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Quantum entanglement theory in the presence of superselection rules

Norbert Schuch, Frank Verstraete, and J. Ignacio Cirac
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D–85748 Garching, Germany.

Superselection rules severly constrain the operations which can be implemented on a distributed
quantum system. While the restriction to local operations and classical communication gives rise
to entanglement as a nonlocal resource, particle number conservation additionally confines the pos-
sible operations and should give rise to a new resource. In [Phys. Rev. Lett. 92, 087904 (2004),
quant-ph/0310124] we showed that this resource can be quantified by a single additional number,
the superselection induced variance (SiV) without changing the concept of entanglement. In this
paper, we give the results on pure states in greater detail; additionally, we provide a discussion of
mixed state nonlocality with superselection rules where we consider both formation and distillation.
Finally, we demonstrate that SiV is indeed a resource, i.e., that it captures how well a state can be
used to overcome the restrictions imposed by the superselection rule.

PACS numbers: 03.67.-a,03.65.Ud,03.67.Mn

I. INTRODUCTION

One of the most interesting results in quantum infor-
mation theory has been the discovery that the amount
of nonlocality contained in a bipartite quantum system
can be quantified by a single number, the entropy of en-
tanglement (EoE). Asymptotically, multiple copies of any
two states can be converted into each other and thus into
singlets provided that the total EoE is conserved [1]. On
the other hand, entanglement is the key resource for some
of the most interesting tasks in quantum information, as
teleportation [2] and dense coding [3].
Entanglement has its origin in the restriction to those

transformations which can be implemented by local op-
erations and classical communication (LOCC) [4, 5]. In
the same way, any additional restriction should lead to
another nonlocal quantity and thus to new effects and
applications. It has been noted by Popescu [6] that in
many physical systems of interest such a restriction is
given by a superselection rule (SSR). In this work, we
will consider particle number conservation as a superse-
lection rule; this is motivated, e.g., by recent quantum
optical experiments on cold atomic gases. Indeed, the
notion of entanglement is affected by the additional re-
strictions [7, 8], and new protocols arise, e.g., perfect data
hiding [9] becomes possible [7]. On the other hand, it has
been shown [7, 10] that the extra resource of a shared ref-
erence frame (i.e., a nonlocal state) allows to overcome
the restrictions imposed by the SSR (note that [10] also
adressed non-Abelian SSR); conversely, private reference
frames restrict the possible operations of an eavesdropper
and can thus be employed for cryptographic tasks [11].
In [12], we have shown that the nonlocality contained

in a bipartite state subject to SSR can be quantified by
only one additional number, the superselection induced
variance (SiV): any two states can be interconverted
asymptotically as long as the total EoE and SiV are con-
served. In this paper, we prove this result in greater
detail and extend it to mixed states. We start by dis-
cussing how the majorization criterion [13] which gov-
erns the conversion of quantum states has to be changed

when SSR are present, and show that it asymptotically
converges to the conservation of EoE (as it is the case
without SSR) and SiV. We give a detailed proof of this
result for arbitrary states and show that it motivates the
definition of two different types of standard forms for SiV
which carry a linear resp. logarithmic amount of EoE.

While there exist pure states which carry only EoE,
there are no pure states which contain solely SiV. On the
other hand, it has been demonstrated [7] that there ex-
ist separable but nonlocal mixed states, i.e., states which
have a separable decomposition and thus do not contain
EoE, but are still nonlocal as all these decompositions
violate the SSR and therefore should contain SiV. In or-
der to make these statements quantitative, we extend the
concepts of EoE and SiV to mixed states subject to SSR.
One natural way to do this is to consider the amount
of pure states resources needed to create the state [14];
we show that this extension can be done in a meaningful
way and that there indeed exist states which contain SiV
but no EoE. The converse way is to ask whether it is
possible to distill pure state resources from some mixed
state [15]; we provide ways to distill both EoE and SiV,
and we show that it is even possible to distill the SiV
contained in separable states.

EoE is a resource—it allows to overcome the LOCC
restrictions by teleportation. It is reasonable to assume
that any restriction leads to a nonlocal quantity which in
turn allows to overcome this restriction. Indeed, we give
evidence that SiV can be used as a resource which allows
to overcome the additional restrictions imposed by the
SSR in a bipartite setting (cf. [7, 12]). Therefore, we will
use two tasks: distinguishing locally undistinguishable
quantum states and teleporting states with nonconstant
local particle number [7]. We will show that not only pure
states can be used as share reference frames for these
tasks, but that there even exist separable states which
together with one ebit of entanglement allow to perfectly
teleport one qubit and thus to overcome all restrictions.
Still, we find that there is a fundamental difference be-
tween EoE and SiV as a resource, as a finite amount of
nonlocality does not allow to perfectly overcome the re-
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strictions which is due to the structure of the underlying
Hilbert space [12].
The paper is organized as follows. In Sec. II, we intro-

duce the concept of a superselection rule and show how
it restricts the operations which can be implemented in a
bipartite setting. In Sec. III, we consider the conversion
of pure states. We start with the conversion of single
copies, which motivates the definition of SiV as a non-
local monotone; then, we prove that asymptotically all
states can be converted given that both SiV and EoE are
conserved. Sec. IV is devoted to mixed state nonlocal-
ity. First, we discuss formation of mixed states; beyond
other results, we provide explicit formulas for the case
of qubits. Second, we give different methods for the dis-
tillation of both EoE and SiV independently as well as
simultaneously. Finally, Sec. V discusses SiV as a re-
source; there, we quantify how well states with SiV can
be used as shared reference frames which allow to over-
come the new restrictions, and we demonstrate that one
ebit of entanglement is still sufficient for teleportation.

II. PARTICLE NUMBER CONSERVATION AS A
SUPERSELECTION RULE

In this paper, we focus on particle number conserva-
tion as a SSR, but the results also apply to charge and
other discrete quantities. In this case, the Hilbert space
of the system H can be decomposed into a direct sum
H =

⊕∞
N=0HN of the eigenspaces of the particle number

operator N̂ , and the SSR imposes that for any operator
O, [O, N̂ ] = 0 must hold; thus, any operator can be writ-
ten as a sum of operators ON which have support on HN
only, O =

⊕∞
N=0ON , and thus

O =
∑

N

PNOPN , (1)

where PN projects onto HN . As the same restriction
holds for the admissible density operators, all states can
be converted into each other, and no interesting new ef-
fects can be found.
Therefore, we consider SSR in a bipartite setting.

Then, we have local particle number operators N̂A and
N̂B, and the total particle number operator is given by

N̂AB = N̂A ⊗ 11B + 11A ⊗ N̂B . (2)

While the admissible states have to commute with the
global particle number operator N̂AB, the local opera-
tions have to commute with the local particle number op-
erators N̂A and N̂B. This restriction is stronger than the
one given by the bipartite setting alone and should there-
fore lead to a new nonlocal resource. More precisely, the
operations on subspaces with fixed total particle number
N = NAB are given by

OABN =
⊕

NA+NB=N

(
OANA

⊗ 11BNB

)
(3)

(and vice versa)—in addition to the restriction to prod-
ucts OA ⊗ 11 imposed by the bipartite setting, a direct
sum structure arises from the SSR. This product vs. sum
structure will reappear throughout the paper and is the
reason for some fundamental differences between EoE
(arising for the product structure) and SiV (arising from
the direct sum).
The restriction to block-diagonal operations, Eq. (1),

can be relaxed by adding ancilla modes with m0 parti-
cles, performing a block-diagonal unitary U , and measur-
ing resp. tracing out the ancillas. Then, the admissible
(POVM/Kraus) operators are given by O = P anc

m UP anc
m0

;
by applying (1) to U , this leads to O =

∑

N PN+∆OPN
(resp. [N̂ ,O] = ∆O, ∆ might differ for each O): O can
shift the particle number by some ∆. (Note that O†O
remains block-diagonal). As most results of this paper
are only affected marginally by including ancillas, we will
usually neglect them and just briefly comment on their
effect as appropriate.
At the end of this section, let us introduce a few nota-

tional conventions. Logarithms are taken to the basis 2.
A ket |N〉 denotes a state with N particles. We will use
this notation even if the underlying eigenspace is degen-
erate, unless the nonlocal properties under consideration
depend on this degeneracy.
The restrictions imposed by the SSR on the allowed

operations can be easily overcome by defining a new com-
putational basis |0̂〉 ≡ |01〉, |1̂〉 ≡ |10〉 in which all states
have the same particle number [7]. This motivates the
definition of two different types of maximally entangled
two-qubit states,

|V-EPR〉 = |0〉A|1〉B + |1〉A|0〉B
(a “variance-EPR”, as there is some variance in the local
particle number), and

|E-EPR〉 = |01〉A|10〉B+|10〉A|01〉B ≡ |0̂〉A|1̂〉B+|1̂〉A|0̂〉B
(an “entanglement-EPR”, which is defined within an un-
restricted subspace and only carries entanglement). The
very difference between these two states will be a central
issue of the paper.

