BOLUTION OF NONLINEAR ALGEBRAIC EGUATIONS CHARACTERISTIC OF FILTER CIRCUITS

BUMMARY TECHNICAL REPORT

Prppod for:
 MAMOMAL AEReMAUTICS AMD SPAEE MDMIVISTMA GEDRGE C MARSHALL SPACE FLICHT CEHTER Aero-Astrodynamics Laberatory

SOLUTION OF NONLINE AR ALGE BRAIC EQUATIONS CHARACTERISTIC OF FILTER CIRCUITS

SUMMARY TECHNICAL REPORT

CONTRACT NAS8-20183

Research \& Analysis Section Tech Memo No. 196
by
Frank B. Tatom
Theodore J. Thomas
Robert G. Schroeder

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER

AERO-AS TROD YNAMICS LABORATORY

FOREWORD

The research effort described in this report was performed by Northrop Space Laboratories, Huntsville Department, for the Aero-Astrodynamics Laboratory of George C. Marshall Space Flight Center under Contract NAS8-20183. Mr. Mario Rheinfurth, Chief of Control Theory Branch, Dynamics and Flight Mechanics Division, acted as the NASA Contracting Officer's Representative for the study.

SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS CHARACTERISTIC OF FILTER CIRCUITS

By
Frank B. Tatom
Theodore J. Thomas
Robert G. Schroeder
Northrop Space Laboratories
Huntsville, Alabama

ABSTRACT

$$
11728
$$

This report presents the culmination of a research effort by the Huntsville Department of Northrop Space Laboratories concerned with the development of a digital computer program for use in filter circuit analysis problems. The program is designed for use in obtaining roots to sets of nonlinear algebraic equations which are characteristic of filter circuits. The program utilizes a combination of Kizner's method and the Freudenstein-Roth technique in solving for the roots to the equations. After obtaining the roots, the program selects standard circuit components whose values approximately match the actual roots, determines the transfer function characteristic of the circuit elements selected, and finally generates frequency response curves for this transfer function. Results of computer runs involving sets of equations in six, thirteen, and fifteen unknowns are discussed.

The report indicates that the program developed is especially suitable to filter circuit analysis problem for which the corresponding set of algebraic equations is not overly ill-conditioned. If the set of equations involved is ill-conditioned, there is difficulty in obtaining a solution and the program may fail to converge.

Certain possibilities concerning the extension of the program to algebraic equations in general are discussed. A brief description of several engineering problems involving simultaneous nonlinear differential equations is also presented, based on the idea that efficient numerical processes for simultaneous solving nonlinear algebraic equations may be useful in the numerical solution of sets of nonlinear differential equations.

Section
LIST OF FIGURES vii
LIST OF TABLES vili
NOMENC LATURE ix
SUMMARY xiii
I INTRODUCTION 1-1
II TECHNICAL DISCUSSION 2-1
2.1 STATEMENT OF PROBLEM. 2-1
2.2 BACKGROUND 2-1
2.2.1 Newton-Raphson Method 2-8
2.2.2 Freudenstein-Roth Technique 2-10
2.2.3 Nonlinear Dependent on Ill-Conditioned Systems 2-12
2.3 IMPROVED NUMERICAL METHODS OF SOLUTION 2-15
2.3.1 Kizner's Method. 2-15
2.3.2 Root Prediction. 2-22
2.4 COMPONENT SEIECTION 2-23
2.5 FREQUENCY RES PONSE 2-24
2.6 DIGITAL COMPUTER CONSIDERATIONS 2-27
2.7 APPLICATION OF NUMERICAL TECHNIQUES TO NONLINEAR DIFFERENTIAL EQUATIONS 2-27
II IPROGRAM DESCRIPTION.3-1
3.1 BAS IC FEATURES 3-1
3.2 COMPUTER INPUTS AND OUTPUTS 3-16
3.2.1 Input Symbols 3-16
3.2.2 Input Units. 3-19
3.2.3 Input List and Format. 3-20
3.2.4 Output Nomenclature. 3-21

TABLE OF CONTENTS (Concluded)

Section	Title
IV	DISCUSSION OF RESULTS.
	4.1 PROGRAM REFINEMENTS ACHI
	4.2 APPLICATION TO ACTUAL PR
	4.2.1 Equations in Six
	4.2.2 Equations in Thir
	4.2.3 Equations in Fift
	4.3 APPLICATION TO NONLINEAR
V	CONCLUSIONS AND RECOMMENDATIO
VI	REFERENCES
	APPENDIX A - SOURCE LISTING O
	APPENDIX B - SUBROUTINES.
	APPENDIX C - OVERLAY FEATURE
	APPENDIX D - FILTER CIRCUIT W
	APPENDIX E - FILTER CIRCUIT W
	APPENDIX F - FILTER CIRCUIT W

LIST OF FIGURES

Figure No.	Title	Page
2-1	TYPICAL ELEGTRONIC FILTER CIRCUIT	2-3
2-2	VARIATION OF ROOT X_{n} WITH FREUDENSTEIN-ROTH STEP	2-24
3-1a	MAIN PROGRAM FOR SOLUTION OF NONLINEAR ALGEBRA IC EQUATIONS	3-2
3-1b	MA IN PROGRAM (Continued)	3-3
3-1c	SUBROUTINE READ K AND INTEGER FUNCTION K	3-4
3-1d	SUBROUTINE EQPRT	3-5
3-1e	SUBROUTINE CMPSEL	3-6
3-1f	SUBROUTINE PTMCH	3-7
3-18	SUBROUTINE FCON	3-8
3-1h	SUBROUTINE SIMEQ	3-9
3-1i	SUBROUTINE RUNKA	3-10
3-1j	SUBROUTINE ESTIM	3-11
3-1k	SUBROUTINE PRTR	3-12
3-11	SUBROUTINE ROOTER	3-13
C-1	OVERLAY STRUCTURE OF PROGRAM	C-2
D-1	AMPLITUDE VERSUS FREQUENCY, SIX EQUATIONS, SIX UNKNOWNS, CASE \#1	D-22
D-2	PHASE SHIFT VERSUS FREQUENCY, SIX EQUATIONS, SIX UNKNOWNS, CASE 非1	D-23
D-3	GAIN VERSUS FREQUENCY, SIX EQUATIONS, SIX UNKNOWNS, CASE 非1	D-24
E-1	AMPLITUDE VERSUS FREQUENCY, THIRTEEN EQUATIONS, THIRTEEN UNKNOWNS	E-29
E-2	PHASE SHIFT VERSUS FREQUENCY, THIRTEEN EQUATIONS, THIRTEEN UNKNOWNS	E-30
E-3	GA IN VERSUS FREQUENCY, THIRTEEN EQUATIONS, THIRTEEN UNKNOWNS	E-31
F-1	CIRCUIT DIAGRAM	F-2

LIST OF TABLES

Table No. Title Page
2-1 RANGE OF VALUES FOR FILTER CIRCUIT COMPONENTS 2-6
2-2 COMPONENT SELECTION VALUES 2-26
F-1 COMPONENT VALUES FOR THE FIFTEEN-ELEMENT CIRCUIT F-1

English

Symbol

G

H

Definition

The coefficient of a specified term in the $j^{\text {th }}$ equation which is systematically reduced to unity during the Freudenstein-Roth technique.

The $m^{\text {th }}$ value of the coefficient in the $j^{\text {th }}$ equation.
The $n^{\text {th }}$ capacitance, expressed in farads.
The degree of the $j^{\text {th }}$ equation.
The $q^{\text {th }}$ coefficient in series in denominator of transfer function. The constant term of the $j^{\text {th }}$ equation.

The $m^{\text {th }}$ value of the constant term of the $j^{\text {th }}$ equation in the Freudenstein-Roth technique.

Number of terms in the numerator of the transfer function.

Number of terms in the denominator of the transfer function.

A complex quantity corresponding to s, the Laplacian variable; an imaginary representation of the angular frequency ω.

A constant relating the inductive resistance to the induction of the $\mathrm{n}^{\text {th }}$ inductance.

The first change in the variable x in the $m^{\text {th }}$ application of the single variable Runge-Kutta integration.

The second change in x in the $m^{\text {th }}$ application of the single variable Runge-Kutta integration.

Symbol
$k_{3}^{(m)}$
$k_{4}^{(m)}$

$k_{n 2}^{(m)}$

(m) $k_{n 4}$
L_{n}
$n(j, i, k)$
N_{q}
p
Q_{j}
$Q_{j(\max)}$
$Q_{1 \text { imit }}$
n3

The third change in x in the $m^{\text {th }}$ application of the single variable Runge-Kutta integration

The fourth change in x in the $m^{\text {th }}$ application of the single variable Runge-Kutta integration.
$k_{n l}(m) \quad$ The first change in the variable X_{n} in the $m^{\text {th }}$ application of the multi-variable Runge-Kutta integration.

The second change in X_{n} in the $m^{\text {th }}$ application of Runge-Kutta integration.

The fourth change in X_{n} in the $m^{\text {th }}$ application of Runge-Kutta integration.

The $n^{\text {th }}$ inductance, expressed in henries.
The subscript for the $k^{\text {th }}$ factor in the $i^{\text {th }}$ term of the $j^{\text {th }}$ equation. The $q^{\text {th }}$ coefficient in series in numerator of transfer function. The number of unknowns.

The number of terms in the $j^{\text {th }}$ equations.

The number of terms in the longest equation.

The number of applications of the coefficient method minus 1.

Definition

R_{n}
$R^{(b)}$
n
$R_{n}(s)$
s

T
u
v
v
$v_{\text {1imit }}$
w
x
x_{n}
$x_{n}{ }^{(m)}$
$\left[x_{n}\right]_{\text {step }}$

The $n^{\text {th }}$ resistance, expressed in ohms.
Natural resistance for the $n^{\text {th }}$ inductance ($m=1,2, \ldots v$) expressed in ohms.

Surplus resistance in the $n^{\text {th }}$ resistance $R_{n}(m=1,2, \ldots v)$ expressed in ohms.

Laplace transform variable.

Transfer function.
The $i^{\text {th }}$ term of the $j^{\text {th }}$ equation.
The number of resistances in the circuit.
Number of inductances in the circuit.
The selected number of iterative steps in the Freudenstein-Roth technique.

Maximum number of steps in the Freudenstein-Roth technique.
Number of capacitances in the circuit.
The independent variable of the single variable application of
Kizner's method.
The $n^{\text {th }}$ unknown, defined by equation (2-13).
The $m^{\text {th }}$ estimate of X_{n}.
The root X_{n} at the $m^{\text {th }}$ step of the Freudenstein-Roth process.

NOMENCLATURE (Concluded)

Symbol

Definition

Y_{n}
$Y_{n}^{(b)}$
$Y_{n}^{(s)}$
The $n^{\text {th }}$ circuit element (resistance, inductance, or reciprocal of capacitance) of unknown magnitude.
Y_{n}
The natural resistance of the inductor.

Surplus resistance in series with inductor.

Greek

A non-trivial equation involving the functions ϕ_{j}. Equal to zero if the equations are dependent.
$\Delta X_{n}(m)$
$\varepsilon_{j}^{(m)}$
$\varepsilon_{\ell}^{(m)}$
ζ_{n}
$\left(X_{n}^{(m+1)}-X_{n}^{(m)}\right)$
The $m^{\text {th }}$ value of the $j^{\text {th }}$ residual.
The reference residual at the $\mathrm{m}^{\text {th }}$ step.

The derivative of an independent variable with respect to a function, as shown in equation (2-46).

In a one variable function, the inverse of the derivative of the function with respect to its variable, as in equation (2-32).

The $j^{\text {th }}$ function of the form of equation (2-14).
$\phi_{j}\left(X_{1}^{(m)}, X_{2}^{(m)} \ldots X_{p}^{(m)}\right)$
The dependent portion of the term ϕ_{j} in ill-conditioned systems.
The independent portion of the term ϕ_{j} in ill-conditioned systems. The $j^{\text {th }}$ function of the form of equation (2-2).

SUMMARY

A research effort by Northrop Space Laboratories/Huntsville Department has been carried out to develop a general digital computer program which is capable of solving, by numerical techniques, sets of simultaneous nonlinear algebraic equations which arise in problems involving filter circuit analysis, and presenting the solution in a form useful to filter circuit designers.

The Freudenstein-Roth technique modified to incorporate Kizner's method was found to be the most promising numerical technique. A technique was developed whereby the exact roots to the equation could be approximately matched by standard circuit components. The frequency response curves for the transfer function resulting from the approximate matching could then be plotted.

The processes described were incorporated into a digital computer program which was tested on sets of equations in six, thirteen, and fifteen unknowns. The program successfully solved the equations in six and thirteen unknowns including the selection of components to match roots, and the generation of frequency response curves. Only limited success was achieved in solving the set of equations in fifteen unknowns. However, all available evidence strongly supports the hypothesis that the latter set of equations is quite ill-conditioned.

The conclusion was reached that the program, utilizing the numerical techniques previously mentioned, is a useful tool in problems of filter circuit analysis so long as the algebraic equations involved are not overly ill-conditioned. The numerical techniques developed, along with all other available numerical techniques, encounter serious difficulties with ill-conditioned sets of equations.

Although the program is specifically designed to handle equations associated with filter circuit analysis, only minor modifications would enable it to be applied to other classes of simultaneous nonlinear equations.

SECTION I

INTRODUCTION

In filter circuit analysis, problems arise which involve the simultaneous solution of nonlinear algebraic equations. Solution of such sets of equations by hand can be extremely laborious, and, if large number of equations are involved, hand calculations become impractical. The use of digital computers, coupled with appropriate numerical techniques, is a logical approach to such problems. In developing the necessary digital computer program, consideration must be given to the fact that many different filter circuits exist, and the set of equations which correspond to one filter circuit will not generally correspond to other filter circuits. Therefore the most desirable program is one which is sufficiently general to solve a large number of different sets of filter circuit equations. In addition, it is highly desirable to present the solutions in a form that is most useful to filter circuit designers. For this reason, the program should incorporate routines to calculate attenuation and phase shift vs frequency plots on the basis of the solutions obtained.

The Huntsville Department of Northrop Space Laboratories has been engaged in the development of a digital computer program capable of solving sets of nonlinear algebraic equations associated with filter circuit analysis and presenting the results in a form useful to filter circuit designers. Initial research efforts under this contract were reported in reference 1.

