411 research outputs found

    Landform vegetation relationships in southern Arizona

    Get PDF
    There are no author-identified significant results in this report

    The Pacific Northwest story

    Get PDF
    The establishment of image analysis facilities for the operational utilization of LANDSAT data in Idaho, Oregon, and Washington is discussed. The hardware and software resources are described for each facility along with the range of services

    Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop

    Editorial: Carbon storage in agricultural and forest soils

    Get PDF
    International audienc

    Association of the tumour necrosis factor alpha -308 but not the interleukin 10 -627 promoter polymorphism with genetic susceptibility to primary sclerosing cholangitis

    Full text link
    BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease of unknown aetiology. Abnormalities in immune regulation and genetic associations suggest that PSC is an immune mediated disease. Several polymorphisms within the tumour necrosis factor α (TNF-α) and interleukin 10 (IL-10) promoter genes have been described which influence expression of these cytokines. This study examines the possible association between polymorphisms at the −308 and −627 positions in the TNF-α and IL-10 promoter genes, respectively, and susceptibility to PSC. METHODS TNF-α −308 genotypes were studied by polymerase chain reaction (PCR) in 160 PSC patients from Norway and the UK compared with 145 ethnically matched controls. IL-10 −627 genotypes were studied by PCR in 90 PSC patients compared with 84 ethnically matched controls. RESULTS A total of 16% of Norwegian PSC patients and 12% of British PSC patients were homozygous for the TNF2 allele compared with 3% and 6% of respective controls. The TNF2 allele was present in 60% of PSC patients versus 30% of controls (ORcombined data=3.2 (95% confidence intervals (CI) 1.8–4.5); pcorr=10−5). The association between the TNF2 allele and susceptibility to PSC was independent of the presence of concurrent inflammatory bowel disease (IBD) in the PSC patients; 61% of PSC patients without IBD had TNF2 compared with 30% of controls (ORcombined data=3.2 (95% CI 1.2–9.0); pcorr=0.006 ). There was no difference in the −627 IL-10 polymorphism distributions between patients and controls in either population. The increase in TNF2 allele in PSC patients only occurs in the presence of DRB1*0301 (DR3) and B8. In the combined population data, DRB1*0301 showed a stronger association with susceptibility to PSC than both the TNF2 and B8 alleles (ORcombined data=3.8, pcorr=10−6 v ORcombined data=3.2, pcorr=10−5 vORcombined data =3.41, pcorr=10−4, respectively). CONCLUSIONS This study identified a significant association between possession of the TNF2 allele, a G→A substitution at position −308 in the TNF-α promoter, and susceptibility to PSC. This association was secondary to the association of PSC with the A1-B8-DRB1*0301-DQA1*0501-DQB1*0201 haplotype. No association was found between the IL-10 −627 promoter polymorphism and PSC

    The comparative evaluation of ERTS-1 imagery for resource inventory in land use planning

    Get PDF
    The author has identified the following significant results. Multidiscipline team interpretation and mapping of resources for Crook County is complete on 1:250,000 scale enlargements of ERTS imagery and 1:120,000 hi-flight photography. Maps of geology, soils, vegetation-land use and land resources units were interpreted to show limitations, suitabilities, and geologic hazards for land use planning. Mapping of lineaments and structures from ERTS imagery has shown a number of features not previously mapped in Oregon. A multistage timber inventory of Ochoco National Forest was made, using ERTS images as the first stage. Inventory of forest clear-cutting practices was successfully demonstrated with color composites. Soil tonal differences in fallow fields correspond with major soil boundaries in loess-mantled terrain. A digital classification system used for discriminating natural vegetation and geologic material classes was successful in separating most major classes around Newberry Caldera, Mt. Washington, and Big Summit Prairie

    How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter

    Get PDF
    Carbon (C) in soils persists on a range of timescales depending on physical, chemical, and biological processes that interact with soil organic matter (SOM) and affect its rate of decomposition. Together these processes determine the age distribution of soil C. Most attempts to measure this age distribution have relied on operationally defined fractions using properties like density, aggregate stability, solubility, or chemical reactivity. Recently, thermal fractionation, which relies on the activation energy needed to combust SOM, has shown promise for separating young from old C by applying increasing heat to decompose SOM. Here, we investigated radiocarbon (C-14) and C-13 of C released during thermal fractionation to link activation energy to the age distribution of C in bulk soil and components previously separated by density and chemical properties. While physically and chemically isolated fractions had very distinct mean C-14 values, they contributed C across the full temperature range during thermal analysis. Thus, each thermal fraction collected during combustion of bulk soil integrates contributions from younger and older C derived from components having different physical and chemical properties but the same activation energy. Bulk soil and all density and chemical fractions released progressively older and more C-13-enriched C with increasing activation energy, indicating that each operationally defined fraction itself was not homogeneous but contained a mix of C with different ages and degrees of microbial processing. Overall, we found that defining the full age distribution of C in bulk soil is best quantified by first separating particulate C prior to thermal fractionation of mineral-associated SOM. For the Podzol analyzed here, thermal fractions confirmed that similar to 95 % of the mineral-associated organic matter (MOM) had a relatively narrow C-14 distribution, while 5 % was very low in C-14 and likely reflected C from the < 2 mm parent shale material in the soil matrix. After first removing particulate C using density or size separation, thermal fractionation can provide a rapid technique to study the age structure of MOM and how it is influenced by different OM-mineral interactions
    corecore