III. CHARACTERIZATION OF PURE STATES

In this section, we characterize pure states in a bipar-
tite setting, i.e., we determine the possible conversions
by LOCC and thus quantify the nonlocality contained
in a bipartite state. Without superselection rules, the
majorization criterion determines whether the conversion
between two bipartite pure states is possible [13, 16]. The
conversion of multiple copies is governed by a much sim-
pler criterion: it has been shown [1] that multiple copies
of any two states can be interconverted reversibly. The
conversion ratio is determined by only one quantity which
fully characterizes the nonlocal properties of a bipartite
state, the entropy of entanglement (EoE).
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As we have seen in the preceding section, in addition
to the tensor product structure induced by the bipartite
setting the operators have to obey a direct sum structure.
In this section, we show that these two structures lead to
two complementary resources: while the tensor product
again induces the majorization criterion and (asymptot-
ically) EoE as a nonlocal resource, the direct sum gives
rise to additional restrictions on the conversions of states
and in turn leads to an own nonlocal resource.

A. The single copy case

Let us consider the following problem: given pure bi-
partite states φ and ψ, is it possible to convert φ to ψ by
LOCC? This task can be generalized naturally to a set of
outcomes {(pi, ψi)}, where each outcome ψi is obtained
with probability pi.
Let us first see how this can be solved without SSR [13].

Therefore, let λ = (λk) and µi = (µik) be the Schmidt
coefficients of φ and ψi, respectively, which completely
characterize the states up to local unitaries. Without loss
of generality, the Schmidt vectors may be taken decreas-
ing (λk ≥ λk+1) and of equal dimension (by appending
zeros). Following [13], an LOCC strategy for the conver-
sion

φ −→ {(pi, ψi)}

exists if and only if (iff)

λ ≺
∑

i

piµ
i .

Here, for two ordered vectors λ and µ, we say that λ is

majorized by µ, λ ≺ µ, if
∑d

k=1 λk ≤
∑d

k=1 µk for all
1 ≤ d < dim λ, where equality holds for d = dim λ.
As an example, consider the states

|φ〉 =
√

1
2 |0〉A|1〉B +

√
1
2 |1〉A|0〉B and

|ψ〉 =
√

1
3 |0〉A|1〉B +

√
2
3 |1〉A|0〉B ,

which have the ordered Schmidt vectors λ = (1/2, 1/2)
and µ = (2/3, 1/3), respectively. Since λ ≺ µ, it is possi-
ble to convert φ→ ψ; for instance, Alice might start with
the POVM measurement given by M1 =

√

1/3|0〉〈0| +
√

2/3|1〉〈1| and M2 =
√

1/3|0〉〈0| +
√

2/3|1〉〈1| which
yields the two states

|ψ1〉 =
√

1
3 |0〉A|1〉B +

√
2
3 |1〉A|0〉B and

|ψ2〉 =
√

2
3 |0〉A|1〉B +

√
1
3 |1〉A|0〉B .

with equal probabilities: ψ1 is already equal to ψ, and
ψ2 can be converted to ψ by a bilateral not operation.
Let us now see what is different when SSR apply: while

the POVM measurement {M1,M2} is compatible with

the superselection rule, the local application of not op-
erations is not; indeed, it is not possible at all to carry
out φ → ψ deterministically in the presence of SSR. In
order to see this, define block-diagonal POVM operators
Mi =

⊕

nM
i
n on one local system. Then, the complete-

ness relation
∑
M †
iMi = 11 yields

∑

iM
i†
n M

i
n = 11 for

all n. Therefore, any POVM operator is simply a di-
rect sum of POVM operators acting within the subspaces
with constant local particle number, i.e., the usual con-
ditions for convertibility have to hold for each subspace
separately. Particularly, this implies that for pure states
the average weight of each subspace with constant local
particle number cannot be changed by local operations.
The impossibility to change the average weight of a

subspace with fixed local particle number can even be
proven at a much more fundamental level. Take multiple
copies of some state |φ〉 with nonconstant local particle
number, and assume there is a way for Alice to change
her local particle number distribution on average. As
the total particle number is constant, this implies that
the average particle number distribution of Bob’s system
is changed the other way round. Therewith, Alice can
change Bob’s density matrix remotely which would allow
for supraluminal communication and therefore has to be
ruled out. Classical communication between Alice and
Bob, on the other hand, will increase Bob’s knowledge
of the actual particle number distribution, but it cannot
influence the average distribution obtained.
In order to formulate this result precisely, note that any

bipartite state φ ∈ HN subject to SSR can be written
as φ = φ0 ⊕ · · · ⊕ φN with φn ∈ HAn ⊗ HBN−n, i.e., as
a direct sum of unnormalized pure states with constant
local particle number. Call the (ordered) unnormalized
Schmidt coefficients of φn λn. Then, φ is characterized
up to local (SSR-compatible) unitaries by its SSR-ordered
Schmidt vector λ = (λ0, . . . ,λN ).

Theorem 1 ([17]). Let φ, ψi be pure states and λ, µi
their SSR-ordered Schmidt vectors. Then,

φ
SSR−→ {(pi, ψi)} (4)

(i.e., there exists a SSR-compatible conversion strategy)
if and only if

λn ≺
∑

i

piµ
n
i ∀n = 0, . . . , N. (5)

In order to see the connection to the conversions within
the subspaces, let us re-express (5) by normalizing the
SSR-ordered Schmidt vectors,

λ̂n ≺
∑

i

pi
‖µi‖
‖λ‖

︸ ︷︷ ︸

=:p′
i

µ̂ni ∀n = 0, . . . , N ,

where in the following a hat ·̂ denotes the normalized
vector. According to the usual majorization result, this
holds iff we can convert

φ̂n −→ {p′i, ψ̂ni } ∀n = 0, . . . , N . (6)
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Here, φ = φ0 ⊕ · · · ⊕ φN and ψi = ψ0
i ⊕ · · · ⊕ ψNi .

Proof. Exactly as without SSR, the most general strategy
consists of Alice performing a generalized measurement
and communicating the result to Bob, who then applies
a unitary operation depending on the measurement out-
come; the proof [18] can be directly transferred.
We show (4)⇔(6). The proof can be restricted to the

case where each conversion φ → (p, ψ) in (4) resp. (6)
can be accomplished by a single POVM operatorM , i.e.,
Mφ =

√
pψ—otherwise, we can split φ→ (p, ψ) into φ→

(pk, ψ),
∑
pk = p, where each conversion is the result of

one of the POVM operators. This can be done as well
for the system of conversions (6), where we have to split
all subspaces simultaneously (this can be always done by
additionally splitting single POVM operators into copies
of itself).
First, assume that (4) holds. Then there exist POVM

operatorsMi =
⊕

nM
n
i on Alices side for whichMiφ ∼=B√

piψ (i.e., up to a unitary on Bob’s side). Decomposing
this into the subspaces in the direct sum, one obtains
Mn
i φ

n ∼=B √piψni and thus

Mn
i φ̂

n ∼=B

√

pi
〈ψi|ψi〉
〈φ|φ〉

︸ ︷︷ ︸

≡
√
p′
i

ψ̂ni

for all N , i.e., the Mn
i accomplish the set of conversions

given by Eq. (6). Especially, as

11 =
∑

i

(
⊕

n

Mn
i

)†(
⊕

n

Mn
i

)

=
⊕

n

(
∑

i

Mn†
i Mn

i

)

,

the Mn
i obey the completeness relation for POVM op-

erators. As all arguments hold in both directions, this
completes the proof.

B. Variance as a nonlocal monotone

Let us now formulate an asymptotic version of the
previous theorem. It is known that without SSR for a
large number of copies the majorization criterion con-
verges to the entropic criterion, i.e., the conservation of
the total EoE [1]. With SSR, the probability distribution
associated to the variation of the local particle number,
pn =

∑

i p
n
i , has to be conserved as well. Asymptotically,

this distribution converges to a Gaussian which is com-
pletely characterized by its mean (which can be shifted
using ancillas) and its variance. Therefore we define

Definition 1. For a bipartite pure state φ shared by A
and B, define the superselection induced variance (SiV)

V (φ) := 4
[

〈φ|N̂2
A|φ〉 − 〈φ|N̂A|φ〉2

]

,

where NA is the particle number operator for Alice. (One

could equally well take N̂B, as N̂A + N̂B = N = const.)