Section II of this report provides a detailed technical discussion of the problem involved, the numerical techniques used, and digital computer considerations. A discussion of the computer program is presented in Section III. A discussion of the results obtained is provided in Section IV. Conclusions
and recommendations are presented in Section V. Several appendixes are provided to augment the main body of the report. Throughout the report, the nomenclature used is generally the same as that employed in reference 1 .

TECHNICAL DISCUSSION

2.1 STATEMENT OF PROBLEM

A digital computer program was developed under Contract NAS8-20183 which, by numerical procedure, is capable of solving sets of nonlinear algebraic equations for positive roots within a prescribed range of values. The unknowns in the equations are the values of resistances, inductances, and reciprocals of capacitances which occur in a filter circuit. Each equation consists of a sum of terms with each term consisting of the product of several unknowns and with the coefficient of each term equal to unity.

The research effort has been extended with the objective of allowing several refinements and additions to the existing computer program. The refinements under consideration should both improve convergence of the numerical techniques and shorten running time.

The need for additions to the program already developed results from the fact that the roots obtained in solving the equations are generally not equal to standard values of off-the-shelf electrical components, ordinarily used in actual filter circuits. Thus an actual filter circuit composed of standard off-the-shelf components, which most nearly match the values indicated by the equation's roots, would only approximate the theoretical circuit. The determination of the effect of such an approximation is important to circuit designers.

2.2 BACKGROUND

This section reviews portions of the technical sections of the previous report (ref. 1). Its purpose is to provide completeness and continuity to the present report.

Transfer functions associated with electronic filter circuits, such as that shown in Figure 2-1, have the general form

$$
\begin{equation*}
T=\sum_{q=1}^{G} N_{q-1} s^{q-1} / \sum_{q=1}^{H} D_{q-1} s^{q-1} \tag{2-1}
\end{equation*}
$$

where
$T=$ transfer function
$\mathrm{G}=$ number of terms in the numerator
$N_{q}=q^{\text {th }}$ coefficient of the series in the numerator
$s=$ Laplace transform variable $=$ complex representation of angular velocity ($j \omega$)
$H=$ number of terms in the denominator
$D_{q}=q^{\text {th }}$ coefficient of the series in the denominator.

Figure 2-1. TYPICAL ELECTRONIC FILTER CIRCUIT

Generally, the numeric values of the coefficients, N_{q} and D_{q} are obtained by curve fitting. Based on circuit analysis, a set of algebraic equations containing the unknown circuit elements can be derived by means of a flow graph (ref. 2) or topology (ref. 3).

The number of these equations may be less than, equal to, or greater than the number of unknowns. Although not significant from the standpoint of filter circuit theory, this situation can present difficulties to the solution of such equations.

If there are less equations than unknowns, additional equations must be generated until there are as many equations as unknowns to form a solvable set. These additional equations may be generated by assigning values to the required number of unknowns. The only physical restriction is that the resulting equations should possess a set of real, positive roots.

If there are as many equations as unknowns, the equations possess a solution, if they are independent. If they constitute a dependent set of equations, discrete sets of roots do not exist. While it is true that a dependent set of equations may possess solutions, such solutions are not obtainable by general mathematical means.

If there are more equations than unknowns, a serious uncertainty exists. There is no a priori reason to believe that any set with as many equations as unknowns, taken from the available equations, will form an independent, hence uniquely solvable, set of equations. If such a case arises in connection with physical problems, some auxiliary means is necessary to generate a set of independent equations. The mathematical difficulties associated with dependent and nearly dependent, or ill-conditioned, sets of equations is discussed more fully in subsection 2.2.3.

The equations resulting from circuit analysis can be written as

$$
\begin{equation*}
\psi_{j}\left(Y_{1}, Y_{2}, \ldots, Y_{p}\right)=F_{j} \quad(j=1,2, \ldots, p) \tag{2-2}
\end{equation*}
$$

where

$$
\mathrm{p}=\text { the number of unknowns }
$$

and

$$
\begin{aligned}
& F_{j}=\left\{\begin{array}{l}
N_{j-1}(j=1,2, \ldots G) \\
D_{j-G-1}(j=G+1, \ldots G+H)
\end{array}\right. \\
& Y_{n}-\text { circult elements (resistances, inductances, and reciprocals } \\
& \text { of capacitances) of unknown magnitude }
\end{aligned}
$$

If the number of unknowns, p, is not equal to the number of coefficients In the transfer function, $G+H$, then steps must be taken, as already outlined, to generate or delete equations. Thus for each coefficient N_{q} or D_{q} there is an equation in which the coefficient appears as a constant, F_{j}. The reciprocal of capacitance is used because the resulting form of ψ_{j} is easier to work with.

These functions ψ_{j} consist of a sum of terms of the form

$$
\begin{equation*}
\psi_{j}=\sum_{i=1}^{Q_{j}} t_{j i} \tag{2-3}
\end{equation*}
$$

where the term $t_{j i}$ has the form

$$
\begin{equation*}
t_{j i}=\prod_{k=1}^{d_{j}} Y_{n(j, i, k)} \tag{2-4}
\end{equation*}
$$

The expression $n(j, i, k)$ denotes a subscripted subscript and specifies the subscript of an unknown corresponding to a given \mathbf{j} (equation), i (term), and k (factor). For any equation, all terms of the equation are of the same degree, d_{j}, but d_{j} is not necessarily the same from equation to equation.

In order to establish an orderly relationship between Y_{n} and the resistances, capacitances, and conductances, it is convenient to use the following arrangement:

$$
\begin{align*}
& Y_{n}=R_{n}(n=1,2, \ldots, u) \\
& Y_{n}=L_{n+1-u}(n=u+1, \ldots, u+v) \tag{2-5}\\
& Y_{n}=\frac{1}{C_{n+1-u-v}} \quad(n=u+v+1, \ldots, u+v+w)
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{R}_{\mathrm{n}} & =\text { the } \mathrm{n}^{\mathrm{th}} \text { resistance } \\
\mathrm{L}_{\mathrm{n}} & =\text { the } \mathrm{n}^{\text {th }} \text { inductance } \\
\mathrm{C}_{\mathrm{n}} & =\text { the } \mathrm{n}^{\mathrm{th}} \text { capacitance } \\
\mathrm{u} & =\text { number of resistances in the circuit } \\
\mathrm{v} & =\text { number of inductances in the circuit } \\
\mathrm{w} & =\text { number of capacitances in the circuit. }
\end{aligned}
$$

Because the circuit element values are positive real numbers, the desired roots must also be in this category. For practical purposes there exist maximum and minimum values for the roots, as indicated in Table 2-1.

Table 2-1.
RANGE OF VALUES FOR FILTER CIRCUIT COMPONENTS

COMPONENT	MINIMUM	MAXIMUM
Resistor (ohms)	2.4×10^{-1}	2.2×10^{7}
Inductor (henrys)	5.0×10^{-5}	2.0×10^{3}
Capacitor (farads)	1.0×10^{-11}	1.5×10^{-1}

Because each inductance in a circuit also has a "built-in" or natural resistance associated with it in series, consideration must be given to the functional relationship between each inductance and its natural resistance. In formulating equation (2-2), these natural resistances are treated as portions of unknown resistances, but actually they are each dependent on a particular inductance. Thus, in the circuit these exists v resistances each of which contains a natural resistance. For ease in relating these resistances to the appropriate inductances it is convenient when numbering the circuit components to use the same numerical subscript for an inductance and the corresponding resistance. Thus R_{1} contains the natural resistance for L_{1}, R_{2} the natural resistance for L_{2}, etc. In general, based on the relationships provided in equations (2-5), the natural resistance for L_{n}, where

$$
\begin{equation*}
L_{\mathrm{n}}=Y_{\mathrm{u}+\mathrm{n}}(\mathrm{n}=1,2, \ldots, \mathrm{v}) \tag{2-6}
\end{equation*}
$$

would be found in R_{n}, where

$$
\begin{equation*}
R_{n}=Y_{n}(n=1,2, \ldots, v) \tag{2-7}
\end{equation*}
$$

With the numbering arrangement outlined, all resistances with subscripts equal to or less than v are composed of two parts. One part is the natural resistance, $R_{n}^{(b)}$, for an inductance and the second part is a "surplus" resistance, R_{n} (${ }^{(b)}$. Thus,

$$
\begin{equation*}
R_{n}=R_{n}^{(b)}+R_{n}^{(s)}(n=1,2, \ldots, v) \tag{2-8}
\end{equation*}
$$

or

$$
\begin{equation*}
Y_{n}=Y_{n}^{(b)}+Y_{n}^{(s)} \tag{2-9}
\end{equation*}
$$

The functional relationship between an inductance and its natural resistance is dependent on the electrical characteristics and physical dimensions of the wire which makes up the inductance. For practical purposes, however, a linear relationship between inductance and natural resistance appears satisfactory.

Thus,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{n}}^{(\mathrm{b})}=\mathrm{K}_{\mathrm{n}} \mathrm{~L}_{\mathrm{n}} \quad(\mathrm{n}=1,2, \ldots, \mathrm{v}) \tag{2-10}
\end{equation*}
$$

or

$$
\begin{equation*}
Y_{n}^{(b)}=K_{n} Y_{u+n} \quad(n=1,2, \ldots, v) \tag{2-11}
\end{equation*}
$$

where $K_{n}=a$ constant (normally taken as unity).

Thus, by substitution,

$$
\begin{equation*}
Y_{n}=Y_{n}^{(s)}+K_{n} Y_{u+n}(n=1,2, \ldots, v) \tag{2-12}
\end{equation*}
$$

From equation (2-12) it can be seen that for $n=1,2, \ldots, v, Y_{n}^{(s)}$ are the true independent variables instead of Y_{n}. To avoid unnecessary use of superscripts, while at the same time positively identifying the true independent unknowns, a change of variable is convenient. Thus by definition,

$$
X_{n}= \begin{cases}Y_{n}^{(s)} & (n=1,2, \ldots, v) \tag{2-13}\\ Y_{n} & (n=v+1, v+2, \ldots, p)\end{cases}
$$

All previously mentioned physical constraints for Y_{n} apply also to X_{n}. In terms of the new variables, X_{n}, equations (2-2) may be written

$$
\begin{equation*}
\phi_{j}\left(X_{1}, X_{2}, \ldots X_{n}, \ldots X_{p}\right)=F_{j} \quad(j=1,2, \ldots p) \tag{2-14}
\end{equation*}
$$

An examination of equations (2-14) reveals that while the form of functions has changed from ψ_{j} to ϕ_{j} the problem remains essentially the same.

As part of the original investigation, the Freudenstein-Roth technique (ref. 4) combined with the Newton-Raphson method was incorporated into a digital computer program designed to solve sets of equations of the type given by equation (2-14). In the subsections which follow, a description of these two numerical techniques is provided, along with a discussion of the difficulties generated by nonlinear dependent sets or ill-conditioned sets of equations.

2.2.1 Newton-Raphson Method

Probably the most widely used method for solving simultaneous nonlinear algebraic equations, as well as transcendental equations, is the Newton-Raphson method. The method is described in various numerical analysis texts (refs. 5 through 8) and only a brief description need be given here.

The Newton-Raphson method is a successive approximation technique. Based on an initial estimate of the unknowns, $X_{n}^{(0)}$, the values of $\phi_{j}^{(0)}$ are calculated and compared with the values F_{j}. The difference is the residual $\varepsilon_{j}{ }^{(0)}$. Thus

$$
\begin{equation*}
\varepsilon_{j}^{(o)}=\phi_{j}^{(0)}-F_{j} \tag{2-15}
\end{equation*}
$$

where

$$
\phi_{j}^{(0)}=\phi_{j}\left(X_{1}^{(0)}, X_{2}^{(0)}, \ldots, X_{p}^{(0)}\right)
$$

or, in general,

$$
\begin{equation*}
\varepsilon_{j}^{(m)}=\phi_{j}^{(m)}-F_{j} \tag{2-16}
\end{equation*}
$$

where

$$
\phi_{j}^{(m)}=\phi_{j}\left(X_{1}^{(m)}, x_{2}^{(m)}, \ldots, X_{p}^{(m)}\right)
$$

$$
X_{n}^{(m)}=m^{\text {th }} \text { estimate of } X_{n}
$$

Obviously, when the residuals are all simultaneously zero, a solution has been achieved. A first-order Taylor's series expansion is used to approximate the functions. Thus

$$
\begin{equation*}
\phi_{j} \stackrel{\approx}{=} \phi_{j}^{(0)}+\sum_{n=1}^{p} \frac{\partial \phi_{j}^{(0)}}{\partial X_{n}}\left[x_{n}^{(1)}-x_{n}^{(0)}\right] \tag{2-17}
\end{equation*}
$$

By definition

$$
\begin{equation*}
\Delta X_{n}^{(m)}=X_{n}^{(m+1)}-X_{n}^{(m)} \tag{2-18}
\end{equation*}
$$

By equation (2-14)

$$
\begin{equation*}
F_{j} \tilde{=} \phi_{j}(m)+\sum_{n=1}^{p} \frac{\partial \phi_{j}(m)}{\partial X_{n}} \Delta X_{n}(m) \tag{2-19}
\end{equation*}
$$

Based on the definition of the residual,

$$
\begin{equation*}
\varepsilon_{j}(0)=-\sum_{n=1}^{p} \frac{\partial \phi_{j}(0)}{\partial X_{n}} \Delta X_{n}^{(0)} \tag{2-20}
\end{equation*}
$$

or, in general,

$$
\begin{equation*}
\varepsilon_{j}(m)=-\sum_{n=1}^{p} \frac{\partial \phi_{j}(m)}{\partial X_{n}} \Delta X_{n}(m) \tag{2-21}
\end{equation*}
$$

Equation (2-21) represents a set of p linear equations, with the $\Delta X_{n}^{(m)}$ as the unknowns. This system of equations can be solved by the Gaussian method of pivotal condensation (ref. 9).

In actual practice, the repeated approximation of $X_{n}^{(m)}$ by solution of equation (2-21) for $\Delta X_{n}^{(m)}$ will result in a systematic reduction of the residuals toward zero, if convergence occurs. Normally, a solution is considered to have been obtained when all residuals have been reduced to some prescribed level.

