1,197 research outputs found

    PR interval duration is associated with the presence of white matter hyperintensities: Insights from the epidemiologic LIFE-Adult Study

    Get PDF
    Background: PR interval prolongation is a preliminary stage of atrial cardiomyopathy which is considered as an intermediate phenotype for atrial fibrillation (AF). AF is a known risk factor for cerebrovascular adverse outcomes including stroke. Cerebral ischemia is one cause of white matter hyperintensities (WMHs), and cognitive dysfunction. Aim: To analyze the relationship between PR interval and WMHs. Materials and methods: We performed a cross-sectional analysis with individuals from the LIFE-Adult-Study (a population-based cohort study of randomly selected individuals from Leipzig, Germany) with available brain MRI and ECG. The Fazekas stages were used to quantify WMHs (0 = none; 1 = punctate foci; 2 = beginning confluence; 3 = large confluent areas). Stages 2-3 were defined as advanced WMHs. The PR interval was measured from resting 12-lead ECG. PR duration >200ms was defined as PR interval prolongation. We used a binary logistic regression for statistical analysis. We examined the relationship between MRI and ECG measures and adjusted them for clinical risk factors. Results: We included 2464 individuals (age 59Ā±15 years, 47% women) into analyses. The median PR interval was 160ms (interquartile range 143-179), and 319 (13%) individuals with advanced WMHs, were significantly older, had more cardiovascular comorbidities and risk factors compared to individuals without WMHs (all p Conclusion: PR interval duration is associated with advanced WMHs beside advanced age, hypertension, and history of stroke. Further research is needed to determine whether changes in PR interval indices are clinically relevant for changes in WMHs

    Increased serum NSE and S100B indicate neuronal and glial alterations in subjects under 71 years with mild neurocognitive disorder/mild cognitive impairment

    Get PDF
    Background: Mild cognitive impairment (MCI) is considered a pre-stage of different dementia syndromes. Despite diagnostic criteria refined by DSM-5 and a new term for MCI - "mild neurocognitive disorder" (mild NCD) - this diagnosis is still based on clinical criteria.Methods: To link mild NCD to the underlying pathophysiology we assessed the degree of white matter hyperintensities (WMH) in the brain and peripheral biomarkers for neuronal integrity (neuron-specific enolase, NSE), plasticity (brain-derived neurotrophic factor, BDNF), and glial function (S100B) in 158 community-dwelling subjects with mild NCD and 82 healthy controls. All participants (63-79 years old) were selected from the Leipzig-population-based study of adults (LIFE).Results: Serum S100B levels were increased in mild NCD in comparison to controls (p = 0.007). Serum NSE levels were also increased but remained non-significant after Bonferroni-Holm correction (p = 0.04). Furthermore, age by group interaction was significant for S100B. In an age-stratified sub-analysis, NSE and S100B were higher in younger subjects with mild NCD below 71 years of age. Some effects were inconsistent after controlling for potentially confounding factors. The discriminatory power of the two biomarkers NSE and S100B was insufficient to establish a pathologic threshold for mild NCD. In subjects with mild NCD, WMH load correlated with serum NSE levels (r = 0.20, p = 0.01), independently of age.Conclusion: Our findings might indicate the presence of neuronal (NSE) and glial (S100B) injury in mild NCD. Future studies need to investigate whether younger subjects with mild NCD with increased biomarker levels are at risk of developing major NCD

    Executive deficits are related to the inferior frontal junction in early dementia

    Get PDF
    Executive functions describe a wide variety of higher order cognitive processes that allow the flexible modification of thought and behaviour in response to changing cognitive or environmental contexts. Their impairment is common in neurodegenerative disorders. Executive deficits negatively affect everyday activities and hamper the ability to cope with other deficits, such as memory impairment in Alzheimer's disease or behavioural disorders in frontotemporal lobar degeneration. Our study aimed to characterize the neural correlates of executive functions by relating respective deficits to regional hypometabolism in early dementia. Executive functions were assessed with two classical tests, the Stroop and semantic fluency test and various subtests of the behavioural assessment of the dysexecutive syndrome test battery capturing essential aspects of executive abilities relevant to daily living. Impairments in executive functions were correlated with reductions in brain glucose utilization as measured by [18F]fluorodeoxyglucose positron emission tomography and analysed voxelwise using statistical parametric mapping in 54 subjects with early dementia, mainly Alzheimer's disease and frontotemporal lobar degeneration, and its prodromal stages: subjective and mild cognitive impairment. Although the analysis revealed task-specific frontoparietal networks, it consistently showed that hypometabolism in one region in the left lateral prefrontal cortexā€”the inferior frontal junction areaā€”was related to performance in the various neuropsychological tests. This brain region has recently been related to the three component processes of cognitive controlā€”working memory, task switching and inhibitory control. Group comparisons additionally showed hypometabolism in this area in Alzheimer's disease and frontotemporal lobar degeneration. Our study underlines the importance of the inferior frontal junction area for cognitive control in general and for executive deficits in early dementia

    Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS

    Get PDF
    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds

    Resting-state alterations in behavioral variant frontotemporal dementia are related to the distribution of monoamine and GABA neurotransmitter systems

    Get PDF
    Aside to clinical changes, behavioral variant frontotemporal dementia (bvFTD) is characterized by progressive structural and functional alterations in frontal and temporal regions. We examined if there is a selective vulnerability of specific neurotransmitter systems in bvFTD by evaluating the link between disease-related functional alterations and the spatial distribution of specific neurotransmitter systems and their underlying gene expression levels.Maps of fractional amplitude of low frequency fluctuations (fALFF) were derived as a measure of local activity from resting-state functional magnetic resonance imaging for 52 bvFTD patients (mean age = 61.5 Ā± 10.0 years; 14 female) and 22 healthy controls (HC) (mean age = 63.6 Ā± 11.9 years; 13 female). We tested if alterations of fALFF in patients co-localize with the non-pathological distribution of specific neurotransmitter systems and their coding mRNA gene expression. Further, we evaluated if the strength of co-localization is associated with the observed clinical symptoms.Patients displayed significantly reduced fALFF in fronto-temporal and fronto-parietal regions. These alterations co-localized with the distribution of serotonin (5-HT1b, 5-HT2a), dopamine (D2), and Ī³-aminobutyric acid (GABAa) receptors, the norepinephrine transporter (NET), and their encoding mRNA gene expression. The strength of co-localization with D2 and NET was associated with cognitive symptoms and disease severity of bvFTD.Local brain functional activity reductions in bvFTD followed the distribution of specific neurotransmitter systems indicating a selective vulnerability. These findings provide novel insight into the disease mechanisms underlying functional alterations. Our data-driven method opens the road to generate new hypotheses for pharmacological interventions in neurodegenerative diseases even beyond bvFTD

    The metaphysics of mental files

    Get PDF
    There is much to be said for a diachronic or interpersonal individuation of singular modes of presentation (MOPs) in terms of a criterion of epistemic transparency between thought tokens. This way of individuating MOPs has been discussed recently within the mental files framework, though the issues discussed here arise for all theories that individuate MOPs in terms of relations among tokens. All such theories face objections concerning apparent failures of the transitivity of the ā€˜same MOPā€™ relation. For mental files, these transitivity failures most obviously occur because mental files can merge or undergo fission. In this paper I argue that this problem is easily resolved once mental files are properly construed as continuants, whose metaphysics is analogous to that of persons or physical objects. All continuants can undergo fission or fusion, leading to similar transitivity problems, but there are well-established theories of persistence that accommodate this. I suggest that, in particular, the stage theory best suits the purposes of a continuant theory of MOPs.PostprintPeer reviewe

    Modulatory effects of levodopa on cerebellar connectivity in Parkinsonā€™s disease

    Get PDF
    Levodopa has been the mainstay of symptomatic therapy for Parkinsonā€™s disease (PD) for the last five decades. However, it is associated with the development of motor fluctuations and dyskinesia, in particular after several years of treatment. The aim of this study was to shed light on the acute brain functional reorganization in response to a single levodopa dose. Functional magnetic resonance imaging (fMRI) was performed after an overnight withdrawal of dopaminergic treatment and 1 h after a single dose of 250 mg levodopa in a group of 24 PD patients. Eigenvector centrality was calculated in both treatment states using resting-state fMRI. This offers a new data-driven and parameter-free approach, similar to Googleā€™s PageRank algorithm, revealing brain connectivity alterations due to the effect of levodopa treatment. In all PD patients, levodopa treatment led to an improvement of clinical symptoms as measured with the Unified Parkinsonā€™s Disease Rating Scale motor score (UPDRS-III). This therapeutic effect was accompanied with a major connectivity increase between cerebellar brain regions and subcortical areas of the motor system such as the thalamus, putamen, globus pallidus, and brainstem. The degree of interconnectedness of cerebellar regions correlated with the improvement of clinical symptoms due to the administration of levodopa. We observed significant functional cerebellar connectivity reorganization immediately after a single levodopa dose in PD patients. Enhanced general connectivity (eigenvector centrality) was associated with better motor performance as assessed by UPDRS-III score. This underlines the importance of considering cerebellar networks as therapeutic targets in PD
    • ā€¦
    corecore