The factor 4 in the definition normalizes the SiV:
V (|V-EPR〉) = 1.
Let us now show that SiV is really an entanglement

monotone [19] when SSR are present, namely that it
cannot be increased on average by SSR-LOCC and van-
ishes on separable states. (On the contrary, note that
V (φ) = 0 does not imply that φ is separable—this is
due to the fact that there exist two different nonlo-
cal quantities when SSR are present.) Moreover, SiV
is symmetric under interchange of A and B and addi-
tive: given two subsystems 1 and 2 shared by A and
B, V (φ1 ⊗ φ2) = V (φ1) + V (φ2), as can be readily
seen by applying Eq. (2) to the two subsystems 1 and

2, N̂A1A2 = N̂A1 ⊗ 11A2 + 11A1 ⊗ N̂A2.
To show the monotonicity of SiV under SSR-LOCC,

consider a POVM measurement {MA
i } on Alice’s side.

Then, the average SiV after the application of {MA
i } is

given by

V̄M (φ) =
∑

i

〈φ|MA†
i N̂2

AM
A
i |φ〉−

∑

i

〈φ|MA†
i N̂AM

A
i |φ〉2

〈φ|MA†
i MA

i |φ〉
.

The first part reduces to 〈φ|N̂2
A|φ〉 (using [N̂A,M

A
i ] = 0

and
∑

iM
A†
i MA

i = 11), while for the second part

∑

i

〈φ|MA†
i N̂AM

A
i |φ〉2

〈φ|MA†
i MA

i |φ〉
(∗)
≥
(
∑

i

〈φ|MA†
i N̂AM

A
i |φ〉

)2

= 〈φ|N̂A|φ〉2 .

Here, (∗) has been derived using the Cauchy-Schwarz in-
equality

(
∑

i

yi

)2

=

(
∑

i

√
pi

yi√
pi

)2

≤
∑

i

y2i
pi

∑

i′

pi′ . (7)

Ancillas leave the result unaffected, as the extra contri-
butions in V̄M (φ) originating from [N̂ ,O] = νO cancel
out.

C. Reversible conversion of multiple copies

The introduction of SiV as a nonlocal monotone was
motivated by the conversion of multiple copies, as it char-
acterizes the joint particle number distribution. In the
following, we will show that asymptotically SiV and EoE
quantify the two complementary resources which com-
pletely characterize biparitite states up to SSR-LOCC.

Theorem 2. In the presence of SSR, there exists an
asymtotically reversible conversion

|φ〉⊗N⊗|0̂〉⊗E(φ)N ←→
∑

n

cn|n〉|N−n〉⊗|E-EPR〉⊗E(φ)N ,

where the coefficients cn are distributed Gaussian with
SiV N V (|φ〉).
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Note that on the left hand side we have added ancilla
states in the unrestricted “hat”–basis (cf. Sec. II). The
conversion transfers the entanglement contained in |φ〉⊗N
to this second register as “accessible” entanglement in the
form of |E-EPR〉s, while the SiV stays in the first register.

Proof. First, we restrict ourself to the case of qubits,
where |φ〉 = √p0|0〉|1〉+√p1|1〉|0〉. We will generalize the
result in two steps: in a first step, we consider qu-d-its,
where the local basis is {|0〉, . . . , |d− 1〉}, while in a sec-
ond step we allow for arbitrary bipartite states, i.e., the
local bases might contain several states with the same
particle number.
For the beginning, let us only look at the first register.

Taking N copies of |φ〉, we have

|φ〉⊗N =
∑

x

√

pn0

0 pn1

1 |x〉|¬x〉 ,

where the sum is taken over all possible N -bit strings x.
Here, n0 and n1 are the numbers of zeroes and ones in x,
respectively, and ¬x denotes the bitwise not of x. This
state can be grouped naturally as

|φ〉⊗N =
∑

n0

√

pn0

0 pN−n0

1

(
N

n0

)

|χN−n0,n0
〉 , (8)

where the state |χN−n0,n0
〉 ∈ HAN−n0

⊗ HBn0
is a maxi-

mally entangled state with Schmidt number
(
N
n0

)

.

In the following, we show how to transfer the entan-
glement of |φ〉⊗N to the second register. Therefore, we
have to break the tensor product structure |φ〉⊗N of the
first register and create a new tensor product structure
by properly transferring the entanglement to the second
register. To this end, let us introduce the concept of typ-
ical subspaces [20]. An ǫ-typical subspace of our Hilbert
space is defined asHǫ =

⊕

n0∈Sǫ
HAN−n0

⊗HBn0
, where the

ǫ-typical n0 are those lying in Sǫ = {n0 : |n0/N−p0| < ǫ}.
It can be shown [20, 21] that projecting |φ〉⊗N onto Hǫ
gives an error which vanishes for N → ∞ such that we
can restrict the sum in (8) to n0 ∈ Sǫ. Then,

(
N

n0

)

≥ 1

(N + 1)2
2NH(

n0
N ) ≥ 2N [H(p0)−Kǫ] (9)

with some K > 0 holds for all n0 ∈ Sǫ (ǫ ≪ 1 and N ≫
1) [20]; here H(p) = H(p, 1 − p) is the Shannon entropy
of the probability distribution (p, 1 − p). According to
Theorem 1, we can transform

|χN−n0,n0
〉 → 1√

E

E∑

i=1

|iN−n0
〉A|i′n0

〉B ; E = H(p0)−Kǫ

coherently in all subspaces in the restricted sum, where
|in〉 are orthogonal states with n particles. Then by lo-

cal maps |in〉|0̂〉 7→ |n〉|̂i〉, where |̂i〉 are orthogonal and

|n〉 = |1 · · · 10 · · ·0〉, the entanglement H(p0) − Kǫ can
be transferred to the second register which gives

∑

n0∈Sǫ

cn0
|N−n0〉|n0〉⊗

[

|01〉|10〉+|10〉|01〉
]⊗N [H(p0)−Kǫ]

,

(10)

where cn0
=

√

pn0

0 pN−n0

1

(
N
n0

)

. The sum can be ex-

tended to all n0 with high fidelity, and the |cn0
|2 approach

a Gaussian distribution with variance Np0(1 − p0) =
V (φ)/4. This is the only parameter characterizing the
state (10), since the mean can be shifted by locally adding
ancillas. As H(p0) is just E(φ), this completes the dis-
tillation direction of the proof.
The dilution direction can be proven using the converse

of (9),

(
N

n0

)

≤ 2NH(
n0
N ) ≤ 2N [H(p0)+Kǫ] ,

in an ǫ-typical subspace. Starting from

∑

n0∈Sǫ

cn0
|N−n0〉|n0〉⊗

[

|01〉|10〉+|10〉|01〉
]⊗N [H(p0)+Kǫ]

,

we can transfer the entanglement to the first register and
then (again by Theorem 1) reduce the Schmidt number

of each subspace to
(
N
n0

)

, obtaining the projection of

|φ〉⊗N onto the ǫ-typical subspace, so that the dilution
works as well. This completes the proof for qubits.
In a first step, we generalize the proof from qubits to

(I + 1)-level systems,

|φ〉 =
I∑

i=0

√
pi|i〉|I − i〉 . (11)

(Note that the coefficients can be made positive by lo-
cal operations.) Again, for N copies of |φ〉, an ǫ-typical
subspace can be defined by restricting the number ni
of occurences of the state |i〉|I − i〉 in the product by
|ni/N − pi| < ǫ for all i. Projecting the state onto an
ǫ-typical subspace again only yields a vanishingly small
error, and the Schmidt number of the states with fixed
numbers (n0, . . . , nI) is given by the multinomial coeffi-

cient
(

N
n0 ··· nI

)

and obeys the bounds [20]

2N [E(φ)−Kǫ] ≤
(

N

n0 · · · nI

)

≤ 2N [E(φ)+Kǫ] .

Thus, it is possible to extract the entanglement E(φ) re-
versibly. Yet, there are several possible configurations
(n0, . . . , nI) which yield the same local particle number
n =

∑

i ini such that there is still some entanglement left
in each subspace. But as for N copies of |φ〉 the number
of these configurations is bounded by N I , this entangle-
ment is logarithmic in N and can be removed reversibly.
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0 0.5 1 EoE
0

1

SiV

V( ψ )×
|V−EPR 〉

|ψ〉  = √ 1
6
_
_

|0〉Α |1〉 Β+√ 5
6
_
_

|1〉Α |0〉 Β

V( ψ )

E( ψ )

[E( ψ ) −V( ψ )]×|E−EPR〉

|E−EPR〉

|V−EPR 〉

FIG. 1: Characterization of pure qubit states in an E-V dia-
gram. All the states reside on the solid curve; asymptotically,
any state can be converted into V (ψ) copies of a |V-EPR〉 and
E(ψ)− V (ψ) of a |E-EPR〉.

Therefore, we can reversibly transform |φ〉⊗N⊗|0̂〉⊗NE(φ)

into

∑

cn|n〉|IN − n〉 ⊗
[

|01〉|10〉+ |10〉|01〉
]⊗NE(φ)

, (12)

where the cn are given by the sum over all coefficients for
which the particle number on Alice’s side is n,

cn =

√
√
√
√
√

∑

∑

i ini=n
∑

i ni=N

pn0

0 · · · pnI

I

(
N

n0 · · · nI

)

.