2.2.2 Freudenstein-Roth Technique

In applying the Newton-Raphson method, convergence is not likely to occur unless the initial estimates of the roots are in the neighborhood of the actual values. Obviously, in many cases, the locations of such neighborhoods are unknown. Application of the Freudenstein-Roth technique (ref. 4) enables convergence even though the estimates are much further out than the Newton-Raphson technique alone would allow.

The first step in the Freudenstein-Roth technique involves assuming a set of initial values $X_{n}(0)$ for the roots. These initial values will in general not satisfy the original equations. However, one coefficient in each equation may be altered by increasing or decreasing its value so that the altered set of equations is satisfied by the original estimates of the roots. If the altered coefficients of the equations are changed slightly in the direction of their original values a new set of equations is generated which may be solvable by the Newton-Raphson method using the roots to the previous set of equations as initial estimates. The altered coefficients are then changed slightly further toward their original values and the resulting set of equations is again solved by the Newton-Raphson method, using the roots of the previous initial step as estimates. This stepwise process is repeated until the original equations are reproduced and solved. The solution of each intermediate set of equations completes what is termed, for convenience, a "Freudenstein-Roth step" or "step".

Two different methods of altering one coefficient in each equation have been used. For convenience, they are referred to as the "coefficient approach" and the "constant approach".

For the coefficient approach, one coefficient of a nonconstant term in each equation is multiplied by a constant, $A_{j}{ }^{(0)}$, which is chosen so that the equation is satisifed by the original estimates. The altered equation satisfied by the original estimates can be written

$$
\begin{equation*}
F_{j}=\sum_{i=1}^{Q_{j}} t_{j i}^{(0)}+\left(A_{j}^{(0)}-1\right) t_{j L} \tag{2-22}
\end{equation*}
$$

in which L is any integer from 1 to Q_{j}, thus specifying a specific term in the equation. The value of L can change from equation to equation. A recursion relation is used to vary the constant A_{j} for each Freudenstein-Roth step.

The relation is

$$
\begin{equation*}
A_{j}^{(m)}=\left[A_{j}^{(0)}\right]^{\left(\frac{V-m}{V}\right)} \quad(m=0,1,2, \ldots, V) \tag{2-23}
\end{equation*}
$$

The value of m is increased by one prior to starting each step. Obviously, when m is equal to V, the original equations are reproduced. The solution of this set of equations is the desired solution.

The constant approach method alters the constant term F_{j}. The initial value of the altered constant, $\mathrm{F}_{\mathrm{j}}(\mathrm{o})$, is calculated by the equation

$$
\begin{equation*}
F_{j}^{(0)}=\phi_{j}^{(0)} \tag{2-24}
\end{equation*}
$$

The Fj's are modified for each Freudenstein-Roth step by the recursion relation

$$
\begin{equation*}
F_{j}(m)=F_{j}\left[\frac{F_{j}^{(0)}}{F_{j}}\right] \quad\left(\frac{V-m}{V}\right) \tag{2-25}
\end{equation*}
$$

so that at the end of V steps

$$
\begin{equation*}
F_{j}^{(V)}=F_{j} \tag{2-26}
\end{equation*}
$$

The solution obtained at this step is the desired solution.

The convergence criteria for the Freudenstein-Roth technique are discussed in reference 4. The proper use of this method ensures that the initial estimates for the set of roots at each step are close to the true roots for that step. Obviously, if the step size is too large, reflecting a small value of V, the Newton-Raphson method may fail for some individual step. This may be corrected by increasing the value of V, but a point may be reached beyond which further increases of V are not practical. In such a case, the problem should be started over using a new set of estimates.

2.2.3 Nonlinear Dependent or I11-Conditioned Systems

The Newton-Raphson method, in common with other numerical techniques, is incapable of solving a functionally dependent system of equations and encounters great difficulties solving ill-conditioned systems of equations. These two cases are not unrelated, for ill-conditioned system border on being functionally dependent. They differ in that functionally dependent systems of equations do not possess any discrete solutions whereas ill-conditioned systems possess discrete solutions but great practical difficulties are encountered in obtaining such solutions.

If a set of p equations of the form

$$
\phi_{j}=F_{j}
$$

are functionally dependent, based on reference 10 , there exists a non-trivial equation involving the functions ϕ_{j} of the form

$$
\begin{equation*}
\gamma\left(\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right)=0 \tag{2-27}
\end{equation*}
$$

This equation, which may be taken to be a definition of functional dependence, holds for all values of the independent variables. Therefore, it is impossible to vary the ϕ_{j} independently.

The general method of determining whether a set of equations is dependent is to determine whether their Jacobian matrix

$$
\left[\begin{array}{c}
\partial \phi_{j} \\
\partial X_{n}
\end{array}\right]
$$

is identically singular. Unfortunately, this method is not feasible when even a moderately large number of independent variables are involved, for it involves the direct expansion of the determinant of a high-order matrix, each term of which is an algebraic expression. Therefore, it is generally impractical to attempt to establish conclusively whether or not simultaneous equations having a large number of independent variables are dependent.

It appears more practical to detect the dependence of a set of equations by numerical means. This approach calls for the determinant corresponding to the Jacobian of a set of equations to be evaluated using several different sets of values of the X_{n}. If the determinant is zero or nearly so for each set of values, there is strong indication of a singular matrix. Unfortunately, if the magnitude of the unknowns within a set varies significantly, accurate numerical evaluation of the determinant is difficult even on a digital computer. This is primarily due to truncation error.

The term "ill-conditioned" as applied to a set of simultaneous equations is not clearly defined. The term is of a qualitative rather than a quantitative nature. Its practical value is that the term ill-conditioned singles out those sets of simultaneous equations which are exceedingly difficult to solve by numerical methods and which require great accuracy when exact methods are applicable.

To be more definitive, an 111-conditioned system may be considered to be a simultaneous set of equations between functions that can be transformed into a functionally dependent set by minor modification of one or more of the functions. That is, ill-conditioned systems border on being functionally dependent. The concept of "bordering on functional dependence" for p functions ϕ_{j} can be expressed by the relation

$$
\begin{equation*}
r\left(\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right) \check{=} 0 \tag{2-28}
\end{equation*}
$$

For this case each function ϕ_{j} can be considered to consist of two parts

$$
\begin{equation*}
\phi_{j}-\phi_{j}^{\prime}+\phi_{j}^{\prime \prime} \tag{2-29}
\end{equation*}
$$

in such a manner that

$$
\begin{equation*}
\gamma\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \ldots, \phi_{p}^{\prime}\right)=0 \tag{2-30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\phi_{j}\right| \tilde{=}\left|\phi_{j}^{\prime}\right| \gg\left|\phi_{j}^{\prime \prime}\right| \tag{2-31}
\end{equation*}
$$

A truly independent variation of any ϕ_{j} can only be accomplished by a variation of $\phi_{j} "$, but due to its small size, variation of $\phi_{j}^{\prime \prime}$ can only result in small changes in ϕ_{j}. If $\phi_{j}{ }^{\prime}$ is varied in any equation then $\phi_{j}{ }^{\prime}$ and thus ϕ_{j} of the other equations are strongly affected. In actual cases the ϕ_{j}^{\prime} and $\phi_{j}{ }^{\prime \prime}$ of most equations cannot be identified and separated. Thus any variation of ϕ_{j} for one equation in an ill-conditioned system is likely to have a strong influence in the ϕ_{j} of the other equations. When cast in this light, insight is gained into the difficulties of obtaining numerical solutions of ill-conditioned systems of simultaneous equations.

The numerical methods already described for obtaining solutions of simultaneous equations (Newton-Raphson and Freudenstein-Roth) Involve approximations which are valid only for small changes in the independent variables X_{n}. These approximations yield a set of linear simultaneous equations for the changes in the independent variables. The solution of this set of linear equations gives a refinement to the original estimates of the roots. This process is repeated using the refined values of the roots as new estimates until sufficient accuracy is obtained.

In the case of ill-conditioned simultaneous equations, their near functional dependency generates situations in which the elimination of a relatively small residual, $E_{j}^{(m)}$, in at least one equation calls for large changes in the values of the unknowns. These large changes often invalidate the approximations based on small changes of the independent variables X_{n}. This is the dilemma ill-conditioned systems present to numerical solution techniques.

2.3 IMPROVED NUMERICAL METHODS OF SOLUTION

The previous discussion presents ideas which resulted from the work accomplished under the original research effort. The discussion which follows presents the refinements to the original numerical approach which have been considered during the contract extension.

2.3.1 Kizner's Method

The Freudenstein-Roth technique removes the major Iimitation of the NewtonRaphson method in that the initial estimates of the roots of the simultaneous equations do not need to be close to the actual roots of the equations to ensure convergence. However, as originally presented, each step, or set of intermediate equations, of the Freudenstein-Roth technique is solved by the Newton-Raphson method. must be close to the roots of the given step for the Newton-Raphson method to converge. This requirement often results in an undesirably large number of steps being necessary to obtain a solution. Consequently, a method more strongly convergent than Newton-Raphson's is desirable for these steps.

Such a method is presented by Kizner in reference 11. Kizner showed that, by considering the independent variables X_{n} as functions of the dependent variables ϕ_{j}, a system of simultaneous algebraic equations can be treated as a simultaneous system of ordinary first-order differential equations. These differential equations can be approximately solved by a one-step Runge-Kutta numerical method, using the estimates of the roots and the functions evaluated at these estimates as initial values. Since these differential equations interchange the role of independent and dependent variables with respect to the original equations, the roots of the original equation are obtained by evaluating the solutions of the differential equations at zero. This process can be repeated, using the new approximations of the roots as initial estimates, until the desired accuracy is attained. A more detailed discussion of Kizner's method follows.

For simplicity, one equation in one unknown will be considered first. The equation is assumed to be of the form

$$
\mathrm{f}(\mathbf{x})=\mathbf{f}=0
$$

The initial estimate of the root is $x^{(0)}$, and

$$
\mathrm{f}^{(0)}=\mathrm{f}\left(\mathrm{x}^{(0)}\right) .
$$

The function ξ is defined by the differential equation

$$
\begin{equation*}
\xi(x)=\frac{d x}{d f}=1 / \frac{d f}{d x} \tag{2-32}
\end{equation*}
$$

It should be noted that the left-hand member of this equation is a function of the variable, x, only. The root of the original equation, x, can be written as

$$
\begin{equation*}
x=\int_{f(x(0))^{0}}^{\frac{d x}{d f}} d f+x^{(0)}=\int_{f\left(x^{(0)}\right)}^{0} \xi^{(x) d f+x^{(0)}} \tag{2-33}
\end{equation*}
$$

Kizner's method approximates the required integral by a one step Runge-Kutta numerical process, which evaluates the integrand at four points and approximates it with a cubic expression. The resulting expression yields an approximation $x^{(1)}$ of the root x and can be written as follows:

$$
\begin{equation*}
x^{(1)}=x^{(0)}+\frac{1}{6}\left(k_{1}^{(0)}+2 k_{2}^{(0)}+2 k_{3}^{(0)}+k_{4}^{(0)}\right) \tag{2-34}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{1}^{(0)}=-f^{(0)} \xi\left(x^{(0)}\right) \\
& k_{2}^{(0)}=-f^{(0)} \xi\left(x^{(0)}+k_{1}^{(0)} / 2\right) \\
& k_{3}^{(0)}=-f^{(0)} \xi\left(x^{(0)}+k_{2}^{(0)} / 2\right) \\
& k_{4}^{(0)}=-f^{(0)} \xi\left(x^{(0)}+k_{3}^{(0)}\right)
\end{aligned}
$$

In a more general form equation (2-34) can be written

$$
\begin{equation*}
x^{(m+1)}=x^{(m)}+\frac{1}{6}\left(k_{1}^{(m)}+k_{2}^{(m)}+k_{3}^{(m)}+k_{4}^{(m)}\right) \tag{2-35}
\end{equation*}
$$

where,

$$
\begin{aligned}
& k_{1}^{(m)}=-f^{(m)} \xi\left(x^{(m)}\right) \\
& k_{2}^{(m)}=-f^{(m)} \xi\left(x^{(m)}+k_{1}^{(m)} / 2\right) \\
& k_{3}^{(m)}=-f^{(m)} \xi\left(x^{(m)}+k_{2}^{(m)} / 2\right) \\
& k_{4}^{(m)}=-f^{(m)} \xi\left(x^{(m)}+k_{3}^{(m)}\right)
\end{aligned}
$$

The method can be readily extended to systems of several equations in several unknowns. The original equations, ϕ_{j}, can be written in the residual form

$$
\begin{equation*}
\varepsilon_{j}=\phi_{j}-F_{j} \tag{2-36}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon_{j}=\varepsilon_{j}\left(X_{1}, X_{2}, x_{3}, \ldots, X_{p}\right)=0 \tag{2-37}
\end{equation*}
$$

With the initial estimates X_{n} (o)

$$
\begin{equation*}
\varepsilon_{j}^{(0)}=\varepsilon_{j}\left(X_{1}^{(0)}, X_{2}^{(0)}, X_{3}^{(0)}, \ldots, X_{p}^{(0)}\right) \tag{2-38}
\end{equation*}
$$

If the independent variables X_{n} are considered to be functions of the dependent variables, ε_{j}, and if one of the ε_{j} 's, designated ε_{ℓ}, is treated as the only independent variable, the total derivative of X_{n} with respect to the one variable ε_{ℓ} can be written

$$
\begin{equation*}
\frac{d X_{n}}{d \varepsilon_{\ell}}=\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \frac{d \varepsilon_{j}}{d \varepsilon_{\ell}} \tag{2-39}
\end{equation*}
$$

In a manner analogous to the solution of one equation for one variable,

$$
\begin{equation*}
x_{n}=\int_{\varepsilon_{\ell}(0)}^{0} \sum_{\frac{\partial X_{n}}{\partial \varepsilon_{j}}}^{\frac{d \varepsilon_{j}}{d \varepsilon_{\ell}}} d \varepsilon_{\ell}+x_{n}^{(0)} \tag{2-40}
\end{equation*}
$$

The total derivative $d \varepsilon_{j} / d \varepsilon_{\ell}$ can be established by assuming a linear relation between ε_{j} and ε_{ℓ} as follows:

$$
\begin{equation*}
\varepsilon_{j}=\alpha_{j} \varepsilon_{\ell} \tag{2-41}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\mathrm{d}_{j}}{\mathrm{~d} \mathrm{\varepsilon}}{ }_{\ell}=\alpha_{j}=\frac{\varepsilon_{j}}{\varepsilon_{\ell}} \tag{2-42}
\end{equation*}
$$

In actual numerical calculations, the assumption of a linear relationship between ε_{j} and ε_{ℓ} does not exactly hold. For any iterative step, m, however,

$$
\begin{equation*}
\frac{\mathrm{d} \varepsilon_{j}}{\mathrm{~d}_{\ell}}=\frac{\varepsilon_{j}^{(m)}}{\varepsilon_{\ell}^{(\mathrm{m})}} \tag{2-43}
\end{equation*}
$$

A combination of equations $(2-40)$ and (2-43) yields

$$
\begin{equation*}
x_{n}=\int_{\varepsilon_{\ell}(m)}^{0} \sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \frac{\varepsilon_{j}^{(m)}}{\varepsilon_{\ell}^{(m)}} d \varepsilon_{\ell}+x_{n}^{(m)} \tag{2-44}
\end{equation*}
$$

The partial derivatives $\partial X_{n}{ }^{\prime} \varepsilon_{j}$ can be formally obtained through the well-known Jacobian matrix equation

$$
\left[\begin{array}{l}
\partial \varepsilon_{j} \tag{2-45}\\
\partial X_{n}
\end{array}\right]\left[\begin{array}{l}
\partial X_{n} \\
\partial \varepsilon_{j}
\end{array}\right]=I
$$

where $I=$ the unit matrix.

