = −2λ2XX/BXXX ⊗X +Hloc +O(λ3XX/B
2
XX) .

(The factor 2 is due to the fact that either anX on the left
can excite the middle qubit, which then decays towards
the right, or vice versa.) We choose λXX = N28q7/4 and
B = N44q11/8, which ensures that 2λ2XX/BXX = λI ,
BXX ≫ λXX ≫ BI , and the total error is 1/Nq ≪
O(1/q), as required.
In a last step, we reduce the Hamiltonian with

XX type couplings to an antiferromagnetic Heisenberg



6

Hamiltonian with local fields. To this end, consider

V =λH
∑

S=X,Y,Z

(S ⊗ S ⊗ 11 + 11⊗ S ⊗ S) +Hloc − . . .

− λ2H/BH(Z ⊗ 11⊗ 11 + 11⊗ 11⊗ Z) (12)

and place a strong field in Z direction, H = BH(11 −
σZ)/2, on the central qubit. Intuitively, the X ⊗ X +
Y ⊗ Y part describes the hopping of an excitation from
one side through the central qubit to the other side; since
the excitation can also hop back to the original site, it
however also induces an additional local field which is
compensated by the extra term in Eq. (12). The effective
Hamiltonian obtained is then

HH = −2λ2H/BH(X ⊗X + Y ⊗ Y ) ,

and by choosing BH = N92q23/512, λH = N60q15/64,
we find that 2λ2H/BH = λXX , BH ≫ λH ≫ BXX , and
the total error is again O(1/Nq).
By combining these gadgets, we find that each Pauli

coupling can be reduced to a line of 16 Heisenberg cou-
plings with variable local fields. Note that it should
be possible to significantly reduce the order of magni-
tude of the fields by going to higher order perturba-
tion theory: Each second order gadget couples the two
outer qubits by an excitation hopping through the mid-
dle qubit. Therefore, it should be possible to choose all
fields of equal magnitude and go to 16th order perturba-
tion theory, which is the lowest non-vanishing order, and
to which solely hopping terms contribute. Note further
that one can decrease the length of the chain to 12 cou-
plings (and thus to 12th order perturbation theory), as
one can equally combine one XY Pauli and one Ising in-
teraction to obtain an arbitrary Pauli coupling, including
antiferromagnetic Ising couplings.

3. Erasure gadget

The sparse Heisenberg lattice Fig. 3a can be straight-
forwardly reduced to a full 2D Heisenberg lattice with
local fields. To this end, add fields H = Be(1− σz)/2 on
all qubits to be erased, while

V = λH
∑

<ij>

~σi · ~σj +
∑

i

~Bi · ~σi

is the 2D Heisenberg lattice. Then, according to Eq. (8),
Heff = H0 + V0 + O(‖V ‖2/Be), which yields the Heisen-
berg Hamiltonian on the sparse lattice. In particular,
given that ‖V ‖ ≤ NλH , by choosing Be = N3λ2Hq we
find that Be ≫ V , and the total error is O(1/Nq).

4. Reduction from Heisenberg to Hubbard model

The final reduction step shows how the Heisenberg
model can be reduced to the Hubbard model Eq. (2)
(see, e.g., Ref. 6). To this end, choose an one-
dimensional ordering of the Hubbard lattice, e.g. row-
wise from left to right, and always place the spin-up
mode before the spin-down mode. This results in a one-
dimensional ordering of the modes of the Hubbard model,

(a1,↑, a1,↓, a2,↑, a2,↓, . . . ). Now apply a Jordan-Wigner
transform,

ai,s →
(∏

σz
i′,s′

)

σ−
i,s

where the product runs over all (i′, s′) left of (i, s). This
transforms (4) to a two-level system with a Hamiltonian
H + V ,

H =U
∑

i

ni,↑ni,↓

V =− t
∑

<i,j>,s

σ+
i,s

[
Πσz

k,s′
]
σ−
j,s

+
∑

j

[

(Bx
j − iBy

j )σ
+
j,↑σ

−
j,↓ + h.c.

]

+Bz(nj,↑ − nj,↓)

with n = σ+σ− = |1〉〈1|. We consider V as a perturba-

tion to H , i.e. U ≫ t, ~B, and do a second-order expan-
sion. Since we operate the system in the half-occupancy
regime, the ground state of H satisfies ni,↑ + ni,↓ = 1,
which makes the σz string in the tunneling term van-
ish on all but the sites i and j. The half-occupancy al-
lows to interpret the ground-state subspace as a system
of spin 1

2 particles by grouping modes (i, ↑) and (i, ↓).
The magnetic term in V contributes only to first order
(and yields the magnetic field operator on the resulting
two-level system), so that the second-order term is found
by considering four sites ((l, ↑), (l, ↓), (r, ↑), (r, ↓)), with a
Hamiltonian H + V ,

H =U(|11〉〈11|l ⊗ 11r + 11l ⊗ |11〉〈11|r) ,
V =− t(σ+ ⊗ σz ⊗ σ− ⊗ 11 + 11⊗ σ+ ⊗ σz ⊗ σ− + h.c.) .