It remains to be shown that the |cn|2 approach a Gaus-
sian distribution. As long as all pi 6= 0, this can be
shown by expanding each ni within the typical subspace
as ni = N(pi+ δi) with δi < ǫ. This will work fine when-
ever Npi ≫ 1 and ǫ ≪ pi for all i. Yet, this condition
cannot be satisfied if pi = 0 for some i. This might (but
need not!) lead to a periodic gap in the distribution of
the |cn|2, e.g., for I = 2, p0 = p2 = 1/2. In that case,
|cn|2 = 0 for all odd n.
In principle, such a gap has to be considered as a third

nonlocal characteristic of a bipartite state. Still, it can
be removed easily. In the example given above the gap
is readily removed by adding one |V-EPR〉, such that
the fraction of |V-EPR〉 per copies of |φ〉 vanishes. By
further adding an |E-EPR〉 (those are obtained anyway
in the distillation) the |V-EPR〉 can be re-obtained—it
therefore merely acts as a catalyst, “freeing” the sub-
spaces with odd particle number.
The generalization to an arbitrary state is straightfor-

ward. Take

|φ〉 =
I∑

i=0

√
pi|ψi,I−i〉 , (13)

where |ψi,I−i〉 ∈ HAi ⊗HBI−i might themselves be entan-
gled states. Applying the concept of typical subspaces to
Eq. (13), we find that the number of occurences of each

0 0.5 1 1.5 EoE
0

2

4

SiV |0〉Α |2〉Β+|2〉Α |0〉Β

α|
0〉 Α

|2〉 Β
+β

|2〉 Α
|0〉 Β

α|0〉Α
|1〉 Β

+β|1〉Α
|0〉 Β

α|0〉Α
|2〉 Β

+β|1〉 Α
|1〉 Β

+α|2〉Α
|0〉 Β

| 0
〉 Α

| 2
〉 Β

+|
1〉

Α
| 1

〉 Β
+|

2〉
Α

| 0
〉 Β

α|0〉Α |2〉Β+β|1〉Α |1〉Β+γ|2〉Α |0〉Β

FIG. 2: E-V diagram for qutrits, where the boundary states
and the extremal states are given. The possible states reside
in the gray area, the solid line within this area is the subset
realizable by qubits.

|ψi,I−i〉 in the typical subspace is bounded by (pi ± ǫ)N ,
and thus the entanglement E(ψi,I−i) contained in these
states—which is already “accessible entanglement”—can
be extracted reversibly. The remaining state is of the
type of Eq. (11) (with the same coefficients pi) and thus
can be transformed reversibly into a Gaussian distributed
state with width NV (φ) and NH(p0, . . . , pI) ebits of en-
tanglement. It can be checked easily that the total num-
ber of Bell pairs is NE(φ).

For qubits, Theorem 2 can be re-expressed.

Corollary 1. For bipartite qubit states |φ〉,

|φ〉 ←→ |E-EPR〉⊗[E(φ)−V (φ)]|V-EPR〉⊗V (φ)

in the asymptotic limit.

This can be shown by applying Theorem 2 twice, to-
gether with E(φ) ≥ V (φ) (which only holds for qubits).
Fig. 1 illustrates this characterization of states in

the E-V diagram. Fig. 2 shows the E-V diagram
for qutrits, which is considerable more complex. The
bounds are given by the states with highest variance
α|0〉A|2〉B+β|2〉A|0〉B and the states with highest entan-
glement α|0〉A|2〉B+β|1〉A|1〉A+α|0〉A|2〉B. A decompo-
sition as in the Corollary is still possible if one replaces
the |V-EPR〉 by |0〉A|2〉B + |2〉A|0〉B which has maximal
variance.

IV. MIXED STATES IN THE PRESENCE OF
SUPERSELECTION RULES

A. Introduction

In the following section, we consider mixed states. We
will show how the concepts of EoE and SiV as two com-
plementary resources can be extended to mixed states,
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and discuss the connection with normal (SSR-free) en-
tanglement measures.
Let us start by introducing a particularly interesting

mixed state,

ρsep =
1

4






1
1 1
1 1

1




 (14)

in the basis {|0〉A|0〉B, |0〉A|1〉B, |1〉A|0〉B, |1〉A|1〉B}.
This state has first been considered in [7], where it was
shown that it is separable but nonlocal. Namely, it can
be obtained by mixing (|0〉A + ω|1〉A)(|0〉B + ω|1〉B) for
ω ∈ {1, i,−1,−i} with equal probabilities and therefore
does not contain EoE. On the other hand, it is easy to
see that there is no decomposition of ρsep which is sepa-
rable and compatible with the superselection rule, i.e., it
cannot be created locally. Clearly, this can not happen
with pure states.
Considering the results of the preceding section, it is

natural to assume that ρsep contains SiV but no EoE. In
order to give quantitative meaning to such statements,
we discuss two genuine extensions of nonlocal quantities
to mixed states, defined by the asymptotic amount of
pure state resources which are needed to create them and
which can be extracted again.

B. Formation of mixed states

Let us start with the creation of mixed state in the
presence of SSR. Similar to the normal case [14], we de-
fine:

Definition 2. The entanglement of formation and the
variance of formation in the presence of superselection
rules are defined as

ESSR
F (ρ) = min

{pi,ψi}

∑

i

piE(ψi)

and

V SSR
F (ρ) = min

{pi,ψi}

∑

i

piV (ψi) ,

respectively. The minimum is taken over all possible de-
compositions of ρ, where the ψi have to obey the SSR
(i.e., they all have constant particle number).
The entanglement cost [22] and the variance cost in the

presence of superselection rules are accordingly defined as
the regularized versions of ESSR

F and V SSR
F ,

ESSR
c (ρ) = lim

N→∞

ESSR
F (ρ⊗N )

N

and

V SSR
c (ρ) = lim

N→∞

ESSR
F (ρ⊗N )

N
.

These definitions make sense, as they quantify the non-
local resources we need at least to prepare the state ρ
with SSR [22].
As shown at the beginning of the section there ex-

ist states which do not contain any entanglement yet
are nonlocal, as ρsep [Eq. (14)]. One easily finds that
ESSR
F (ρsep) = 1/2, V SSR

F (ρsep) = 1/2, as each of the sub-
blocks in ρsep has to be created separately. On the other
hand, it seems reasonable to assume that ρsep can be
prepared asymptotically without using entanglement. In
the following, we prove an even stronger result: asymp-
totically, the entanglement needed to create any state ρ
is just the entanglement needed without SSR.

Theorem 3. For any ρ with bounded maximal particle
number,

ESSR
c (ρ) = Ec(ρ) ,

i.e., the entanglement cost with SSR is the entanglement
cost without SSR.

Proof. Consider a mixed state σ compatible with the SSR
and let

∑

i pi|ψi〉〈ψi| = σ be the optimal decomposition
without SSR, i.e., EF (ρ) =

∑

i piE(ψi). Clearly, this
decomposition need not obey the SSR, but we can use it
to constuct a compatible decomposition with vanishing

overhead. From (1), σ =
∑N
n=0 PnσPn, where Pn is the

projector onto the subspace with totally n particles and
N the maximum total particle number in σ; therefore,

σ =
∑

n,i

pipi,n
Pn|ψi〉〈ψi|Pn

pi,n

with pi,n = 〈ψi|Pn|ψi〉 is a decomposition of σ which
is compatible with the SSR. For any |ψ〉 with at most
N particles, it holds that the measurement of the total
particle number creates at most log(N+1) entanglement
on average,

∑

n

〈ψ|Pn|ψ〉E
(

Pn|ψ〉
√

〈ψ|Pn|ψ〉

)

≤ E(|ψ〉) + log(N + 1)

(15)
(the proof is given in the appendix), and with σ = ρ⊗M ,
the claim follows.

Note that this also implies that ESSR
F is not additive [8];

ESSR
F (ρ⊗Nsep ), e.g., grows at most logarithmically.

Let us now consider V SSR
F and V SSR

c . As expected,
the entanglement cost of ρsep vanishes. But as ρsep still
contains some kind of nonlocality, it is natural to assume
that its variance cost is strictly nonzero. In the follow-
ing, we prove a more general result, namely that V SSR

F

is additive on all states which are a direct sum of pure
states (i.e., ρ is block-diagonal and each block is a pure
state); this holds, e.g., for ρsep.

Theorem 4. Let ρ =
⊕

i pi|φi〉〈φi|, σ =
⊕

j qj |ψj〉〈ψj |,
where

∑

i pi =
∑

j qj = 1. Then

V SSR
F (ρ⊗ σ) = V SSR

F (ρ) + V SSR
F (σ) .
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Proof.