In a manner analogous to that used for the case of one unknown, a function ζ_{n} can be defined by the differential equation

$$
\begin{equation*}
\zeta_{n}\left(X_{1}, x_{2}, \ldots, x_{p}\right)=\frac{d X_{n}}{d \varepsilon_{\ell}}=\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \frac{d \varepsilon_{j}}{d \varepsilon_{l}} \tag{2-46}
\end{equation*}
$$

Application of a one-step Runge-Kutta method to equation (2-44) then yields

$$
\begin{equation*}
x_{n}^{(m+1)}=x_{n}^{(m)}+\frac{1}{6}\left(k_{n 1}^{(m)}+2 k_{n 2}^{(m)}+2 k_{n 3}^{(m)}+k_{n 4}^{(m)}\right) \tag{2-47}
\end{equation*}
$$

where

$$
\begin{align*}
& k_{n 1}^{(m)}=-\varepsilon_{\ell}^{(m)} \zeta_{n}\left(x_{1}^{(m)}, x_{2}^{(m)} \ldots, x_{p}^{(m)}\right) \tag{2-48}\\
& k_{n 2}^{(m)}=-\varepsilon_{\ell}^{(m)} \zeta_{n}\left(x_{1}^{(m)}+\frac{k_{11}}{2}, \ldots, x_{p}^{(m)}+\frac{k_{p 1}^{(m)}}{2}\right) \tag{2-49}
\end{align*}
$$

$$
\begin{align*}
& k_{n 3}^{(m)}=-\varepsilon_{\ell}^{(m)} \quad \zeta_{n}\left(X_{1}^{(m)}+\frac{k_{12}^{(m)}}{2}, \ldots, X_{p}^{(m)}+\frac{k_{p 2}^{(m)}}{2}\right) \tag{2-50}\\
& k_{n 4}^{(m)}=-\varepsilon_{\ell}^{(m)} \quad \zeta_{n}\left(X_{1}^{(m)}+k_{13}, \ldots, x_{p}^{(m)}+k_{p 3}\right)
\end{align*}
$$

The quantities $k_{n 1}^{(m)}, k_{n 2}^{(m)}, k_{n 3}^{(m)}$, and $k_{n 4}(m)$ can also be expressed as

$$
\begin{equation*}
k_{n 1}^{(m)}=-\sum_{j}^{\partial X_{n}} \frac{\varepsilon_{j}}{\partial \varepsilon_{j}}(m) \quad\left(X_{1}=X_{1}^{(m)}, \ldots, X_{p}=X_{p}^{(m)}\right) \tag{2-52}
\end{equation*}
$$

$k_{n 2}^{(m)}=-\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \varepsilon_{j}^{(m)} \quad\left(X_{1}=X_{1}^{(m)}+\frac{k_{11}^{(m)}}{2}, \ldots, X_{p}=X_{p}^{(m)}+\frac{k_{p 1}^{(m)}}{2}\right)$
$k_{n 3}^{(m)}=-\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \varepsilon_{j}^{(m)} \quad\left(X_{1}=X_{1}^{(m)}+\frac{k_{12}^{(m)}}{2}, \ldots, X_{p}=X_{p}^{(m)}+\frac{k_{p} 2^{(m)}}{2}\right)$
$k_{n 4}^{(m)}=-\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \varepsilon_{j}^{(m)} \quad\left(X_{1}=X_{1}^{(m)}+K_{13}^{(m)}, \ldots, X_{p}=X_{p}^{(m)}+k_{p 3}^{(m)}\right)$

The evaluation of $k_{n 1}^{(m)}, k_{n 2}^{(m)}, k_{n 3}^{(m)}$, and $k_{n 4}(m)$ can be accomplished by observing that

$$
\begin{equation*}
\frac{d \varepsilon_{j}}{d \varepsilon_{\ell}}=\sum_{n} \frac{\partial \varepsilon_{j}}{\partial X_{n}} \quad \frac{d X_{n}}{d \varepsilon_{\ell}} \tag{2-56}
\end{equation*}
$$

Then based on equations (2-43) and (2-46),

$$
\begin{equation*}
\frac{\varepsilon_{j}^{(m)}}{\varepsilon_{\ell}^{(m)}}=\sum_{n} \frac{\partial \varepsilon_{j}}{\partial X_{n}}\left(\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \frac{\varepsilon_{j}^{(m)}}{\varepsilon_{\ell}^{(m)}}\right) \tag{2-57}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon_{j}^{(m)}=\sum_{n} \frac{\partial \varepsilon_{j}}{\partial X_{n}}\left(\sum_{j} \frac{\partial X_{n}}{\partial \varepsilon_{j}} \varepsilon_{j}^{(m)}\right) \tag{2-58}
\end{equation*}
$$

By means of equations (2-52 through (2-55)
$\varepsilon_{j}^{(m)}=-\sum_{n} \frac{\partial \varepsilon}{\partial X_{n}}{ }_{k_{n 1}}^{(m)} \quad\left(X_{1}=X_{1}^{(m)}, \ldots, X_{p}=X_{p}^{(m)}\right)$
$\varepsilon_{j}^{(m)}=-\sum_{n} \frac{\partial \varepsilon_{j}}{\partial X_{n}} k_{n 2}^{(m)} \quad\left(X_{1}=X_{1}^{(m)}+\frac{k_{11}^{(m)}}{2}, \ldots, X_{p}=X_{p}^{(m)}+\frac{k_{p 1}^{(m)}}{2}\right)$
$\varepsilon_{j}^{(m)}=-\sum_{n} \frac{\partial \varepsilon_{j}}{\partial X_{n}} k_{n 3}(m) \quad\left(X_{1}=X_{1}^{(m)}+\frac{k_{12}^{(m)}}{2}, \ldots, X_{p}=X_{p}^{(m)}+\frac{k_{p 2}^{(m)}}{2}\right)$
$\varepsilon_{j}^{(m)}=-\sum_{n} \frac{\partial \varepsilon_{j}}{\partial X_{n}} k_{n 4}^{(m)} \quad\left(X_{1}=X_{1}^{(m)}+k_{13}^{(m)}, \ldots, X_{p}=X_{p}^{(m)}+K_{p 3}^{(m)}\right)$

In each of the last four equations the partial derivatives $\partial \varepsilon_{j} / \partial X_{n}$ are the known elements of the Jacobian and thus serve as coefficients for the unknown k's. Likewise the $\varepsilon_{j}^{(m)}$'s are known and act as constants. Clearly then, equations (2-59) through (2-63) each represent a set of linear algebraic equations which can be solved by standard numerical means such as the Gaussian method of pivotal condensation. Furthermore, each of these four equations is identical in form with equation (2-21) which results from the Newton-Raphson method. Thus it can be seen that each step of Kizner's method involves calculations equivalent to four Newton-Raphson steps.

Based on an examination of Kizner's method, the question arises as to the possibility of treating the solution of nonlinear simultaneous equations entirely as the solution of their associated simultaneous ordinary differential equations by the Runge-Kutta method. This can be done by subdividing the required integration interval into several Runge-Kutta steps. This procedure would require a large number of Runge-Kutta steps to prevent the introduction of serious cumulative errors unless the initial estimates of the roots were quite close to the actual
roots. To check for cumulative errors, one would have to verify the solution by substituting the results in the original equations. If the original equations were not sufficiently staisfied, the Runge-Kutta process would have to be repeated, using the previous results as new initial estimates.

The Freudenstein-Roth technique modified to incorporate Kizner's method in conjunction with the root prediction technique presented in the next section, both eliminates any cumulative errors and lessens the number of Runge-Kutta steps required to obtain a satisfactory solution. Cumulative errors can not occur because the equations must be satisfied at each Freudenstein-Roth step.

2.3.2 Root Prediction

The equations for component values of filter circuits that are derived from transfer functions are regular. That is, the functions that form these equations are well behaved. Therefore, it appears likely that all of the roots of the intermediate equations corresponding to each Freudenstein-Roth step vary in a predictable manner from step to step.

An examination of the output of computer runs generated during the original research effort has indicated that for any three consecutive steps each root is an approximately linear function of the Freudenstein-Roth step number as shown in Figure 2-2. Then the accuracy of the initial estimate of the root X_{n} for any Freudenstein-Roth step $(m+1)$ can be greatly increased by means of the relation

FREUDENSTEIN-ROTH STEP
Figure 2-2. VARIATION of ROOTS X_{n} WITH FREUDENSTEIN-ROTH STEP

2.4 COMPONENT SELECTION

The roots obtained by the numerical techniques previously described correspond to the values of circuit components necessary to build the circuit with the desired transfer function. However, it is usually impossible to obtain standard circuit components with the values which exactly match the roots found by the numerical techniques. A circuit built with components which only approximate the exact roots will only approximate the transfer function. To evaluate the change in the transfer function, it is first necessary to establish certain guidelines concerning the actual values obtainable in standard circuit components.

From an engineering standpoint the approximate components should be built up from standard components which are readily available. Parts A and B of Table 2-2 present standard decade tables for resistors and capacitors and their

COMPONENT SELECTION VALUES

A. RESISTOR DECADE TABLES (Ω)

1.0	1.62	2.61	4.22	6.81
1.1	1.78	2.87	4.64	7.50
1.21	1.96	3.16	5.11	8.25
1.33	2.15	3.48	5.62	9.09
1.47	2.37	3.83	6.19	

B. CAPACITOR DECADE TABLES

- (10-2500 $\mu \mu \mathrm{f})$

1.0	2.2	3.6	5.6
1.2	2.5	3.9	6.8
1.5	2.7	4.7	7.5
1.8	3.0	5.0	8.2
2.0	3.3	5.1	

Over $2500 \mu \mu \mathrm{f}$

1.0	2.2	4.7
1.2	2.7	5.6
1.5	3.3	6.8
1.8	3.9	8.2

C. INDUCTOR TABLE

(Less than 50 h)

Inductors of less than 50 henrys are matched to two significant figures by variable inductors.
(Greater than 50 h)

50	200	800	2000
100	400	1400	

D. INDUCTIVE RESISTANCE TABLE
(Variable Inductors - 1ess than 50 h)

The resistance of the variable inductors is a multiple (K_{m}) of the inductance.
(Fixed Inductors greater than 50 h)

$0.5 \mathrm{~K} \Omega$ @ 50 h	$4.0 \mathrm{~K} \Omega @ 400 \mathrm{~h}$	$8.0 \mathrm{~K} \Omega$ @ 2000 h
$1.0 \mathrm{~K} \Omega$ @ 100 h	$8.0 \mathrm{~K} \Omega @ 800 \mathrm{~h}$	
$2.0 \mathrm{~K} \Omega$ @ 200 h	$4.0 \mathrm{~K} \Omega @ 1400 \mathrm{~h}$	

E. TOLERANCE TABLE

COMPONENT	TOLERANCE
Resistors	$\pm 1 \%$
Capacitors	$\pm 5 \%$
Inductors ($>50 \mathrm{~h}$)	2 significant figures
Inductors (< 50 h$)$	$\pm 10 \%$
Inductive Resistance	Same as corresponding inductor

available tolerances. These decade tables are based on references 12 and 13. Inductors can be handled by assuming variable inductors under 50 henrys (ref. 14) and fixed values over 50 henrys (ref. 15). This procedure is also shown in Table 2-2, Part C. Values for inductive resistance, based on reference 15 , are presented in Part D of Table 2-2. Tolerances for all components are found in Part E and are based on a survey of references 12 through 15.

The selection process for resistors and capacitors involves selecting the largest value from the decade table that is below the desired value and then adding smaller values until the component is within tolerance limits or until more than a specified number of values are used to form the component. For inductors over 50 henrys the selection scheme first matches the inductors to the largest fixed inductor value smaller than the desired value. Smaller increments are added with variable inductors. The selection of two values appears to be all that is needed for an approximate component to be within tolerance range of the desired component.

Application of the described scheme to each component yields a circuit with approximate component values that are easily obtainable.

2.5 FREQUENCY RESPONSE

As the components available for the circuit are only approximate, it is desirable to evaluate the effect of these approximations on the frequency response of the circuit.

The approximate transfer function may be found by evaluating the equations using the approximations to the components. The evaluation process results in values of F_{j} which in turn can be converted into values of the coefficients N_{q} and D_{q} in the numerator and denominator of the transfer function.

Evaluation of the complex quantity $N(j \omega) / D(j \omega)$, where N and D are the numerator and denominator of the approximate transfer function, for the desired values of frequency will yield the steady-state frequency-response curves for attenuation and phase shift as functions of frequency as discussed in reference 16 . These steady-state frequency-response curves are the yardstick to use in the comparison of an approximate circuit with an exact circuit.