A straightforward calculation on the subspace
{|1001〉, |0110〉} – the only one with non-vanishing
second order contributions – shows that this leads to a
term

H = −4t2

U
(|01〉 − |10〉)(〈01| − 〈10|)

expressed in the effective spin 1
2 ’s described above, which

up to a constant equals the antiferromagnetic Heisenberg
Hamiltonian (2t2/U)~σ ·~σ. Choosing U = N8λ3Hq

2/8 and
t = N4λ2Hq/4, we have that U ≫ t, ‖B‖ = O(NBe),
2t2/U = λH , and the error N3t3/U2 ≪ 1/Nq as desired.
Let us note that as with the gadgets before, no cross-

terms appear when applying the gadgets together, as the
only way to return to the ground state subspace in second
order are processes within a single gadget.

5. Reduction of the Hubbard model to the
Schrödinger equation

In the following, we show how finding the ground state
energy of the Hubbard model with a local field up to
1/poly(N) precision can be reduced to answering the
same question for the Schrödinger equation (where N
is both the number of sites of the Hubbard model and
the number of electrons).
Structure of the proof.—Let us first give an overview of

the proof, highlighting the crucial steps. In the first part,
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we use the kinetic term together with an appropriate ex-
ternal electrostatic potential in the Schrödinger equation
[terms T and V in (1)] to construct an exactly solvable
model with the following property: The Hamiltonian can
be decomposed as

H = H0 ⊕H1 , (13)

where

H0 = −t
∑

〈i,j〉,s

a†i,saj,s +O(N−2τ+1) + const. (14)

and the constant is chosen such that H0 ≤ −∆, and with
H1 ≥ 0. Note that beyond the gap above the H0 band,
we do not care about the properties of H1.
In the second part of the proof, we show how to in-

corporate the magnetic field and the Coulomb interac-
tion which will yield the on-site repulsion term. Loosely
speaking, we will treat the Coulomb interaction as a per-
turbation to the original Hamiltonian, and obtain the
on-site repulsion in first order perturbation theory. How-
ever, this cannot be done using the tools for perturba-
tive expansions used for spin systems (cf. Sec. 1 of the
Supplementary Material) due to the unbounded nature
of the Coulomb interaction. Instead, we will use a di-
rect estimate to bound the effect on the ground state
energy which stems from off-diagonal elements of the
Coulomb interaction (i.e. those coupling the H0 and the
H1 subspace). We then find that the ground state en-
ergy of the Hubbard model with local magnetic fields
equals the ground state energy of the Schrödinger equa-
tion with an appropriately chosen external potential up
to 1/poly(N), as claimed. (Note that the result obtained
by some perturbation expansions is stronger since the
whole low-energy spectrum is reproduced; however, this
is not necessary for the reduction.)
Before we start with the derivation, let us fix the

desired scaling of the variables: We aim to obtain a
Hubbard model (4) with arbitrary local fields on an
N := Lx×Ly lattice, and with the following scaling of the
parameters: t = N−τ , Bmax = max |Bi| = O(N−τ ), U =
const. × N−ζ, and a precision in energy of O(N−2ζ+2),
where we have that 0 < ζ < τ − 3. Note that the rela-

tive accuracy increases as ζ and τ are scaled up, which
allows us to obtain the polynomial accuracies needed for
the perturbation gadgets discussed above.
The exactly solvable hopping model.—We start by con-

structing the 2D hopping model. We first consider a 1D
exactly solvable model, the Kronig-Penney model, from
which we then construct an exactly solvable model in 3D.
(We set up a 3D lattice since we consider the Schrödinger
equation in three-dimensional space; the same reduction
would also work in 2D right away.) The 1D Kronig-
Penney model on [0, L] with periodic boundary condi-
tions is defined by

V (r) = −V
L−1∑

n=0

δ(r − n) , (15)

where we choose V = τ logN . This model is exactly
solvable: The eigenfunctions are Bloch waves

ψk(r + n) = 1
N e

ikn
[

e−κr + Y e−κ(d−r)
]

(16)

(where r ∈ [0, 1], n = 0, . . . , L− 1), with

Y =
eik+κ − 1

eκ − eik
= eik +O(e−κ)

and normalization N 2 = L/V +O(e−V).
The dispersion relation for the lowest Bloch band of

the Kronig-Penney model can be approximately solved
as

Ek = −κ2 = −V2 − 4Ve−V cos(k) +O(V2e−2V) .

