1,535 research outputs found

    Optimal squeezing and entanglement from noisy Gaussian operations

    Full text link
    We investigate the creation of squeezing via operations subject to noise and losses and ask for the optimal use of such devices when supplemented by noiseless passive operations. Both single and repeated uses of the device are optimized analytically and it is proven that in the latter case the squeezing converges exponentially fast to its asymptotic optimum, which we determine explicitly. For the case of multiple iterations we show that the optimum can be achieved with fixed intermediate passive operations. Finally, we relate the results to the generation of entanglement and derive the maximal two-mode entanglement achievable within the considered scenario.Comment: 4 pages; accepted version (minor changes), Journal-ref adde

    The computational difficulty of finding MPS ground states

    Get PDF
    We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians which are known to be Matrix Product States (MPS). To this end, we construct a class of 1D frustration free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. By lifting the requirement of a unique ground state, we obtain a class for which finding the ground state solves an NP-complete problem. Therefore, for these Hamiltonians it is not even possible to certify that the ground state has been found. Our results thus imply that in order to prove convergence of variational methods over MPS, as the Density Matrix Renormalization Group, one has to put more requirements than just MPS ground states and a polynomial spectral gap.Comment: 5 pages. v2: accepted version, Journal-Ref adde

    Computational Difficulty of Computing the Density of States

    Get PDF
    We study the computational difficulty of computing the ground state degeneracy and the density of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by a class which we call #BQP, which is the counting version of the quantum complexity class QMA. We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies that computing the ground state degeneracy or the density of states for classical Hamiltonians is just as hard as it is for quantum Hamiltonians.Comment: v2: Accepted version. 9 pages, 1 figur

    Quantum entanglement theory in the presence of superselection rules

    Get PDF
    Superselection rules severly constrain the operations which can be implemented on a distributed quantum system. While the restriction to local operations and classical communication gives rise to entanglement as a nonlocal resource, particle number conservation additionally confines the possible operations and should give rise to a new resource. In [Phys. Rev. Lett. 92, 087904 (2004), quant-ph/0310124] we showed that this resource can be quantified by a single additional number, the superselection induced variance (SiV) without changing the concept of entanglement. In this paper, we give the results on pure states in greater detail; additionally, we provide a discussion of mixed state nonlocality with superselection rules where we consider both formation and distillation. Finally, we demonstrate that SiV is indeed a resource, i.e., that it captures how well a state can be used to overcome the restrictions imposed by the superselection rule.Comment: 16 pages, 5 figure

    Supersolid Helium at High Pressure

    Full text link
    We have measured the pressure dependence of the supersolid fraction by a torsional oscillator technique. Superflow is found from 25.6 bar up to 136.9 bar. The supersolid fraction in the low temperature limit increases from 0.6 % at 25.6 bar near the melting boundary up to a maximum of 1.5% near 55 bar before showing a monotonic decrease with pressure extrapolating to zero near 170 bar.Comment: 4 pages, 4 figure

    Symmetry Protected Topological Order in Open Quantum Systems

    Get PDF
    We systematically investigate the robustness of symmetry protected topological (SPT) order in open quantum systems by studying the evolution of string order parameters and other probes under noisy channels. We find that one-dimensional SPT order is robust against noisy couplings to the environment that satisfy a strong symmetry condition, while it is destabilized by noise that satisfies only a weak symmetry condition, which generalizes the notion of symmetry for closed systems. We also discuss "transmutation" of SPT phases into other SPT phases of equal or lesser complexity, under noisy channels that satisfy twisted versions of the strong symmetry condition

    Matrix Product State and mean field solutions for one-dimensional systems can be found efficiently

    Get PDF
    We consider the problem of approximating ground states of one-dimensional quantum systems within the two most common variational ansatzes, namely the mean field ansatz and Matrix Product States. We show that both for mean field and for Matrix Product States of fixed bond dimension, the optimal solutions can be found in a way which is provably efficient (i.e., scales polynomially). This implies that the corresponding variational methods can be in principle recast in a way which scales provably polynomially. Moreover, our findings imply that ground states of one-dimensional commuting Hamiltonians can be found efficiently.Comment: 5 pages; v2: accepted version, Journal-ref adde

    Department "SPARC Detectors" in the FAIR@GSI Project

    Get PDF

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    Coherent states of a charged particle in a uniform magnetic field

    Full text link
    The coherent states are constructed for a charged particle in a uniform magnetic field based on coherent states for the circular motion which have recently been introduced by the authors.Comment: 2 eps figure
    • …
    corecore