2.6 DIGITAL COMPUTER CONSIDERATIONS

Because of the overall numerical complexity of the problem the use of a digital computer is mandatory. The improved numerical techniques described in subsection 2.4 represent refinements to the original digital computer program described in reference 1 . The component selection scheme is readily adaptable to a digital computer. The frequency response calculation discussed in subsection 2.5 has been previously programmed by Northrop as described in reference 16. Thus the most logical approach to the problem involves development of a master computer program capable of solving the equations, approximately matching the roots with standard circuit components, and calculating the resulting frequency response.
2.7 APPLICATION OF NUMERICAL TECHNIQUES TO NONLINEAR DIFFERENTIAL EQUATIONS

Because of their complexity, nonlinear differential equations are usually solved numerically. As a result, algebraic equations are generated. If a set of nonlinear differential equations is involved, then a set of nonlinear algebraic or transcental equations will generally result. Typical examples include:

- The equations of motion of a rocket flight (neglecting air resistance)
- The equations for supersonic flow around an axially symmetric body (assuming compressible inviscid flow).

The possibility exists that the sets of nonlinear algebraic equations generated in solving nonlinear differential equations may be efficiently solved by some combination of the techniques described in subsections 2.2 and 2.3. The primary considerations in establishing whether or not such a combination would offer any advantage over techniques already in use are the complexity and number of the nonlinear equations, and the accuracy to which the unknown can be estimated in any numerical step.

SECTION III

PROGRAM DESCRIPTION

Based on the analytical development presented in subsections 2.2, 2.3, 2.4 , and 2.5 , a master digital computer program has been written. This program is designed to obtain the roots to the nonlinear algebraic equations, select standard circuit components which approximate the values of the roots obtained, and establish the frequency response of the circuit made up of the selected components.

The subsections which follow present a description of the various operations of the program throughout the running of a typical case, a description and necessary definitions of the input and output, and the flow charts of the program.

3.1 BASIC FEATURES

The program in its present form is designed to solve sets of nonlinear algebraic equations of the type indicated by equation (2-2). A general program flow chart is provided in Figure 3-1. A copy of the source program written in FORTRAN IV is included in Appendix A. A description of the program's subroutines is included in Appendix B. The overlay feature of the program is described in Appendix C. This program has been checked out for use on the IBM 7094 digital computer.

The program utilizes the Freudenstein-Roth technique in conjunction with Kizner's method. All partial derivatives needed for Kizner's method are calculated by analytical differentiation in contradistinction to finite-difference methods. The Gaussian pivotal technique is used to obtain the solutions of the linear algebraic equations that are necessary for the application of Kizner's method.
TR-292-6-078
September 1966

$3 \cdot 2-1$

$$
0^{3,-2}
$$

Figure 3-lb. MAIN PROGRAM (CONTINUED)

[^0]

Figure 3-1e. SUBROUTINE CMPSEL

3-1f. SUBROUTINE PTMCH

Figure 3-1g. SUBROUTINE FCON

Figure 3-1h. SUBROUTINE SIMEQ

Figure 3-1i. SUBROUTINE RUNKA

September 1966

Figure 3-1k. SUBROUTINE PRTR

Figure 3-1 \& . SUBROU'TINE ROOTER

After all the terms of the equations and the upper and lower limit for each unknown have been read into the computer, values for the initial estimate of each unknown are determined by the ESTIM subroutine.

The first attempt at solution (unless otherwise specified by the input value of $N A$) is the constant approach. In this method, the initial estimates are used to calculate constants that satisfy the equations. These constants are then varied stepwise, according to equation (2-25), toward their true values and the roots found at each intermediate step. When roots have been found for the case where the varying constants are the true (input) constants, a solution has been found. If at some step a singular matrix results or the attempt to find intermediate roots is unsuccessful, the number of iterative steps, V, is doubled to reduce the size of the incremental change in the constants and a solution is again attempted. This process continues until a solution is found or until the value of V exceeds some established limit, $\mathrm{V}_{1 \text { imit }}$.

After successfully obtaining a set of satisfactory roots, the program can (by an input option) select approximate components and plot the frequency response of the resulting transfer function. If a set of roots is outside the physical limits specified in Table 2-1, or if no roots are found, the program starts over, using the coefficient approach. The coefficient approach involves finding a set of coefficients, A_{j}, applied to the largest terms in each equation, that will cause the equations to be satisfied. These coefficients are then varied stepwise toward unity in accordance with equation (2-23). When unity is reached, a solution has been found. If the coefficient approach using the largest terms fails, the process is repeated with the coefficients applied to the first term in each equation as originally read into the computer. If necessary
the process can be performed repeatedly, applying the coefficients successively to the second term, third term, etc. In each equation. In any case, the method of approaching a solution is the same as the constant approach. The total number of such attempts, excluding the constant approach, is equal to some value, Q ${ }_{\text {limit }}$, which is equal to or less than the number of terms in the longest equation plus one $\left(Q_{j(\max)}+1\right)$. In those equations where $Q_{j}>Q_{j(\max)}$, and the coefficient approach specified application of A_{j} to a term number which is larger than Q_{j}, the coefficient A_{j} is applied to the last or $Q_{j}{ }^{\text {th }}$ term of the equation.

For the case where satisfactory roots are obtained, the component selection subroutine takes one root at a time, starting with capacitors and ending with resistors, and matches components with the root in the same way a human might. It matches the root with values from a decade table of parts, picking the component that most nearly matches the root but is less than the root. This value is subtracted from the root, leaving a residual to be matched. This process continues until either the residual is less than the tolerance range of the first component selected for the root, or until a specified number of components for the root has been picked. In the latter case the last component is picked to match most nearly the residual. If the root is an inductor, its inductive resistance is calculated. If it is a resistor associated with an inductor, the natural or inductive resistance is subtracted from the total resistance prior to component matching. The natural resistance is added later to the sum of the components selected. The latter sum represents the "surplus" resistance as discussed in subsection 2.2. For inductance values of less than 50 henrys, the desired component is a variable inductor. The program assumes that the inductance in this case can be matched to two significant figures.

The program then forms the constant terms associated with the transfer function from either the actual roots or the approximations described above. From the specifications given on an input card, it matches the constant terms with the correct powers of s in the numerator $N(s)$ and denominator $D(s)$ of the transfer function. The program calculates the complex roots of $N(s)$ and $D(s)$ and then computes the magnitude and phase angle of the complex quantity $N(j \omega) /$ $D(j \omega)$ for the desired values of frequency. The results are printed out and plotted on the SC-4020 plotter.

After the entire computational process has been successfully completed, the program may, based on input option, start over in search of additional sets of roots.

3.2 COMPUTER INPUTS AND OUTPUTS

All inputs are made through the familiar FORTRAN sommands. The following is a listing, in alphabetical order, of the input items and their definitions, and a list of the format necessary for input of the items. The symbols in brackets are the corresponding symbols from the technical discussion. Example inputs and output for six equations with six unknowns are presented in Appendix D. Similar examples are provided in Appendix E for thirteen equations with thirteen unknowns.

3.2.1 Input Symbols

AMPMIN AMPMAX	The minimum and maximum ordinate values for the amplitude versus
	frequency plot. If both are blank, the limits are taken as .001
C(M)	and 100 , respectively.
	The constant term associating resistor (M) with inductor (M). $\left[K_{m}\right]$

$\left.\begin{array}{l} \text { DBMIN } \\ \text { DBMAX } \end{array}\right\}$	The minimum and maximum ordinate values for the amplitude in decibels
	versus frequency plot. If both are blank, the limits are taken as
	-60 and 440, respectively.
$F(J)$	The constant term associated with equation J. [F F_{j}
$\begin{aligned} & \text { FRQMIN } \\ & \text { FRQMAX } \end{aligned}$	The minimum and maximum limits of frequency, respectively, to be
	plotted. If both are blank, the limits are taken as .001 cps to
	25 cps.

FXORIG(J) The lower limits for the desired range on the variables $X(J)$, where $X(J)$ corresponds to X_{n} in Section II.

FXLIM (J) The upper limits for the desired range on the variables $X(J)$.

ICPS An indicator. If it is not zero, the plots are made versus frequency in cps. If it is, the plots are made versus radians per second.
$\operatorname{IMAX}(J) \quad$ The number of terms in equation $J .\left[Q_{j}\right]$
IZMAX The maximum number NA is allowed to attain.

JMAX The number of equations. [p]
KK The number of Runge-Kutta integrations allowed per FreudensteinRoth step.
$K(J, I, L) \quad$ Subscript for each factor of each term of each equation. $[n(j, i, k)$) L is varied most rapidly, J least rapidly. The subscripts for each equation begin on a new card.
$\operatorname{LMAX}(J) \quad$ The number of factors per term for equation $J .\left[d_{j}\right.$
MAXNOS The maximum number of steps allowed in the Freudenstein-Roth technique. $\left[V_{\text {Limit }}\right]$

MR

NR An indicator. If $M R$ is zero, the program stops after obtaining one set of roots.

A column counter. If NA is zero, the constant approach is used. If NA is unity, the coefficient A (in the Freudenstein-Roth technique) is applied to the largest term in each equation. If NA is greater than unity, the coefficient A is applied to term NA-1. After each attempt at solution is fully exhausted, NA is increased by one. When NA equals IZMAX, the program stops. The number of capacitors. [w]

The number of inductors. [v]
The number of derived equations in a circuit. Because in some cases there are more unknowns than there are derived equations, supplementary equations are made by assignation of values to components. These supplementary equations must follow the derived equations on input, and the number of derived equations must be specified (even if the number of derived equations is equal to the number of unknowns.

The number of increments between FXORIG and FXLIM for ESTIM, the initial estimate subroutine.

The initial number of steps for the Freudenstein-Roth technique. [V]
An indicator. If NTB is zero, the program will plot the resulting transfer function from the first set of roots obtained. An indicator. If NTC is not zero the values of the roots are used to form the transfer function for the frequency-response subroutine. If it is zero approximate values found by CMPSEL are used.

The number of resistors. [u]

Number of points to be computed per decade of frequency in the frequency response program.

N3(J) Specifies the maximum number of components to use in approximating $X(J)$.

PTOL(J) The desired tolerance for root $\mathrm{X}(\mathrm{J})$.
$\operatorname{SPEC}(J) \quad$ This specifies to the program to which power of s in $N(s)$ or $D(s)$ of the transfer function that $F(J)$ belongs. The input is an ' N ' or ' D ' (specifying numerator or denominator) followed by a number (specifying a power). Thus D2 NO specifies that $F(1)$ is the coefficient D_{2} of s^{2}, and that $F(2)$ is the coefficient N_{0} of s. The input is free form, with blanks allowed anywhere except as part of a number (N 10 is allowed, but N 10 is not).
The desired fractional tolerance for the initial estimates from ESTIM. When the estimates $X(J)$ do not change more than $T X X X(J)$ in an attempt to further modify the estimates, then the set $X(J)$ is returned from ESTIM as the set of initial estimates.

$\begin{aligned} & \text { XCMAX } \\ & \text { XCMIN } \end{aligned}$	The maximum and minimum practical values that are obtainable for
	capacitors.
$\left.\begin{array}{l} \text { XLMAX } \\ \text { XLMIN } \end{array}\right\}$	The maximum and minimum practical values that are obtainalbe for
	inductors.
$\begin{aligned} & \text { XRMAX } \\ & \text { XRMIN } \end{aligned}$	The maximum and minimum practical values that are obtainable for
	resistors.

3.2.2 Input Units

XRMIN	Resistance (ohms)
XLMIN	Inductance (henrys)
XCMIN	Capacitance (farads)
XRMAX	Resistance (ohms)
XLMAX	Inductance (henrys)
XCMAX	Capacitance (farads)

FXORIG
For J 1,NR Resistance (Ohms)
FXLIM
For J NRłL, NL Inductance (henrys)
For $J=$ NRINL 1 1, JMAX Capacitance (farads)

3.2.3 Input List and Format

The list which follows gives, in sequential order, all of the data that must be input into the computer for a run. The FORTRAN symbols defined in the previous section are used for the data. The word "CARD" in the left margin is used to designate that the Fortran symbols, corresponding to the input items, to the right of the word "CARD" must begin sequentially on a new card.

CARD MAXNOS, NOX, KK, JMAX, IZMAX, NR, NL, NC, NOR, MR, NA, NTB
FORMAT 2014
CARD
$\operatorname{IMAX}(\mathrm{J}) \mathrm{J}=1$, JMAX
FORMAT 2014

CARD
$\operatorname{LMAX}(J) \quad J=1$, JMAX
FORMAT 2014
CARD
F (J) J=1, JMAX
FORMAT 6E12.5
CARD PTOL(J) J=1, JMAX
FORMAT 8E10.0
CARD XRMIN, XLMIN, XCMIN, XRMAX, XLMAX, XCMAX
FORMAT 8E10.0
CARD

GARD
FXORIG(J) $J=1, J M A X, \operatorname{FXLIM}(J) \quad J=1, J M A X$
FORMAT 8R10.0
$C(M) \quad M=1, N R$
FORMAT 6E12.5

CARD	TX
	FORMAT E 10.0
CARI)	$\mathrm{K}(\mathrm{J}, \mathrm{I}, \mathrm{L}) \mathrm{L}=1, \operatorname{LMAX}(\mathrm{~J}), \mathrm{I}=1, \operatorname{Imax}(\mathrm{~J})$
	FORMAT 2014
	Repeat above for J equals 1 to JMAX
CARD	NTC, N3(J) J=1, JMAX
	FORMAT I1, 4X, 15 I 1
CARD	$\operatorname{SPEC}(\mathrm{J}) \quad \mathrm{J}=1, \mathrm{JMAX}$
	FORMAT 80A1
CARD	NMAX
	FORMAT I2
CARD	ICPS, NSTPS, FRQMIN, FRQMAX, DBMIN, DBMAX, AMPMIN, AMPMAX FORMAT I1, 4X, 15, 6F10.5

3.2.4 Output Nomenclature

The printout consists of a listing of the equations, the initial data, intermediate results, and, if roots are obtained, the roots and the results from the component selection and frequency-response subroutines.

The equations are listed three terms per line, with a term number for each term. The factors include a letter denoting resistance, capacitance, or inductance, and the corresponding component subscript. The lines indicating the division between the numerator and denominator terms are not printed.