This band is the only one with bound states, with a
gap of ∆ = V2 − O(VN−τ ) above. Expressing the
Hamiltonian in the lowest Bloch band in terms of the
creation/annihilation operators al corresponding to the

Wannier functions wl =
∑
eiklψk/

√
L, one finds

H1D
0 = −V2

∑

l

a†l al − t
∑

〈i,j〉

a†iaj +O(LV2N−2τ ) , (17)

where t ≡ e−V = N−τ .
In order to obtain a three-dimensional solvable model,

we use a potential V (r1, r2, r3) = V (r1) + V (r2) + V (r3)
with the one-dimensional potentials of Eq. (15). This
choice of the potential leads to a product ansatz for the
wavefunction, where the behavior of the lowest band is
still described by the hopping Hamiltonian (17), but on
a three-dimensional lattice; the energy gap to the next
band is still given by ∆, the gap of the 1D model. Using
this potential, we can set up a Lx ×Ly × 1 lattice, N :=
LxLy. Using (16), we find that the Wannier functions of
the model are of the form

w0(r) = V3/2e−V|r|1 +O(
√
Ve−V) , (18)

and wi(r) = w0(r − i), where i = (i1, i2) ∈ {0, . . . , Lx −
1} × {0, . . . , Ly − 1} is the site index in the 2D lattice.
Thus, we obtain the system described by (14).
Clearly, we can include the spin degree of freedom

without affecting the model at the current stage, as the
Hamiltonian currently does not include any magnetic
field. As a result, the Wannier functions get an an addi-
tional spin index, wn,s(r) ≡ wn(r) ⊗ |s〉.
Treating magnetic field and Coulomb repulsion.—Let

us now show how to account for the effect of the mag-
netic field and the Coulomb repulsion. We obtain the
magnetic field of the Hubbard model by putting a mag-
netic potential

Vmag(r) =
∑

~Bnχ(r + n)

in (1). Here, χ(r) = (1−exp(−V))3 for − 1
2 ≤ ri ≤ 1

2 and
zero otherwise. This choice ensures the following:

i) 〈wn,s|Vmag(r)|wn,s′ 〉 = 〈s| ~Bn · ~σ|s′〉 yields the effect of
the field Bn on the spin degree of freedom.
ii) 〈wn,s|Vmag(r)|wm,s〉 = O(VN−2τ+1) is sufficiently
small for n 6= m, using (18); the unwanted contribution
from the magnetic field is any state is thus O(VN−2τ+3).
iii) For any state |χ〉, 〈χ|Vmag|χ〉 ≥ −N2Bmax =
O(N−τ+2). (This bound can e.g. be obtained by neglect-
ing the antisymmetry of the wave function.)
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Before incorporating the Coulomb term I, note that
the strength γ of the Coulomb interaction can be tuned
relative to the other terms by rescaling the spatial co-
ordinates of the system; we choose γ = N−ζ/2V . The
Coulomb term I has properties very analogous to those
of Vmag:
i) The on-site repulsion is 〈wn,0 ⊗ wn,1|I|wn,0 ⊗ wn,1〉 =
0.8984(. . . )N−ζ + O(V4N−τ−ζ+2) [we explain the cal-
culation of the integral, including the evaluation of the
prefactor, later; the error term is from (18)]; again, by
neglecting antisymmetry, this yields a bound O(N−ζ+2)
for the total on-site repulsion in the lowest band.
ii) 〈wn,s⊗wn′,s′ |I|wm,t⊗wm′,t′〉 = O(V4N−τ−ζ+2) unless
n = n′ = m = m′, using (18); the unwanted cross-terms
from the Coulomb repulsion are thus O(V4N−τ−ζ+4).
iii) For any state |χ〉 (in particular for any state in the
excited band), 〈χ|I|χ〉 ≥ 0.
Dealing with unbounded perturbations.—By using the

properties i)-iii) above, we will now be able to show that
the ground state energy of the total Hamiltonian Htot =
Hex + Vmag + I is well approximated by the energy of
Π0HtotΠ0, where Π0 projects onto the lowest band of
Hex (which gives the first order perturbation expansion).
Let |ψ〉 ≡ √