V SSR
F (ρ⊗ σ) = V SSR

F




⊕

i,j

piqj |φi〉〈φi| ⊗ |ψj〉〈ψj |





(∗)
=
∑

i,j

piqjV (φi ⊗ ψj)

=
∑

i

piV (φi) +
∑

j

qjV (ψj)

(∗)
= V SSR

F (ρ) + V SSR
F (σ) ,

where in (∗) we used the equality V SSR
F (

⊕

i ri|χi〉〈χi|) =∑

i riV (χi) with
∑

i ri = 1. As subadditivity is clear
from the convexity of V SSR

F , we only have to show su-
peradditivity. For an arbitrary decomposition |ζj〉 =
∑

i uji
√
ri|χi〉 of

⊕

i ri|χi〉〈χi| =
∑

j |ζj〉〈ζj | [with an

isometry (uji)], this follows from

∑

j

〈ζj |N̂A|ζj〉2
〈ζj |ζj〉

(a)
=
∑

j

(
∑

i u
∗
jiujipi〈χi|N̂A|χi〉)2
∑

i u
∗
jiujipi

(b)

≤
∑

i,j

(u∗jiujipi〈χi|N̂A|χi〉)2
u∗jiujipi

(c)
=
∑

i

pi〈χi|N̂A|χi〉2 .

Here, we used (a) 〈χi|χi′〉 = δii′ , 〈χi|N̂A|χi′〉 ∝ δii′ ;
(b) Eq. (7); (c)

∑

j u
∗
jiuji = 1.

While it seems plausible that V SSR
F is additive on all

states and we did not find any counterexamples, this is
apparently hard to prove. Let us note that unlike for EF ,
the additivity of V SSR

F is probably not related to its su-
peradditivity. A counterexample for the superadditivity
of V SSR

F can easily be found [23], and the direct equiva-
lence proof of Pomeransky [24] cannot be transferred to
SiV due to the different structure of the nonlinearity.

C. Formation of qubits

In the following, we compute explicit formulas for ESSR
F

and V SSR
F of qubits. A general bipartite two-qubit state

subject to SSR is given by

ρ =






w00

w01 γ
γ w10

w11




 ,

where γ ≥ 0 (this can be achieved by local unitaries).
Using the results of Wootters [25], we find EF (ρ) = E(C),
where E(C) = H(1/2 +

√
1− C2/2), H is the binary

entropy, and the concurrence C ≡ C(ρ) can be computed
as

C = max(0, 2γ − 2
√
w00w11) .

0 1 EF
SSR

0

1

VF
 SSR

ρ = 




0.25
 0.3 0.2
0.2 0.2

 0.25





C
_

2

pC
_

2

   (C
_
)p   (C

_
)E E

FIG. 3: Relation of p, C̄, ESSR
F and V SSR

F (see Section IVC).
The gray area gives the allowed range of ESSR

F and V SSR
F for

qubits. The lower bound is obtained by plotting E(C̄) vs. C̄2.
The point characterizing a mixed state ρ can be found by
dividing the line between the origin and the point (E(C̄), C̄2)
located on the boundary at the ratio of p : 1− p.

With SSR, ρ has to be built subspace by subspace, where
the one-particle subspace ρ1 is the only one which might
be entangled. The concurrence for ρ1/tr[ρ1] is

C̄ = 2γ/p

with p = w01 + w10 = tr[ρ1], and thus

ESSR
F (ρ) = pE(C̄) .

The relation between the normal concurrence C and the
SSR-concurrence C̄ is given by the bounds pC̄ − (1 −
p) ≤ C ≤ pC̄, i.e., EF and ESSR

F are not completely
independent. As E is concave, EF ≤ ESSR

F , as necessary.
An optimal decomposition of ρ1 can be found as fol-

lows. Define s as a root of C̄/2 =
√

s(1− s). Then, ρ1
can be written as a mixture of

√
s|01〉+

√
1− s|10〉 and√

1− s|01〉+√s|10〉, and both have the desired EoE.
The same decomposition gives the optimal variance as

well (note that this only holds for qubits). Therefore,
observe that both states have SiV 4s(1 − s) = C̄2, i.e.,
C̄2 is an upper bound for V SSR

F (ρ), and for pure states
equality holds. On the other hand, C̄2 is convex: for
any one-particle subblock ρ1 = pσ + (1 − p)σ′ with off-
diagonal elements v = pw + (1− p)w′ it holds that v2 ≤
pw2 + (1− p)w′2. Therefore equality holds, and

V SSR
F (ρ) = pC̄2 . (16)

Thus, with respect to formation 1× 1 qubit states are
characterized by two parameters: the weight of ρ1, p, and
the concurrence of ρ1, C̄. It can be checked easily that
0 ≤ p, C̄ ≤ 1 in order for ρ to be positive. A necessary
condition for separable states is C̄ ≤ (1 − p)/p (this is
tight, but p, C̄ do not tell everything about separability,
cf. the inequality relating C, C̄ given above).
Fig. 3 shows how for a particular state p and C̄ can

be determined from the E-V diagram, and Fig. 4 gives a
“phase diagram” for mixed states.
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0 1 EF
SSR

0

1

VF
 SSR

ρsep
entangled states

realizable by
separable states

states with fixed
particle number (p=1)

|EPR〉

FIG. 4: Different regions of mixed states in the E-V dia-
gram. The solid line corresponds to the states with fixed to-
tal particle number, i.e., p = 1. Separable states have to stay
within the dashed area (although there exist entangled states
as well). Note that ρsep [Eq. 14] is the “extremal separable
state”.

D. Distillation of nonlocal resources

In the following, we consider the problem complemen-
tary to formation: given a mixed state, is it possible
to distill the nonlocal resources contained in this state?
This distilled state could then be used to perform some
nonlocal task as teleportation with high fidelity. Natu-
rally, there exist two types of distillation protocols: the
first one aims to increase the fidelity of the states being
distilled with the final state, while the second returns the
target state itself with some finite yield in the asymptotic
limit.
In the following, we will focus on qubits. Without SSR,

it has been shown for both types of distillation how they
can be implemented: in the so-called recurrence proto-
col [15], both parties apply an xor operation (a bilateral
xor or bxor) to two copies of the state and then mea-
sure one of them; thus, on average they increase their
knwoledge about the second. Hashing protocols [14], on
the contrary, are aimed to asymptotically return a finite
yield of pure states: by subsequent application of bxor
operations partial information about the states can be
collected in a subset which is then measured; by the law
of large numbers, this partial information asymptotically
fully determines the remaining states.
The presence of superselection rules inposes severe re-

strictions on distillation procedures. It has been shown,
e.g., that the entanglement contained in one copy of a
|V-EPR〉 cannot be accessed, while for multiple copies of
|V-EPR〉, all entanglement up to a logarithmic amount
can be used [8], as also follows from Thm. 2. The cen-
tral problem in distilling states containing SiV is that the
bxor operation is ruled out by the SSR, and there is no
adequate replacement. One way to overcome this prob-
lem is to use a third copy of the state as a (imperfect)
shared reference frame and to construct a three-copy pro-

tocol which probabilistically implements bxor. Indeed,
we will show that one needs three-copy protocols to dis-
till both EoE and SiV. Unfortunately, this is of no use
for the implementation of hashing protocols, as the errors
of the bxor-approximation accumulate, and each bxor

uses up the reference frame copy of the state whereas
hashing would require O(N2) bxor operations.

The existence of two distinct resources makes the field
of distillation much more rich: there will occur trade-offs
between the two resources in distillation, and one might
even think of spending one resource to distill the other.
For instance, we will show that it is possible to distill
all separable but nonlocal states towards ρsep [Eq. (14)],
and in turn, if one adds some entanglement, all the SiV
contained in ρsep can be converted to a |V-EPR〉.

1. Reduction to standard states

To simplify analysis, in [14] the distillation of qubits
has been considered for a standard form, namely Bell-
diagonal states; any state can be made Bell-diagonal by
LOCC. Yet, these operations are ruled out by the SSR,
so that we have to introduce a different normal form.
Therefore, consider a general bipartite qubit state with
SSR

ρ =






w00

w01 γ
γ∗ w10

w11




 , (17)

where wij ≥ 0 and γ ≥ 0 (the latter can be accomplished
by local unitaries). By local filtering operations [26] FA ∝
4
√
w10w11|0〉〈0|+ 4

√
w00w01|1〉〈1|, FB ∝ 4

√
w01w11|0〉〈0|+

4
√
w00w10|1〉〈1|, this can be transformed probabilistically

to

ρ̃ =
1

2(1 + w)






w
1 v
v 1

w




 . (18)

Here, w =
√

w00w11

w01w10
and v = |γ|√

w01w10
. In the following,

we will call this the standard form ρ̃ of a two-qubit state ρ
and only consider states of this type. The standard form
is Bell-diagonal and unique for each ρ, and by the reverse
POVM F ′

A ∝ F−1
A , F ′

B ∝ F−1
B , ρ̃ is converted back to

ρ. Thus, any state can be transformed probabilistically
to its standard form and back by LOCC, and therefore
the standard form of states containing EoE and SiV still
contains EoE and SiV [27].