The next portion of printout consists of certain input data. The "Maximum No. of Steps" referred to is MAXNOS; the "Number of Steps" is NOS; and the "Times through Runge-Kutta" is KK. The "Constants Terms" are F(J) arranged in order of subscripts reading in order from left to right. Following these terms, the range of interest for each variable is established by means of FXORIG(J)
and FXLIM(J) which are arranged in the same order as $F(J)$. The rest of the initial data printout describes the number of equations and unknowns, the number of resistances, capacitances, and inductances involved, and the maximum and minimum allowable components for such components.

After the printout of input data, the program is designed to indicate to the user the steps taken to obtain a solution. The terminology used is the same as thet already provided for input with the following additions:

GRID

LX

NA

The iterative step number in the Freudenstein-Roth technique $(1 \leq$ GRID \leq NOS $)$

The counter used in the process of selecting initial estimates. When LX JMAX the selection is complete. The counter used to determine the method of solution. If NA is zero, the constant approach is tried. If NA is one, the coefficient approach is applied to the largest term of each equation. And if NA is greater than one, the coefficient approach is applied to term NA-1 of each equation ($0 \leq N A \leq$ IZMAX).

The final output depends upon conditions arising within the program. Should a satisfactory set of roots be obtained (a set in which all elements are within the specified physical limits), a statement indicating this fact is printed out together with the roots appropriately denoted as resistances, capacitances, and inductances. In the case where roots are found but are not acceptable, a statement indicates this fact. A listing of the values of the unacceptable roots follows. As already noted, the computer contains an option that, in case a set of satisfactory roots is found, the process either stops
or continues searching until $N A=I Z M A X$. If a singular matrix is encountered in SIMEQ, the words "Singular Matrix" are printed out, and the computer proceeds as indicated in Figure 3-1.

Should a set of roots be found, the computer prints them out and then tests an indicator (ITB). If ITB is not zero the program searches for another set of roots. If $I T B$ is zero the indicator ITC is tested. If this is non-zero the program skips CMPSEL and goes directly to the frequency-response subroutine. Otherwise, CMPSEL is used to approximate the roots by component selection.

The subroutine CMPSEL prints out, for each unknown, the various values of components selected and their summation. It also calculates the inductive resistances and prints them out.

Finally, the frequency-response subroutine is used. The printout from this subroutine consists of the transfer function, its roots and poles, and the calculated values of amplitude and phase shift over the specified frequency range. These points are plotted automatically on the $S C-4020$ plotter.

DISCUSSTON OF RESULTS

The goal of the present research effort has been to refine the computer program developed in the initial study for solving nonlinear sets of simultaneous algebraic equations, which occur in filter circuit analysis, and to extend the applications of the program and the numerical techniques upon which it is based.

4.1 PROGRAM REFINEMENTS ACHIEVED

The computational refinements achieved were the incorporation of Kizner's method for the solution of intermediate Freudenstein-Roth steps and the addition of a root prediction subroutine to provide better estimates of the roots of the Freudenstein-Roth steps. These refinements both shorten computational time and improve convergence of the computer program. In addition, certain subroutines were added to make the program more useful to filter circuit designers. These subroutines are designed to:

- Select standard, off-the-shelf components whose values most nearly match the theoretical values determined by the roots of the equations.
- Obtain the attenuation and phase shift vs frequency plots for the resulting filter circuit whose component values approximate a theoretical circuit.

4.2 APPLICATION TO ACTUAL PROBLEMS

The refined digital computer program was successfully used to solve sets of equations in six unknowns and thirteen unknowns. The equations represent filter circuits as described in reference 17 . In addition, attenuation and phase shift vs frequency plots were obtained for filter circuits composed of standard value
components which approximate the above theoretical circuits. A solution was attempted for a set of equations in fifteen unknowns which represent the filter circuit described in reference 18. Although only limited success was achieved in obtaining a solution to this set of equations in fifteen unknowns, evidence was gathered which strongly supports the hypothesis that this set of equations is ill-conditioned.

4.2.1 Equations in Six Unknowns

The transfer function on page B-42 of reference 17 yielded six simultaneous equations in the six unknown component values. The occurrence of exactly six equations for six unknowns is not trivial, for transfer functions of other filter circuits often yield either a lesser or a greater number of equations than unknowns. These cases are discussed in subsequent sections.

The equations and the filter circuit associated with the equations are included in Appendix D. These equations were solved by the refined computer program. In addition, the computer program selected the standard value components which most nearly matched the values indicated by the roots of the equations and plotted attenuation and phase shift vs frequency curves for the resulting approximate circuit. The two sets of roots obtained, along with the upper and lower limits of each root used for the ESTIM subroutine, are presented in Appendix D. Figures $D-1, D-2$, and $D-3$ of the appendix present, respectively, the amplitude, phase shift and gain vs frequency plots for one of the circuits obtained.

4.2.2 Equations in Thirteen Unknowns

The transfer function of the filter circuit on page B-93 of reference 17 yielded twelve equations in thirteen unknowns. To obtain a solvable set of
equations, one of the unknowns (i.e., component values) was assigned a fixed value. This value was chosen so that the resulting set of thirteen equations in thirteen unknowns had a set of roots that were real, positive numbers. This choise was made to insure that the component values of the filter were physically realizable.

The resulting set of thirteen simultaneous equations is listed in Appendix E. They were solved by the refined computer program. The set of roots obtained, as well as the upper and lower values of the roots used in the ESTIM subroutine, is included in Appendix E. This appendix also presents the standard component values selected by the computer program to most nearly match those indicated by the set of roots. Figures $E-1, E-2$, and $E-2$, respectively, present the amplitude, phase shift and gain vs frequency plots of the resulting approximate filter circuit.

4.2.3 Equations in Fifteen Unknowns

The transfer function of the filter circuit given on page 9 of reference 18 yielded the sixteen equations in fifteen unknowns shown in Appendix F. The task of generating the equations from circuit analysis proved quite laborious. This work involved expanding two determinants of eighth-order matrices, the elements of which were algebraic expressions. The two resulting algebraic polynomials contained over 800 terms which were grouped according to the exponent of the variable s. The sixteen algebraic expressions developed by this grouping represented the functions ψ_{j} discussed in subsection 2.2 .

After deriving the expressions ψ_{j}, the next step was establishing the values for F_{j}. The original version of transfer functions given in reference 18 had already been normalized by dividing the numerator and denominator by N_{0} and D_{0}, respectively. The gain factor for this original transfer function was also
omitted. Northrop performed the necessary analysis to obtain the non-normalized transfer functions. The N_{q} and D_{q} of this transfer function were then matched with the corresponding algebraic expressions to form the sixteen equations of the form of equation (2-2).

A preliminary examination of equations indicated that they would have to be scaled to prevent computer overflow. For this reason, the circuit was scaled by multiplying all resistor and conductors by 10^{-6} and capacitors by 10^{6}. The constant terms, F_{j}, were correspondingly scaled by multiplying by 10^{-42}.

The circuit upon which the transfer function and the sixteen equations were based, contained only fifteen elements. Thus the set of sixteen equations contained only fifteen unknowns. As discussed in subsection 2.2 , the existence of more equations than unknowns immediately raised the question as to which, if any, combination of the equations would form an independent set.

Various methods were used in an attempt to establish the independence or dependence of any of the sixteen sets of fifteen equations taken from the sixteen equations. Algebraic expansion of the determinant of the Jacobian matrix was not practical because a fifteenth-order matrix was involved. Numerical evaluation of this determinant for specific values of the unknowns proved inconclusive. For some values of the unknowns the matrix was numerically singular. For other values this was not the case. All numerical work of this nature was hampered by computer truncation error coupled with the significant differences in order of magnitude of the unknowns.

Numerous runs were made with several different sets of fifteen equations. In many cases the computer indicated a singular matrix had been encountered. In
others rapid divergence occurred. These experiences indicated that the sets of equations selected were either dependent or extremely ill-conditioned.

One of the last computer runs carried out involved running the 16 different sets of 15 equations one after another, with the initial estimate of 14 of the 15 unknowns set equal to values of known roots taken from reference 18. The one unknown, which was not set equal to a root, was given a value 12 percent greater than the value of the corresponding root. For four of the sixteen cases, convergence did occur rapidly. The sets of equations used in these four cases can be most readily identified by specifying the coefficient N_{q} or D_{q} corresponding to the equation omitted. These four coefficients were N_{0}, N_{1}, D_{2}, and D_{3}. A singular matrix was not encountered in any of the remaining cases, and for some of these cases there was indication that convergence was occurring although not as rapidly as for the four cases already mentioned. Based on this last computer run it would appear that all of the sets of fifteen equations are independent but all are also ill-conditioned, some more so than others.

In carrying out this last computer run, the constant approach of the Freudenstein-Roth technique was used exclusively. This action was taken because of the fact that with the coefficient approach the Jacobian matrix changes algebraically with each step in the Freudenstein-Roth process. Thus a singular matrix might occur at some intermediate step in the process even though the true set of equations was independent. In the constant approach the Jacobian matrix remains constant algebraically through all steps. Thus the dependence or independence of a set of equations is more clearly indicated by means of the latter approach.

The ill-conditioned feature of the equations appears to be the result of the considerable differences in order of magnitude of the unknowns. An indication of the ill-conditioned characteristic is that the determinants of the Jacobian matrices corresponding to the 16 different sets of equations appear, in general, to have relatively small numerical values in that region within which the roots to the equations are most likely to occur. When computer truncation error is considered in conjunction with this characteristic of the Jacobian, it can be seen that accurate numerical calculations using either the Newton-Raphson method or Kizner's method are difficult if not impossible under such conditions.

4.3 APPLICATION TO NONLINEAR DIFFERENTIAL EQUATIONS

As noted in subsection 2.7, there exist a number of engineering problems in which sets of nonlinear differential equations are encountered. These problems are inherently complex and the techniques which have been developed to solve such problems tend to be somewhat specialized. The differential equations associated with the two specific problems listed in subsection 2.7 have been examined along with the appropriate boundary conditions. Because of time limitations, no attempt was made to apply the numerical techniques developed to the actual differential equations. It would appear that for situations in which boundary conditions or initial conditions are not well defined, the technique would prove useful for simultaneously satisfying finite-difference versions of the differential equations.

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

Based on the experience gained in the research effort, the Freudenstein-Roth technique combined with Kizner's method appears to be a powerful tool in the simultaneous solution of nonlinear algebraic equations. The digital computer program, which contains this numerical technique combined with a circuit component selection scheme and a frequency-response curve plotter, is capable of analyzing complex filter circuits and represents a useful engineering tool.

The most significant feature of the program is its flexibility in handling any set of algebraic equations of the general type encountered in filter circuit analysis. The primary limitation of the program occurs when it is applied to circuits for which the corresponding algebraic equations are ill-conditioned.

With very minor modification the program could be extended to handie any set of algebraic equations. Extension of the program to sets of transcendental equations could also be accomplished with relatively small effort. The possibility also exists that the basic numerical techniques employed may be useful in the solution of sets of nonlinear differential equations and their associated boundary conditions.

The recommendation is made that an investigation be conducted concerning the extensions in application of the program and the associated numerical techniques discussed in the preceding paragraph. In addition, consideration should be given to the use of a digital computer to generate the algebraic equations characteristic of a filter circuit. Northrop is presently developing computer techniques capable of mathematical operations involving high-order polynomials with literal coefficients. The techniques developed in the latter research effort would be useful in writing a computer program capable of generating the desired equations.

There is a very evident need for an investigation into the problems of identifying independence/dependence in sets of nonlinear equations as well as identifying ill-conditioned sets of equations. The possibility of transforming an ill-conditioned set into a well-behaved set, by some numerical process, is also worthy of study. Such a transformation appears to offer the most promising approach to the solution of ill-conditioned sets of nonlinear algebraic equations.

1. Tatom, F. R., Lillard, V. C., and Bhalla, L. M., lnterim Technical Report, "Simultaneous Solution of Non-Linear Algebraic Equations", NSL/Huntsville Tech. Memo No. 163, 9 March 1966.
2. Kuo, Benjamin C., "Flow Graph Using Kirchoff's Law", Automatic Control Systems, Prentice-Hall, Inc., Engelwood Cliffs, N. J., 1962.
3. Mayeda, Wataru, and Sishu, Sundaram, "Topological Formulas for Network Functions", Bulletin 446, Engineering Experiment Station, University of Illinois, 1956.
4. Freudenstein, Ferdinand, and Roth, Bernard, "Numerical Solution of Systems of Nonlinear Equations", Association for Computing Machinery Journal, Vol. 10, March 1963.
5. Buckingham, Dr. R. A., Numerical Analysis, Sir Isaac Pitman \& Sons, LTD., London, 1957.
6. Housholder, A. S., Principles of Numerical Analysis, McGraw-Hill Book Co., Inc., New York, 1953.
7. Hartree, D. R., Numerical Analysis, Oxford Publishing Company, London, 1958.
8. Nielsen, K. L., Methods of Numerical Analysis, MacMillan Company, New York, 1964.
9. Faddeeva, V. N., Computational Methods of Linear Algebra, Dover Publications, Inc., New York, 1959.
10. Turnbull, H. W., The Theory of Determinants, Matrices and Invariants, Dover Publications, Inc., New York, 1960.
11. Kizner, William, "A Numerical Method for Finding Solutions of Nonlinear Equations", Society for Industrial Applied Mathematics Journal, Vol. 12 , No. 2, June 1964.
12. Texas Instruments Bulletin No. DL-S 634364, September 1963.
13. Cornell-Dubilier Electronics, "Component Selector", 1966.
14. Allied Radio Catalog 250 B, 1966.
15. "Task Transmitted to IBM", MSFC Memo R-ASTR-F-65-33, 9 February 1965.
16. Echols, F. L., et al., "Computer Program Explanation of the Frequency Response Program (ACPO7A)," NSL/Huntsville Internal Note No. 20, June 1965.
17. Wilcox, J., Tung, S., and White, K., "Network Synthesis and a Method to Define a Transfer Function from Prescribed Phase-Magnitude Characteristics", NSL/ Huntsville Aero/Astro Tech. Memo No. 16, May 1964.
18. Ryan, Robert S., "Preliminary Stability Analysis of Saturn I Block II Vehicles", MTP-AERO-63-18, 7 March 1963.