1− p|φ〉+√
p|χ〉 be a ground state of Htot,

where |φ〉 is supported in Π0 and |χ〉 in the orthogonal
subspace Π1 = 1 − Π0 of high-energy states. We claim
that then, p is very small and thus 〈φ|Htot|φ〉 has almost
the same ground state energy, i.e., the ground state en-
ergy of Π0HtotΠ0 is a good approximation to the ground
state energy of Htot. (Since we will find that p is very
small, this actually also implies that the ground state
of the projected Hamiltonian is close to the true ground
state.)
The error made in the energy by replacing |ψ〉 by |φ〉

is

∆E = 〈φ|Hex + Vmag + I|φ〉 − 〈ψ|Hex + Vmag + I|ψ〉
= p
[
〈φ|Hex + Vmag + I|φ〉 − 〈χ|Hex + Vmag + I|χ〉

]

+ 2
√

(1 − p)p
[
Re〈φ|Vmag|χ〉+Re〈φ|I|χ〉

]

To bound ∆E, we use the following facts (obtained by
combining the statements about Vmag and I made be-
fore):
i) 〈φ|Hex + Vmag + I|φ〉 ≤ −∆+O(N−ζ+2);
ii) 〈χ|Hex + Vmag + I|χ〉 ≥ −O(N−τ+2);
iii) From the Cauchy-Schwarz inequality,

Re〈φ|M |χ〉 ≤ |〈φ|M |χ〉|

≤
√

〈φ|MM †|φ〉〈χ|χ〉 =
√

〈φ|MM †|φ〉

Combining i)-iii), this yields a bound

∆E ≤ p(−∆+ α) + 2
√

(1− p)pβ

with α = O(N−ζ+2) [from i) and ii)], and β2 = 〈φ|I2 +
V 2
mag|φ〉 = O(N−2ζ+2) (the dominating I2 term can be

derived solely from scaling arguments, see later). Using
∆ ≫ α, β, it is straighforward to show that the maxi-
mum of the above expression [found at p = O(β2/∆2)]
is O(β2/∆) = O(N−2ζ+2), which bounds the error in
the ground state energy we make by replacing Htot by
Π0HtotΠ0.

Evaluation of Coulomb energies.—Let us now show
how to compute the strength of the on-site repulsion from
the Coulomb interaction. Following (18), we have to eval-
uate the integral

V6γ

∫

d3rd3s
e−2V(|r|1+|s|1)

|r − s|2
=

Vγ
32

∫

d3rd3s
e−(|r|1+|s|1)

|r − s|2
︸ ︷︷ ︸

cU

The latter integral is a constant, cU = 28.7496(. . .).
Moreover, it is possible to compute cU to any accuracy
ǫ in a time 1/poly(ǫ) which is sufficient to obtain an ef-
ficient reduction. To this end, first rewrite the integral
as

cU =

∫

d3q
1

|q|2
G(q) , (19)

where G(q) is the Greens function

G(q) =

∫

d3rd3s e−(|r|1+|s|1)δ(r − s− q)

=
∏

i

(1 + |qi|) e−|qi|

Rewriting (19) in spherical coordinates and integrating
over r, we are left with

cU = 8

∫ π/2

0

dφ

∫ π/2

0

dθ
n(φ, θ)

d(φ, θ)

where d(φ, θ) = ((cos θ + sin θ) sinφ + cosφ)5 ≥ 1 and
n(φ, θ) are trigonometric polynomials. Since the inte-
grand and its derivatives are bounded, the integral can
be evaluated numerically to precision ǫ using a grid of
size 1/poly(ǫ).
The effective Hamiltonian.—Putting all steps together,

we obtain the Hubbard model (4) with tunneling t =
N−τ , on-site repulsion U = 0.8984(. . . )N−ζ , and the
desired magnetic fields. Collecting all error terms, one
finds that the total error in the ground state energy is
given by O(N−2ζ+2), as desired.
Remarks.—A few notes: First, the fact that we are us-

ing a δ-potential for our model does not affect our claims
about DFT, since only the electron density, which is free
of singularities, is passed to the functional; particularly,
all these densities arise from N -electron states. Second,
in the Schrödinger equation (1) we have omitted the cou-
pling of the magnetic field to the orbit of the electrons:
the variant of DFT arising from this approximation is
known as “spin-density functional theory”11,12, and our
hardness result holds for exactly this variant. Note also
that a coupling to the orbit would result in a so-called

Peierls phase eiφkla†kal in the tunneling term of the Hub-
bard model, which gives non-vanishing terms only for
non-trivial loops, i.e. only from fourth order perturba-
tion theory on, and can therefore be neglected.