Note that the two parameters (w, v) describing the
standard form ρ̃ are directly related to (p, C̄) used to
characterize ESSR

F (ρ̃) and V SSR
F (ρ̃) in Section IVC: v =

C̄ and w = 1/p− 1.
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2. Distilling entanglement

Let us first demonstrate that it is possible to distill all
entangled qubit states, as it is the case without SSR.
Therefore, take two copies of an arbitrary state ρ in
its standard form ρ̃ [Eq. (18)] and project locally onto
the one-particle subspaces. The resulting state in the
{|0̂〉, |1̂〉}-basis is

ρ̂ =






w2

1 v2

v2 1
w2




 .

Obviously, ρ̂ is entangled iff ρ̃ is entangled iff ρ is entan-
gled, and as ρ̂ has constant local particle number, it can
be distilled as usual [14, 15]. Therefore, it is possible to
distill any entangled two-qubit state if we do not care
about its SiV. Even more, if we have an infinite amount
of SiV available, we can distill with the same rate as with-
out SSR by using the SiV as a perfect reference frame.

3. Distilling separable states

Clearly, the SiV contained in separable but nonlocal
states cannot be distilled, as pure states with SiV always
contain entanglement. One solution to this problem is
to distill towards ρsep [Eq. (14)]; we will show how this
can be done (and why ρsep is a good choice) in the next
subsection. Alternatively, one might try to add entangle-
ment (e.g., |E-EPR〉s) and then distill the SiV of separa-
ble states to |V-EPR〉s.
In the following, we show how ρsep⊗|E-EPR〉〈E-EPR|

can be transformed to a |V-EPR〉 with probability 1/2,
thereby distilling all the SiV contained in ρsep to a
pure state. Clearly, |V-EPR〉 can be obtained from an
|E-EPR〉 = |01〉|10〉+ |10〉|01〉 by applying a bxor oper-
ation, but this is ruled out by the SSR. The idea in the
following is to use the SiV contained in ρsep as a shared
reference frame in order to carry out the bxor operation
probabilistically. In order to see how this works, write
ρsep as a mixture of (|0〉 + ω|1〉)A(|0〉 + ω|1〉)B over all
ω = eiφ. If we manage to project the total state onto
subspaces where ω simply gives a global phase, we can
make use of the SiV of ρsep. Therefore, start with the
state |E-EPR〉〈E-EPR| ⊗ ρsep which can be written as a
mixture of the states

|ψ0〉 ∝ |010〉|100〉+ |100〉|010〉 ,
|ψ1〉 ∝ |010〉|101〉+ |100〉|011〉+ |011〉|100〉+ |101〉|010〉 ,
|ψ2〉 ∝ |011〉|101〉+ |101〉|011〉

with probabilities 1/4, 1/2, and 1/4. Clearly, there is no
measurement which tells us which |ψi〉 we actually have
without either destroying the entanglement contained in
|ψ0〉 and/or |ψ2〉 or the variance contained in |ψ1〉. As
we want to extract the variance, we have to sacrifice

the EoE of |ψ0,2〉: both parties do a projective mea-
surement onto the subspaces spanned by {|010〉, |101〉}
and {|100〉, |011〉}. If the measurement outcomes match,
Alice and Bob share a known state with EoE and SiV
1 which can be converted to a |V-EPR〉; otherwise, the
entanglement is lost. Both cases are equally likely, and
thus the average yield of SiV is 1/2 = V SSR

F (ρsep) which
is optimal. On the other hand, we had to sacrifice half of
the entanglement—there is a trade-off between the two
resources.
The procedure described above can be generalized to

arbitrary states, where it allows to distill the one-particle
subblock. Note that if ρ is entangled, the required
|E-EPR〉s can be distilled from ρ itself.

4. Recurrence protocols

In the following, we will look for protocols which al-
low to distill EoE and SiV. Particularly, we would like
to have a protocol which allows to concentrate the SiV
contained in separable states. As already mentioned at
the beginning of the section, the usual recurrence proto-
cols cannot be applied as bxor cannot be implemented.
(In fact, it is not even possible to find an operation do-
ing a comparable job, i.e., computing the parity, only for
|0〉|1〉 ± |1〉|0〉.) Yet, similar to the preceding subsection
we can use a third copy as a shared reference frame which
allows to implement the desired recurrence operation in
a probabilistic way. Indeed, we will see that three-copy
protocols suffice for all distillation tasks.
General N -copy recurrence protocols can be repre-

sented by local POVM operators which act on N qubits
and leave one qubit (i.e., 2 × 2N matrices). These oper-
ators must be realizable by SSR-compatible operations,
i.e., by an N -qubit POVM, followed by a measurement
of all but one qubit (omitting the measurement decreases
our information about the state and thus does not help).
Therefore, the POVM operators must have the shape
of two adjacent rows of SSR-compatible N -qubit oper-
ations [Eq. (1)]; except normalization, this is the only
condition.
Possible protocols are illustrated in Fig. 5. Any state

can be brought to standard form Eq. (18) by local filter-
ing operations and can be parametrized by a tuple (v, w),
0 ≤ v ≤ 1, 0 ≤ w; the states with v > w are entangled
(Fig. 5a).
Given a single copy of ρ̃(v, w), Alice and Bob can ei-

ther increase w (by adding |00〉〈00|+|11〉〈11|) or decrease
v and w by the same fraction (by adding |01〉〈01| +
|10〉〈10|), and anything inbetween, as is illustrated in
Fig. 5b. Obviously, ρsep can be transformed to any other
separable state deterministically—therefore, it is indeed
the standard separable but nonlocal state, as an EPR is
for entanglement.
Let us turn our attention to two-copy protocols. As

the output state will not necessarily have standard form,
we have to include filtering in the local POVM operators



11

0

0 0

01

1 1

1
v

v v

v
0

0 0

0

1

1 1

1

w

w w

w

entangled

separable

ρsep

|V−EPR〉

a) b)

c) d)

FIG. 5: a) Diagram characterizing mixed states according to
their standard form. The entangled states are exactly those in
the gray area. b) Transformations possible by one-copy oper-
ations: w can be increased, or w and v can be decreased simul-
taneously. Thereby, the |V-EPR〉 can be transformed to any
state, while ρsep can generate any separable state. c) Addi-
tional transformations realizable by two-copy recurrence pro-
tocols. Thereby, it is not possible to reach ρsep or |V-EPR〉.
d) Three-copy protocols allow to distill all separable states
towards ρsep and all entangled ones towards |V-EPR〉.

which restricts their degrees of freedom to one complex
number each, so that it is easy to check that the best
protocols are given by

MA =MB ∝
(

1 0 0 0
0 1 1 0

)

and

M ′
A ∝

(
1 0 0 0
0 1 1 0

)

, M ′
B ∝

(
0 1 1 0
0 0 0 1

)

.

The resulting transformations are (v, w) 7→
(v,
√

1+v2+w2

2 ) and (v, w) 7→
√

2
1+v2+w2 (v, w), re-

spectively. Fig. 5c shows where this gives an advantage
over the one-copy protocol Fig. 5b. Obviously, two-copy
protocols do neither allow to distill separable state to
ρsep nor do they allow to distill entangled states to
|V-EPR〉.

For three copies, though, the following two pairs of
POVM operatos provide a way to distill all states:

MA =MB ∝
(

0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0

)

distills all separable states to ρsep by virtue of

(v, w) 7→
(

v +
v − v3

1 + 2v2 + 2w2
,
w(2 + 2v2 + w2)

1 + 2v2 + 2w2

)

whereas

M ′
A ∝

(
0 1 1 0 −1 0 0 0
0 0 0 1 0 1 1 0

)

,

M ′
B ∝

(
0 1 1 0 1 0 0 0
0 0 0 −1 0 1 1 0

)

distills entangled states towards a |V-EPR〉, and

(v, w) 7→
(
v(6 + 3v2 − 2w2)

3 + 6v2 + 6w2
,
w(6 − 2v2 + 3w2)

3 + 6v2 + 6w2

)

.

This is illustrated in Fig. 5d.