APPENDIX A

SOURCE LISTING OF COMPUTER PROGRAM

A source listing of the complete program is included in this appendix. Individual segments of the program are located on the pages indicated below:

PROGRAM OR SUBROUTINE
 PAGE

MAIN
 A-2

INTEGER FUNCTION K A-7
EQPRT A-8
READK A-11
CMPSEL A-12
PTMCH A-15 A A A A A
BLOCK DATA A-16

SIMEQ A-19
RUNKA A-20
ESTIM A-21
PRTR A-23
ROOTER A-24
ARDEN A-26
GETOUT A-32
QUKLG1 A-33

DIMLNSİVIMAX（15），F（15），X（15），C（15），FXURIG（15），X1（15），OELX（15）， UFX（15），DFX（15，15），SUY（15），PSUM（15，15），T（215），P（215，15），A（15，215），
 MXGU：S（15），LMAX（15），

VM（16），ITD（5902），X2（15）
DIMLNSIXV PHIP（15），DX（15）
CUMMDN NM，ITJ．LMAX，I YAX，JMAX
БUMMLN／PLDTER／RE（16），RC（16），VNUM，NUEN，RøOT（80），20』T1（80）
103 FwRiAT（／／4H NA＝，14／）
L1 F F OR：AT（／16H SINGULAR MATRIX／）
12）FOKMAT（20I4）
$13)$ FARAAT（ $2 X 1 J H I V P U T$ DATA／／21H MAXIMUM NO．DF STEPS， $3 X, I 4 / 1$ GH NUMBER 1 DF STEPS， $8 X, I 4 / 26$ II IYES THROUGH RUNGE KUTIA， $4 X I 4 / 15 H$ CDNSTANT TE 22MS／1
143 FOKRAT（／32H CQMMEVCIVO CQEFFICIENT APPRØACH）
15）FORRAAT（／3X5－FXLIM／（S（3XE16．8）））
$18 J$ FBRMAT（SH SRID＝，I4，3X，4HNOS＝，（4）
213 F以KIAT（S（4XE16．8））
23）FWRMAT（9t10．0）
24 FigKMAT（5t12．5）
320 FDKAAT（／10H VAKIABLES／）
330 FORIAI $1 / / 72+A L L$ QOOTS IN THE FOLLOWINC SET LIE WITHIN THE PHYSIC LAL LIMITS SPECIFIED／／）
34 ）FEKRAI（49H JSINJ THIS SET OF ESTIMATES，ND RDJTS WERE FDUVD／／）
35 ）FOR：MAI（／75H THE FDLLDNING SET DF RNZTS DO NOT LIE WITHIN THE PHYS FICAL LIMITS jPECIFIED／）
36）FZKAAT（／20H RAVGE FDR VARIABLES／3X6HFXZRIG／（6（3X．E15．8）））
$37 J$ FQRNAT $1 / 11 H$ THERE ARE，I2， $15 H$ EQUATIDNS ANC ， $12,24 H$ UNKNDWNS，CDNS FISIING BF，I？，IGH ZESISTANCE（S），I I2，19H INDUCTAVEE（S），ANO，I2，15H \＆CAPACITA：NCE（S）． 1
$38 J$ FUKI：AT $135 H$ THE LQNER BQUNDARIES FQR THE RESISTAVCES，THE INDUCTAA FEES，AVD IHE CAPACITANCES ARE， $2(E 16.8,2 \mathrm{H}, 1 / 5 \mathrm{H}$ AVD，E $16.8,1 \mathrm{H}, 48 \mathrm{H}$ 3 RESPE STIVELY，WHILE IHEIR UPPER BJUNDARIES ARE， $21 E 16.8,2 H, 1,4 H A$ K゚U／IXEIS．8．14H RESPECTIVELY．）
EUU［VALEVCE（JMAX，VMAX）
२EAL $(5,120)$ MAXV日S，VES，KK，JMAX，I LMAX，NK，NL，NC，NDR，Mマ，NA，NTB
2FAL $(5,120)(I M \Delta X(J), J=1, J M A X)$
2EAL $(5,120)$（LMAX（J），J＝1，JMAX）
REAL $(5,240)(F(J), J=1, J M A X)$
REAU $(5,230)$（PTDL（N），V＝1，NMAX）
REAO $(5,230)$ XRMIN，XLMIN，XCMIV，XRMAX，XLMAX，XCMAX
2EAl，$(5,230)$（FXORIG（N），$N=1, V M A X),(F X L I M(N), N=1, V M A X)$
KEAC（ 5,240 （C（M）， $4=1, V R)$
REAU（5，230）IX
二ALL READK
VCC－NMAX－INC
二ALL EQPRT（JMAX，IMAX，LMAX，VR，NL，NC）
NNOS＝：12S
WRIIE $(6,130)$ MAXNOS，NDS，KK
WKIIE $(6,210)(F(J), J=1, J M A X)$
WRIIE（5，360）（FXDRIG（I），I＝1，JMAX）
WRIIE（S，150）（FXLIM（I），I＝1，JYAX）
WRITE $(6,370)$ JMAX，NMAX，NR，NL，VC
WRIIE（S， 380 ）XRMIV，XL YIV，XCMIV，XRMAX，XLMAX，XCMAX
こALL ESTIM（VMAX，JMAX，VR，NL，VZR，TX，IMAX，LMAX，F，C，FXEマIG，FXLIM，FX） WRITE $(6,320)$

```
            wKllt (6,21J) (FX(V),N=1,NMAX)
            J& <O5 M=1,VMAX
            IF(M-NR) 206,206,257
    207 こ(M)=0.
    COS VRM=NR+M
            3w I N=1,NMAX
            OFX(M,V)=U.
            IF(N-N)9,8,9
        3 vFX(N,V)=1.
            3D İ7
        # IF(: -(VR+M))7,10,7
    1) JFX(M,V)=C(M)
    7 こUNTINJE
    205 X(M)=FX(M)-C(M)*FX(N2M)
        UQ 4B I=1,NMAX
    45 XGULS(I)=X(I)
        If(`A.VL.U)\ठ 「w 51
        SALL FGDV (MAXNDS,VDS,KK,JMAX,NMAX,NR,LMAX,IMAX,F,PTDL,X,C,XGUES,
        F FX,IERR,FXLIM,DFX,X2,PHIP,DXI
            3% Tk (112,52),IER?
    51 WKIft (6.100) NA
    NOS = NNDS
    DO ,O I= 1,NMAX
    XL(1)=XGJES(I)
    5) x(1)=x`UES(1)
    IGRIU=1
    41 LL=i
        ANDS=NOS
        KSWICH=O
        LSWTCH=O
        VS=!
    54 WRIIE (6,180) IGRIO,VOS
        KUTTA=1
    5) \& 3 I=1,NMAK
    3 DELX(I)=0.
    SALCULATE PARTIALS
    OD & M=1,NMAX
    IF(N-NR)5,5,5
    S C(M)=0.
    5 VRM=NVR+N
    FX(F)=こ(M)#X(NRM)+X(Y)
    4 EONIII:JE
    !E 11 J=1,JMAX
    SUN(J)= -F(J)
    Oy l< v=1,NMAX
    12 PSUM(J,N)=0.
    IJMAX= [MAX(J)
    00 13 I= 1,IJMAX
    T(I)=1.
    LJMAX=LMAX(J)
    D& 14 L=1,LJ4AX
    VK=K(J,I,L)
    14 T(I)=T(I)*FX(NK)
    UZ 15 N=1,NMAX
    P(I,N)=0.
    D@ 1G L=1,LJMAX
```

$\forall K=K(J, I, L)$
$15 P(I, N)=P(I, N)+T(I) * D F X(N K, V) / F X(N K)$
こALLULATE TorAL PARTIALS
$15 \operatorname{PSUM}(J, N)=P S J M(J, N)+P(I, N)$
$13 \operatorname{SUM}(J)=\operatorname{SJM}(J)+\Gamma(I)$
DEI！KMINT LAZGEST こDEFFICIENT OF EACH EQUATION
1F（iva－1）17．17．18
17 「X＝\because
［JMAX $=\{$ MAX（J）
De 19 I $=1$ ，IJ J AX
IF（I（I）－IX）13，19，20
$23 \quad 1 X=1(I)$
$v x=I$
17 EDNIINJE
30 10 21
$13 \operatorname{IF}(\operatorname{IMAX}(J)+1-\operatorname{VA}) 22,23,23$
$22 . V X=1$ MAX（J）
जiv $1 \underset{\Delta}{\infty} 21$
23 VX＝iNA－1
21 IF（KSWTCH－1）24，25，25
こALGULATECDEFFICIENTS
24 ADRIG（J）$=((-$ SUM $(J)) /(V(V))+1$ ．
2う Iト（LSWICH－1）30，27，29
33 JRIL：＝IJKU
IF（ARRIG（J）） $1,125,125$
$1 A(J, N A)=-(A B ;(A D R I S(J)-2) * *.(1 .-G R I O / A N E S))+2$ ．
jb 1×27
125 A（J．NA）＝ARRIJ（J）＊＊（1．－GRID／AVDS）
こALGULATE TBTAL PARTIALS（CDRRECTED）
$290 D 28 \quad V=1, N M \Delta X$
$23 \operatorname{PSUM}(J, N)=\operatorname{PS} J M(J, N)+(A(J, N A)-1.0) * P(N X, N)$
IF（KUTTA－1）11．281，11
$281 P H I P(J)=-(S U M(J)+(A(J, V A)-1 \cdot) * T(N X))$
11 PHI（J）＝PHIP（J）
$\mathrm{SSWICH}=1$
LSWICH＝1
こALL SIMEQ（כSUM，DELX，PHI，JMAX，IE）
IF（IE．EQ．1） 34 is 32
こALL RUNKA（X，DELX，FXLIY，PTOL，X2，KUTTA，NMAX）
З010（31，60，60，50），KUTTA
31 CONTINJE
$V S=i S+1$
$D D 33 I=1$ ，NMAX
IF（ABS（DELX（I））－PTOL（I）＊ABS（X（I））） $33,33,40$
33 ことNTIJJE
1） 0 35 $1=1$ ，NMAX
$35 \times(I)=X(I)+D E_{-} X(I)$
$37 D E \cup 1$ I $=1$ ，NMAX
$V R I=N R+I$
$S 1+X(I)=こ(1) * X(N R I)+X(I)$
$V S=$
LSWICH＝O
I URIU＝IGRID＋I
IF（IGRIO－NDS－1）35，52，52
35 DK 2O $V=1$ ，NMAX
$D X(N)=X(V)-X \perp(N)$

NLI．
$x 1(: 1)=x(v)$
$25 \times(i)=x(i)+D \times(y)$
301654
$4)$ LSWICH＝LSWIC +1
It（iNS－KK）37，43，43
$37 \mathrm{~J} \cdot \mathrm{y}$ ； $\mathrm{I}=1$ ，NMAX
5j $x(1)=x(I)+U E_{i} X(I)$
On in 50
32 WRIIL $(6,110)$
43 VES＝ $2 *(N D S+1-I G R I D)$
It（V6S－MAXNOS）44，38，38
44 DD 4 $5 \mathrm{I}=1$ ，NMAX
$0 \times(1)=0 \times(1) * .5$
$45 \times(I)=x(1)+1) \times(I)$
$1 G R 10=1$
301847
33 WOS＝iNAS
WRITE $(0,340)$
211 NA＝AA＋1
WKIIt 16,140$)$
IF（iva－1－I $2 M A X) 51,47,49$
$4 \Rightarrow$ Stip
52 UQ $76 \mathrm{I}=1, \mathrm{NR}$
IF（X（I）－XRYIV） $121,75,76$
7S EDNIINJE
Dロ $17 \mathrm{I}=1$ ，VR
If（X（I）－XRMAX）77，77，121
77 CDNIINJE
VKPI $=N R+1$
VRPINL $=V R+N L$
DU $1 \mathrm{C} 2 \mathrm{I}=\mathrm{NRPL}$, VKPNL
IF（X（I）－XLMIV）121，102，102
102 EONIINJE
$301041=\mathrm{IRPL} 1$ ，NRPNL
It（x（1）－XLMAX） $104,104,121$
1J4 ESNIINJE
$N C C=N R+N L+1$
OB ICG I＝INCO，Nmax
$x(1)=1.1 x(I)$
IF（X（I）－XCMIN）121，106，106
105 こAMIINJE
De 108 I＝inco，nmax
IF（X（I）－XCMAX）108，108，121
103 EONIINUE
WRIIt $(6,330)$
うix 16 113
112 WKIlE $(6,343)$
उy 18 211
121 WRITE（6．350）
113 こALL PRTR（X，＝，NR，NL，JMAX）
57 IF（NIE）68，63，69
63 CDNTINJE
こALL CYPSEL（JMAX，X，X1，X2，NR，NL，C，NTB）
505 JD ，OO J＝iNCC，JMAX
$500 \times(J)=1 . / x(J)$
DO $520 \mathrm{~J}=1$ ，J JAX

NL

```
    SUM(J)=0.
    IJMNX=IMAX(J)
    LJMAX=LMAX(J)
    00 5,20 I= 1,1 JMAX
    I(I)=1.
    OH \10 L=1,LJMAX
    VK=K(J,I,L)
jl) T(I)=T(I)*X(VK)
52J SUN(J)=SJM(J)+T(I)
    ~ALL ROOIER (SUM,JYAX)
    こALL A<DEi/
    VTB=1
    67 IF(MK)211,212,211
212 STEP
    END
```

INTEGER FUNCTION K(J, I,L)
JIM: NSII OV NM(16), LYAX(15), ITD(5902)
CUMmín NM, It J, LMAX
$1 J=(1-1) *(\operatorname{MAX}(J)+L+N M(J)$
$k=11 \mathrm{Ll}$
REIURN
ENO

