19,019 research outputs found

    Solution of nonlinear algebraic equations characteristic of filter circuits Summary technical report

    Get PDF
    Digital computer program developed for solving nonlinear algebraic equations characteristic of filter circuit

    Chromosomal in situ suppression hybridization of human gonosomes and autosomes and its use in clinical cytogenetics

    Get PDF
    DNA libraries from sorted human gonosomes were used selectively to stain the X and Y chromosomes in normal and aberrant cultured human cells by chromosomal in situ suppression (CISS-) hybridization. The entire X chromosome was stained in metaphase spreads. Interphase chromosome domains of both the active and inactive X were clearly delineated. CISS-hybridization of the Y chromosome resulted in the specific decoration of the euchromatic part (Ypter-q11), whereas the heterochromatic part (Yq12) remained unlabeled. The stained part of the Y chromosome formed a compact domain in interphase nuclei. This approach was applied to amniotic fluid cells containing a ring chromosome of unknown origin (47,XY; +r). The ring chromosome was not stained by library probes from the gonosomes, thereby suggesting its autosomal origin. The sensitivity of CISS-hybridization was demonstrated by the detection of small translocations and fragments in human lymphocyte metaphase spreads after irradiation with 60Co-gamma-rays. Lymphocyte cultures from two XX-males were investigated by CISS-hybridization with Y-library probes. In both cases, metaphase spreads demonstrated a translocation of Yp-material to the short arm of an X chromosome. The translocated Y-material could also be demonstrated directly in interphase nuclei. CISS-hybridization of autosomes 7 and 13 was used for prenatal diagnosis in a case with a known balanced translocation t(7;13) in the father. The same translocation was observed in amniotic fluid cells from the fetus. Specific staining of the chromosomes involved in such translocations will be particularly important, in the future, in cases that cannot be solved reliably by conventional chromosome banding alone

    Probabilistic models to describe the dynamics of migrating microbial communities

    Get PDF
    In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported

    Evidence for magnetic clusters in Ni1x_{1-x}Vx_{x} close to the quantum critical concentration

    Get PDF
    The d-metal alloy Ni1x_{1-x}Vx_{x} undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration xx is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration xc11.6x_c \approx11.6% at which the onset of ferromagnetic order is suppressed to zero temperature. Below xcx_c, the muon data reveal a broad magnetic field distribution indicative of long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase boundary in this disordered itinerant system as an important generic ingredient of a disordered quantum phase transition. In contrast, the temperature dependence of the magnetic susceptibility above xcx_c is best described in terms of a magnetic quantum Griffiths phase with a power-law distribution of fluctuation rates of dynamic magnetic clusters. At the lowest temperatures, the onset of a short-range ordered cluster-glass phase is recognized by an increase in the muon depolarization in transverse fields and maxima in ac-susceptibility.Comment: 6 pages, 5 figures, submitted to Proceedings of SCES 201

    Molecular Model of the Contractile Ring

    Full text link
    We present a model for the actin contractile ring of adherent animal cells. The model suggests that the actin concentration within the ring and consequently the power that the ring exerts both increase during contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout cytokinesis, and the dominance of viscous dissipation in the dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic cytokinesis") follows from a limitation on the actin density. The model is consistent with a wide range of measurements of the midzone of dividing animal cells.Comment: PACS numbers: 87.16.Ka, 87.16.Ac http://www.ncbi.nlm.nih.gov/pubmed/16197254 http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2005.pd

    Evidence for multiple structural genes for the γ chain of human fetal hemoglobin

    Get PDF
    A sequence with a specific residue at each position was proposed for the γ chain of human fetal hemoglobin by Schroeder et al. (1) after a study in which hemoglobin from a number of individual infants was used. We have now examined in part the fetal hemoglobin components of 17 additional infants and have observed that position 136 of the γ chain may be occupied not only by a glycyl residue, as previously reported, but also by an alanyl residue
    corecore