V. SIV AS A RESOURCE

A. Introduction

In its standard form, i.e., as a singlet, EoE can be
used to teleport quantum bits and thus allows to over-
come the restriction to LOCC. In this section, we will
show that SiV is a resource in very much the same way,
namely it allows to overcome the restrictions imposed
by SSR in a bipartite setting. Despite the similarities,
there are some major differences. Firstly, while for EoE
there only exists one standard form (the maximally en-
tangled state depending on the dimension of the system),
for SiV there exist two different standard states: sin-
glets |0〉|N〉+ |N〉|0〉 with SiV N2 (as in Corollary 1) and
the Gaussian distributed states with large variance (as in
Theorem 2). Second, there are no pure states which carry
only SiV—SiV as a resource which is independent of EoE
only exists for mixed states where resources are difficult
to quantify. Finally, we will find that we need an infinite
amount of nonlocality in order to completely overcome
the restrictions imposed by the SSR—this is fundamen-
tally different from EoE where one ebit of entanglement
is sufficient to perfectly teleport one quantum bit.
In order to demonstrate (and partly quantify) that SiV

is useful to overcome the restrictions imposed by the SSR,
we will use the tasks of distinguishing and teleportation.
It has been shown that with SSR there exists a perfect
data hiding protocol [9] which allows to encode a classical
bit in a bipartite state such that it cannot be revealed by
LOCC [7]. This protocol can be extended to a protocol
hiding logN bits in the Fourier states

|ζNk 〉 =
1√
N

N−1∑

n=0

e2πikn/N |n〉A|N − 1− n〉B . (19)
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These states can be distinguished perfectly by LOCC if
no SSR are present (therefore, both parties measure in
the Fourier basis and compare their outcomes), but with
SSR, they become totally indistinguishable (see Theo-
rem 5 below).
The second task we use to show that SiV is a resource

is teleportation of a state with nonconstant local parti-
cle number: Alice holds one half of a state |φ〉AC which
she wants to teleport to Bob using an in general mixed
helper state ρAB. Clearly, one ebit of EoE is necessary
for this task, but if V (|φ〉) > 0, also SiV is needed [7].
We will show that one ebit of EoE is still sufficient, but
the amount of SiV has to grow superlinearly with V (|φ〉)
and is infinite for perfect teleportation.

B. A general protocol

Let us first quote a Theorem from [7] which will be
very useful in the following.

Theorem 5 ([7]). In the presence of superselection
rules, the states ρ and NA|B(ρ) cannot be distinguished
by LOCC. Here, NA|B is the “dephasing map”

NA|B(ρ) =
∑

nA,nB

PAnA
⊗ PBnB

ρPAnA
⊗ PBnB

,

with PXnX
the local projector onto the subspace with nX

particles.

By this theorem, we can highly restrict the class of
allowed protocols. Let us show this for the task of dis-
tinguishing, where Alice and Bob initially share ρ =
|ζNk 〉〈ζNk |⊗σ [cf. Eq. (19)], and they have to determine k.
At the end of the protocol, Alice and Bob get an answer k′

according to a probability distribution {pk′}. But if they
had started with NA|B(ρ) instead, Theorem 5 tells us
that the probability distribution of their outcomes would
have been just the same. Therefore, Alice and Bob can
start their protocol by measuring their particle number
operators N̂A and N̂B—if they discard their outcomes,
they just implemented NA|B, and their knowledge of NA
and NB will not affect the average probability distribu-
tion which is solely relevant unless the figure of merit is
nonlinear. The same holds for the teleportation scenario
with respect to the partition A|BC, i.e., in this case only
Alice is allowed to measure her particle number (this map
is actually weaker than NA|BC). Note that for a pure

state, measuring N̂A also determines NBC (and thus im-
plements NA|BC), which is different in the mixed state
case and closely connected to the fact that mixed states
alone are not sufficient for teleportation.

C. Pure states

Assume Alice wants to teleport her share of the state

|φ〉 =
∑

n

αn|n〉A| − n〉C

to Bob using

|ψ〉 =
∑

m

βm|m〉A| −m〉B .

Here, we use a simplified notation, where −∞ < n,m <
∞,

∑ |αn|2 =
∑ |βm|2 = 1, and the support of the αn,

βm is bounded below such that the particle number can
be made positive by adding ancillas. As shown before, Al-
ice can start any protocol by measuringNA = K, yielding

√
pK |χK〉ABC =

∑

n+m=K

αnβm|n,m〉A| − n〉C | −m〉B

(20)
with included probability pK . If Alice now measures in
the Fourier basis and communicates her result, the orig-
inally tripartite state can be reconstructed by Bob and
Charlie; this strategy is optimal as no information is lost
and the state gets less nonlocal. Up to shifts in the par-
ticle number, the state is then

√
pK |χK〉BC =

∑

n

αnβK−n|n〉B| − n〉 .

We will use the average entanglement fidelity as the figure
of merit,

F̄ =

〈
∑

K

pK |〈φ|χK〉|2
〉

=
∑

∆

Π(∆)C(∆)

where Π(∆) =
∑

n 〈pnpn+∆〉 (pn = |αn|2) and C(∆) =
∑

m β
∗
mβm−∆. The average 〈·〉 is taken over all states φ,

where for teleportation we assume a unitarily invariant
distribution. It is straightforward to check that local fil-
tering operations cannot increase F̄ . Also, for the task
of distinguishing it can be shown that F̄ gives the opti-
mal success probability for the inconclusive case [28]. For
distinguishing, ΠD(∆) = max(N − |∆|, 0)/N2, while for
teleportation, ΠT (∆) = [max(N − |∆|, 0)+ δ∆,0]/N(N +
1) [29]. In both cases, αn 6= 0 for n = 0, . . . , N − 1.
We will analyze two natural types of helper states:

states with constant distribution βm = 1/
√
M , m =

0, . . . ,M − 1, and states with Gaussian distribution with
variance V (ψ). One finds CC(∆) = max(M − |∆|, 0)/M
resp. CG(∆) = exp[−∆2/2V ] ≈ 1 − ∆2/2V . The re-
sulting error probabilities for all four cases are given in
Table I. Note that for the Gaussian distributed |ψ〉, in
both cases

perr =

〈
V (φ)

〉

4V (ψ)

holds, i.e., the error probability is given by the ratio of
the variances. (Actually, this even holds without taking
the average over φ.)
In all cases, the error vanishes only if the size of the

helper state grows superlinearly with the size of the un-
known state; thus, the scaling of SiV as a resource is
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task

helper distinguish teleport

constant perr =
(N+1)(N−1)

3MN
perr =

N
3M

Gaussian perr =
(N+1)(N−1)

12V (ψ)
perr =

N(N−1)
12V (ψ)

TABLE I: Error probabilities for distinguishing and telepor-
tation where the helper state is either a maximally entangled
state with Schmidt number N or a Gaussian distributed state
with variance V (ψ).

unfavorable compared to the behaviour of EoE. This is
a direct consequence of the direct sum structure in (3)
which is opposed to the tensor product structure leading
to EoE: while with a tensor product structure, N par-
ticles generate a 2N -dimensional Hilbert space, for the
direct sum structure the underlying space only has di-
mension N + 1. This also holds for mixed states, where
this is the size of the largest coherent subspace. For the
same reason, the data hiding scheme Eq. (19) is optimal
in the sense that the available Hilbert space has only
dimension N .

D. Mixed states

Let us now demonstrate that separable mixed states
with SiV can also be used as a shared reference frame [7].
First, we demonstrate how Alice and Bob can use the
state ρsep to distinguish the states |01〉 ± |10〉. By
very much the same argument as before Alice and Bob
can start their protocol by measuring their local parti-
cle number. By adding their outcomes, Alice and Bob
immediately know whether they are dealing with the
|0〉|0〉/|1〉|1〉 part of ρsep or with the |V-EPR〉. In the
first case all information is lost while in the second case
they can just proceed as if they had started with |V-EPR〉
itself. This case occurs with probability 1/2, i.e., all the
SiV contained in ρsep can be used. Clearly, this proto-

col can not be used for teleportation as N̂BC cannot be
implemented locally.
Let us now show that separable but nonlocal states can

be used to overcome locality constraints arbitrarily well,
i.e., they can serve as arbitrarily precise reference frames.
Therefore, we use the separable state [7, 30]

ρcoh(α) =

∫
dφ

2π
|αeiφ〉〈αeiφ| ⊗ |αeiφ〉〈αeiφ|

where for α > 0,

|αeiφ〉 = e−α
2/2

∞∑

n=0

αn√
n!
einφ

is a coherent state with amplitude αeiφ. It has been
shown [7] that for α→∞, ρcoh(α) can be used to distin-
guish |01〉±|01〉with arbitrary precision. In the following,

we will show that this state together with one |E-EPR〉
can be used to perfectly teleport a state with noncon-
stant local particle number and therefore may serve as
an arbitrarily precise reference frame.
First, let us use Theorem 4 to show that this state has

indeed infinite SiV for α → ∞. Therefore, it is enough
to note that

ρcoh(α) =

∞∑

N=0

pN |θN 〉〈θN | ; pN = e−2α2 (2α2)N

N !

|θN 〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

|n,N − n〉 ,

and thus V SSR
F (ρcoh(α)) = V SSR

c (ρcoh(α)) = α2/2 → ∞
for α → ∞. In is interesting to note that each of the
|θN 〉 approximates a state with Gaussian distribution
such that ρcoh(α) might be considered as the EoE-free
mixed state version of Gaussian distributed states.
In order to see how a mixed state can be used to

teleport, let Alice and Charlie initially share |φ〉 =
α|01〉+ β|10〉 (the proof is completely analogous for qu-
d-its), and assume Alice wants to teleport her share to
Bob. Therefore, Alice and Bob are provided with an
|E-EPR〉AB and with some mixed state

ρ =
∑

n,m,n′,m′

n+m=n′+m′

ρn
′,m′

n,m |n〉A〈n′| ⊗ |m〉B〈m′| , (21)

where the condition n+m = n′+m′ comes from the SSR,
Eq. (1). For simplicity, let us assume that all ρn

′,m′

n,m are
nonnegative. Alice once more starts by measuring her
local particle number operator on |φ〉〈φ| ⊗ ρ. (In this
step, we do not have to care about the |E-EPR〉 which
has constant local particle number.) For a measurement
outcome n, the resulting state (probability included) is

∑

m

[

|α|2ρn,m−1
n,m−1|0, n〉A〈0, n| ⊗ |m− 1〉B〈m− 1| ⊗ |1〉C〈1|

+|β|2ρn−1,m
n−1,m|1, n− 1〉A〈1, n− 1| ⊗ |m〉B〈m| ⊗ |0〉C〈0|

+αβ∗ρn−1,m
n,m−1|0, n〉A〈1, n− 1| ⊗ |m− 1〉B〈m| ⊗ |1〉C〈0|

+α∗βρn,m−1
n−1,m|1, n− 1〉A〈0, n| ⊗ |m〉B〈m− 1| ⊗ |0〉C〈1|

]

As Alice’s share now has constant particle number and
lies within a two-dimensional subspace, she can use the
|E-EPR〉AB to teleport her share to Bob. If we label the

two teleported basis states |â〉 = |0, n〉, |b̂〉 = |1, n − 1〉,
Bob and Charlie then share the state

∑

m

[

|α|2ρn,m−1
n,m−1|â,m− 1〉B〈â,m− 1| ⊗ |1〉C〈1|

+|β|2ρn−1,m
n−1,m|b̂, m〉B〈b̂, m| ⊗ |0〉C〈0|

+αβ∗ρn−1,m
n,m−1|â,m− 1〉B〈b̂, m| ⊗ |1〉C〈0|

+α∗βρn,m−1
n−1,m|b̂, m〉B〈â,m− 1| ⊗ |0〉C〈1|

]
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Bob now projects onto the subspaces spanned by the

pairs of states |0m〉 ≡ |â,m − 1〉 and |1m〉 ≡ |b̂, m〉 and
obtains

|α|2ρn,m−1
n,m−1|0〉B〈0| ⊗ |1〉C〈1|

+ |β|2ρn−1,m
n−1,m|1〉B〈1| ⊗ |0〉C〈0|

+ αβ∗ρn−1,m
n,m−1|0〉B〈1| ⊗ |1〉C〈0|

+ α∗βρn,m−1
n−1,m|1〉B〈0| ⊗ |0〉C〈1| (22)

(where we omitted the subscript m). By looking at the
average fidelity with the original state, we find that the
error vanishes iff

∑

n,m

ρn,m−1
n,m−1 =

∑

n,m

ρn−1,m
n−1,m =

∑

n,m

ρn,m−1
n−1,m . (23)

Since ρ is positive this implies that ρn,m−1
n,m−1 ≈ ρn−1,m

n−1,m ≈
ρn,m−1
n−1,m for most n,m, as one would expect from Eq. (22).

It is straightforward to check that Eq. (23) holds for
ρcoh(α) for α → ∞, and that the 2 × 2 subblocks of
the density matrix really approximate pure states.
One might expect that N → ∞ copies of ρsep could

be used just the same way, but the situation is quite
different: filtering operations which bring ρ⊗Nsep into a
form (21) destroy the off-diagonal elements of the density
matrix with high probability so that (23) cannot be satis-
fied; therefore it is questionable whether multiple copies
of ρsep can be used as an arbitrarily precise reference
frame. On the other hand, this is not so much differ-
ent from the pure state scenario: while multiple copies
of a |V-EPR〉 might indeed be used as a perfect refer-
ence frame, these states carry an amount of entanglement
which grows linearly with the precision of the reference
frame, whereas a single Gaussian distributed state with
large SiV only has logarithmic—and thus in some sense
vanishing—entanglement and is therefore much closer to
the case of separable reference frames.
Let us note that the teleportation scenario can be al-

tered by joining B and C. This is no longer teleportation,
of course, and can be accomplished by LOCC without
SSR. On the other hand, it is still an impossible task
if SSR are present and is thus suitable to characterize
mixed states as reference frames without the need for
additional entanglement.

E. Hiding quantum states

Let us close by showing that the data hiding protocol
given in [7] resp. its extension Eq. (19) can be used to
construct a mixed state scheme to hide quantum data
as well. At a first glance, one might try to encode the
two degrees of freedom of a qubit in the phases of the
state |02〉+ eiφ|11〉+ eiφ

′ |20〉, but this cannot be accom-
plished by a linear map. Therefore, we encode the qubit
α|01〉 + β|10〉 in one of the states |φ0〉 = α|01〉 + β|10〉,
|φ1〉 = β|01〉+α|10〉with equal probabilities which is then

distributed between Alice and Bob. Additionally, Alice
and Bob are provided with a state |ψ0/1〉 = |02〉 ± |20〉
which encodes the state Alice and Bob actually share.
Thus, Alice and Bob share a state which they cannot
distinguish from the totally mixed state by LOCC (The-
orem 5), but they can perfectly recover the original qubit
if they join. This scheme can be extended to hide N -level
quantum states using one of the states

|φk〉 =
N−1∑

n=0

αn+kmodN |n,N−1−n〉 ; k = 0, . . . , N−1 .

Together with the state encoding k, N2 − 1 particles are
needed, and the associated Hilbert space dimension is
N2.

VI. CONCLUSIONS

Adding restrictions to the operations permissible on a
quantum system gives rise to a new resource which in
turn allows to overcome this restriction. The restriction
to LOCC, for example, leads to EoE as a nonlocal re-
source. Adding SSR to a bipartite system leads to an
additional resource, the superselection induced variance
SiV. We could show that SiV and EoE together com-
pletely characterize bipartite states in the asymptotic
limit. Thereby, two different kind of standard forms arise,
namely singlets and Gaussian distributed states with log-
arithmic EoE.
The search for states which only carry SiV led us

to mixed states, where we considered entanglement and
variance of formation. We could show that the concept
of entanglement does not have to be changed and thus
there exist states which carry SiV but no EoE, and we
provided explicit formulas for the case of qubits. As to
distillation, we could show that both EoE and SiV can
be distilled, and we provided various ways to do that.
Thereby, we found that there exist mixed standard states
for SiV which do not carry EoE.While it is possible to ex-
tend recurrence protocols such that they work with SSR
by using a third copy as a reference frame, it is unlikely
that protocols with asymptotic yield work.
Finally, we showed that SiV is a resource which allows

to overcome the restrictions imposed by the SSR, but we
also saw that there are fundamental differences to EoE
as the size of the reference frame has to grow superlin-
early with the problem size, which is due to direct sum
structure of the underlying Hilbert space.
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APPENDIX: PROOF OF EQ. (15)

In order to show Eq. (15), we need the inequality S(piρi) ≤ piS(ρi)+H(pi) (see, e.g., [21] for a proof). Furthermore,
note that Pn =

∑n
i=0 P

A
i ⊗ PBn−i. Toghether, this gives the estimate

E

(

Pn|ψ〉
√

〈ψ|Pn|ψ〉

)

= S

(
trB

∑n
i=0 P

A
i ⊗ PBn−i|ψ〉〈ψ|PAi ⊗ PBn−i
〈ψ|Pn|ψ〉

)

≤
n∑

i=0

〈ψ|PAi ⊗ PBn−i|ψ〉
〈ψ|Pn|ψ〉

S

(
trBP

A
i ⊗ PBn−i|ψ〉〈ψ|PAi ⊗ PBn−i
〈ψ|PAi ⊗ PBn−i|ψ〉

)

+H

({ 〈ψ|PAi ⊗ PBn−i|ψ〉
〈ψ|Pn|ψ〉

}N

i=0

)

.

Clearly, the Shannon entropy H is bounded by log(n + 1) ≤ log(N + 1), and thus the l.h.s. of Eq. (15), i.e., the
entanglement averaged over n, is bounded by

N∑

n=0

n∑

i=0

〈ψ|PAi ⊗ PBn−i|ψ〉 S
(
trBP

A
i ⊗ PBn−i|ψ〉〈ψ|PAi ⊗ PBn−i
〈ψ|PAi ⊗ PBn−i|ψ〉

)

+ log[N + 1] .

The sum can be extended to i = 0, . . . , N , n − i = 0, . . . , N as |ψ〉 has at most N particles, and by the convexity
of the von Neumann entropy, Eq. (15) follows.
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