SUBKWUTIVE E JPRTIJMAX，LMAX，IMAX，NR，NL，NC
I VTLGER L
DIMINSI』V A（50），B（SO），C（3），D（10），IMAX（16），LMAX（15），E（3）
70コ FQKRAT（IHI，5）XGHEQJATIDN I2）
701 FWR：AI（／／／）
302 FORMAT（35X6041）
303 FORMAT（15×35才＊＊＊＊＊＊＊＊＊＊ERRDR DETECTED IN TERM
F，I3，13H DF EJUATIDV ：I3，12H＊＊＊＊＊＊＊＊＊＊）
934 FUKNAT（36XI3，17XI3，17X［3）
Э05 FORMAT（lHI）
TOS FORAATIIHl16X63HTHE FØLLDWING IS THE LIST OF EQUATIDVS SPECIFIED T $F \Rightarrow$ rit PRDGRAYI
Э07 FERMAI（17 $\times 34$＋IHE FZRYAI IS．．．．EQUATIDN NUMGER）
$\rightarrow 11$ FUKMAT（ 35×17－INUMBER OF EACH TERM）
903 FOKMAT（ 35×35 HTEKMS DF EQUATIDVS（THREE PER LINE））
ЭOЭ FOKNATIIHO16XG2HA SHECK IS MADE DF THE UNITS QF FACH TERM．IF THE XUNITS DIFFER）
Э1J FGKíAT（17X4JHIN AN EQUATION，AN ERRDR MESSAGE RESULTS）

（） $1 \mathrm{H} 7,1 \mathrm{H} 9,1 \mathrm{HF}, 1 \mathrm{HO} /$
DATA PLUS／1H＋／ wRIIE（5，705）
WKIIE（S．706） WRITE（5．707） WRITE（S，ЭO8） WRIIE（S，Э11） WKIIE（5，709） WRIIt（5，710）
NENI＝O
UO $200 \mathrm{~J}=1, \mathrm{~J} 4 \mathrm{AX}$
WRITE（S． 700$) ~ J$
VECHT＝3
1 C $A P=0$
$L A=1$
j $K U=1$
$K L=1$
$L=L A$
Dゆ $10 \quad 1=1,60$
$A(I)=B L A N K$
$13 B(I)=B L A V K$
$A(1 \delta)=P L J S$
$A(3 H)=P L J S$
$L B=1+2$
IF（L－ST．LMAX（J））GD TD 200
IF（（L＋2）．LE．LMAX（J））Gض TD 20
$A(3 \mathrm{C})=B L$ ANK
$L B=L+1$
IF（（L＋1）•EQ．LMAX（J））GDTD 20
$A(1 甘)=B L A N K$
$L B=L$
2 2 EONTINJE
$I J=I \operatorname{MAX}(J)$
Dis $150 \mathrm{~L}=L A,-B$
IND＝0
UD $100 \quad I=1$ ，IJ

VCíK（J，L，I）

IC＝ 1
IF（NCG．LE．NR）GU TD 410
$1 \mathrm{C}=2$
IND－IND＋1
$N C Q=N C D-V R$
415 EWNIINUE
$A(K(1)=$（IC）
If（ivCx－©
$A(K \cup+1)=U(N C \delta)$
$K U=n U+3$
36 16 10う
$3) A(K L+1)=0(1)$
$V C D=N C D-10$
$A(K u+2)=D(10)$
IF（NC：•VE．））$A(K J+2)=D(N C D)$
$K U=K U+4$
30 10 100
$5 〕 \mathrm{~B}(\mathrm{KL})=\mathrm{C}(3)$
I iNO－IND－1
$V C D=N C D-V R-N L$
It（NCU．GI．9）Gも Tの7 7
$\mathrm{b}(\mathrm{KL} L+1)=u(\mathrm{VC}$ ）
$K L=K L+3$
うも 「o 100
$75 \quad 3(K L)=0(1)$
VC $D=N C=10$
$u(K L+2)=0(10)$
（F（NC6）－VL．） $\mathrm{B}(K L+1)=D(N C \emptyset)$
$K L=K L+$＋
10コ こがいII：JE
IF（ICAP ．EQ．O）ICAP＝IVO
It（INO ．EQ．ICAP）Gり TD 400
whIte（ 6,901 ）
wKIft（5，孔u3）L，J
VEC：UT＝VECSTT＋ 1
VEDI $=1$
403 Enivilaje
IF（LA＋1－L）1j0，140，130
$133 \mathrm{KU}=20$
$K L=20$
íd 10150
$140 \mathrm{KU}=40$
$K L=40$
$15 J$ Gentlinje
$L B=L B-L A+1$
（D） $160 \quad L=1,3$
$163 E(L)=L+L A-1$
WRIIL（s， 701 ）
WKIIE（S，702）A
NRIIE（S，702）B
WRIIL（G，ЭU4）（F（L），L＝1，LB）
$L A=L A+3$
IF（NLCVT．LT．5）GJ TD5

NKIIL(S, ЭU5)
IF(NENT.VE.J) CALL EXIT
RETURN
END

```
SUbNíUTIVE READK
DIMINSIOV IMAX(15),LYAX(15), VM(16), ITD(5902)
こEMMBN NM,ITJ,LMAX,IMAX, JMAX
\(V=1\)
() 10 J=1,JMAX
YAX-IMAX(J)* \(\operatorname{MAX}(J)+N-1\)
2tAU(5,120) (ITU(M), M=V, MAX)
\(\operatorname{lN}(J+1)=\operatorname{MAX}\)
() \(V=N A X+1\)
\(N M(1)=0\)
RETUKN
12) FEKFAT(23I4)
972 FEKNAT(12A6)
END
```


JIM：NSIKV X（15），X1（15），X2（15），V3（15），X3（15），C（15）
EDMMWIN／DATA／TABLE（69）
REAI（5，920）VIH，N3
IFIN1H）510，2，510
2 WRIIE（6，100）
$I=N K+N L+I$
IL ；J＝I，JMAX
$5 \times(J)=X(J) * 1 . J E+12$
On $10 \mathrm{~J}=1$ ，JMAX
$15 \times 3(J)=3$.
$J=J M A X$
25 I $P M X=1 寸 3(J)$
IF（IPMX）23，23，25
23 I $P M X=1$
$25 \operatorname{IF}(J-N 2-V L) 2) 0,230,30$
$30 \mathrm{~T} L=.05$
Dy au $I=1$ ，IP $4 x$
IF（X（J）－2500．）40，40，60
$4 J$ IF（X（J）－10．150，50，50
TABLE 2
5）$V B=13$
$V T=31$
今的 10
IABLE 1
$53 \quad V b=1$
UT－12
73 vTb＝NT－ivu＋1
$J=X(J)$
こALL PTME゙HIU，I，K，NB，VI，IPMX，CDMP）
$X 1(I)=$ Cgup
$x(J)=U-C \& M P$
$1+(\times(J)-T \& L * \times 1(1)) 85,85,80$
bJ EJNIIIJE
$\because 61870$
бう $\quad\left[P M_{i} X=1\right.$
$93 \times(J)=0$.
UL $1 \cup 0 \quad 1=1, I P M X$
$100 \times(J)=X 1(1)+X(J)$
$I=J-N R-N L$
$u=X(J)$
WRIIt（S，ЭOl）I，IPMX
WRIIE（S，ЭO2）（XI（K），＜＝I，IPMX）
NKIIE（S，Э03）I，U
こも 10 50J
200 VPC $=0$
IF（J－N2）400，400，210
210 1bL＝． 1
$K K K=1$
（1） $2.40 \mathrm{I}=1$ ，I PMX
IF（X（J）－50．）220，230，230
220 IF $(x(J)-10) 221,222,$.
221 IF（X（J）－1．）223，224，224
$222 \times(J)=x(J) / 10$ 。
$N P C-N P C+1$

3614220
223 VPL＝NPS－1
$x(J)=x(J) * 10$ 。 （36 1．） 221
22＇$x(J)=x(J) * 10$ ．
$\operatorname{vI}(8-x(J)+.5$
$x 1(1)=V T H$
$V P C=N P_{-}-1$
$x(J)=x(J) *(1)$＊＊VPに）
x1（I）$=\times 1(I) *(10$＊＊VPら）
$J N K=J-V R$
IF（L．（JVR））226，226，225
$225 \times 2(K K K)=x 1(I) * C(J N 2)$
$x(J i K K)=x(J N R)-X 2(K K K)$
$K K K=K K K+1$
225 EXNTINJE
T\＆1k 250
$=\quad$ TABLES 3 AVD 4
230 VB＝ 32
$\mathrm{V} T=-38$
$U=X(J)$
こALL PTMEH（U，I，K，NB，VT，IPMX，CDMP）
$V T A=N T-N E+l$
$N T B=N T B+K$
$X 2($ nKK $)=T A B L \equiv(N T B)$
XI（I）＝СOMP
$x(J N R)=x(J N R)-x 2(K K K)$
$x(J)=x(J)-C D y P$
$K K k=k K k+1$
IF（X（J）－TDL＊ 1 （1））250，250，240
$24 J$ GथNTINJE
Tit 16 255
25）IPMX＝1
$255 \times(J)=0$ ．
$0 \triangleq \geqslant 00 \quad I=1, I \supset M X$
$260 x(J)=X(J)+X 1(1)$
$K K K-k K K-1$
$\times 3(J i v R)=0$
UK $270 \mathrm{~K}=1, \mathrm{~K}<\mathrm{K}$
$273 \times 3(J N K)=\times 3(J V R)+\times 2(K)$
NRIIt（5，704）JNK，IPMX
NRIIt（S，ЭO2）（XI（K），K＝1，IPMX）
$j=X(J)$
WKIIE（S，ЭU5）JNR，U
$J=X 3(J \vee R)$
WRIIE（S，ЭUG）JNR，U
Gめ 1J 50J
$40310 L=.01$
$0 \times 10 \quad \mathrm{I}=1, \mathrm{I}$ M MX
$V B=46$
$N T=69$
$u=X(J)$
こALL PTMEH（U，I，K，NB，VT，IPMX，CDMP）
X1（I）＝БDMP
$J=x(J)-\operatorname{ComP}$
$X(J)=U$

NL t

```
    It(1:-INL*X1(1))420,420,410
    41J %xivllNJt
    i0 1: 430
    420 1 PMX =1
    43) x(J)=x3(J)
    iv) 440 I= 1,I PMX
    44J X(J)=X(J)+X1(I)
    *RIIE(S,ЭU7) J,IPMX
    NRIIE(5,Э02) (XI(K),S=1,IPMX)
    wRIIE(5,Э08)
    IF(J-NL)450,450,460
    45) J=X3(J)
    IF(U) 46),46),455
    455 wRIIE(S,747) U
    WKIIE(S, Э0&)
    46) }\textrm{J}=\textrm{X}(\textrm{J}
    WRIIE(S,FlO) J,U
    つつう J=J-1
    IF(J)525,505,20
    505 1=iv:!+NL + 1
        OK buG J=I,J4AX
    20s x(J)=x(J)*1.E-12
    j1J WKITE(5,700)
    ->OJ F&RNAT(1H1)
    ->O1 F&RHAI(///24KI5HF多マ CAPACITDR こ.I2,5H THE,I2,
        F17H CXMPDINEVT(S) ARE/)
    702 FNK:AI(3)X F16. 3)
    TO3 F{RNAT(/24XIHC,12, ЭH IS THUS,EL6.8,
        F17H MISROMICZ&FARADS)
    304 FOKFAT(///24K14HFDR INDUCTOR L,I 2,5H THL, I2,
        F17H CWMPDINFVI(S) ARE/)
    O5 FEK\AI(/24XI+L,12, 习H IS THUS, EL6.8,13H HEVRIES, ANOI
    OOS FXRAAT(24X23+IHE IVDJCTIVE PART DF K,12,4H IS ,E1S.8,5H DHMS)
    907 FQK:ATI///24XI4HFQ2 RESISTDR R,I 2,5H THE,I 2,
        F17H C&MPQNENT(S) ARE /)
    7O3 FAKNAT(1H)
    OO FORIAT(24\times31 TWITH AN IVOUCTIVE RESISTANCE QF,E16.8,
        F5H,HNiS)
    #1J F&KMAT(24XIH2,I2,9H IS THUS ,E16.8,5H DHMS)
    72J FニK:AT(I1,4X15I1)
        QEIUKIN
        ENO
```

NLt

```
    SUBK&uTIVL PTMCH(U,I,K,NB,NT,IPMX,CDMP)
    EもMN&iv /OATA/ TABLE(59)
        VP=1
        IF(i.1)300,30),100
100 IF(U-10.)110,110,200
11J IF(U-1.) 250,305,305
20J U=U/10.
    VP=NP+1
    j* 12 103
25J J=U*10.
    vP=:NP-1
    SM 1x 110
30J VT=-NT
305 )& . $10 K=NH,NT
    IF(TABLE(K)-J)31J,310,320
31J CUNIINJE
    K=NT
32J IF (k-NG) 360,360,330
33) IF(I-IPMX)35),34J,34)
34) IF(IABLE(K)+TABLE(K-1)-2.*U) 360,360,350
35) <=K-1
36J [田P=TABLE(K)*(1J.**NP)
    J=U*(1J.**NP)
    RETUKN
    END
```

```
    BLDCK DAIA
    EDMMEN/DATA/TABLE(59)
    MAIA TABLE/ 1.J, 1.2, 1.5, 1.8, 2.2, 2.7. 3.3. 3.9, 4.7. 5.6,
| 6.8. 3.2, 1.0, 1.2,1.5, 1.8, 2.0, 2.2, 2.5, 2.7, 3.0. 3.3.
A ;.6, 3.9, 4.7, 5.0, 5.1, 5.6, 6.8, 7.5, 8.2, 50., 100.,200.,
T 400., 800., 140J., 2000., 500., 1000., 2000., 4000., 8000.,
A 400J., 8030., 1.0, 1.1, 1.21, 1.33, 1.47, 1.62, 1.78, 1.96,
| 2.15, 2.37, 2.61, 2.87, 3.16, 3.48, 3.83, 4.22, 4.64, 5.11.
A 5.62, 0.17, 6.81, 7.50, 8.25, 9.09/
ENO
```

NLE

SUBKDUTIVE FGONIMAXNOS，iVDS，KK，JMAX，NMAX，NR，LMAX，I YAX，F，PTDL，X， S

C，XGUES，FX，IFRR，FXLIM，DFX，X 2, PHIP，OXI DIMTNSIĐV IMAX（15），F（15），FØRG（15），X（15），DELX（15），C（15），SUM（15）， UXI（15），FX（15），DFX（15，15），PSUM（15，15），P（215，15），T（215），PHI（15）， IPTKL（15），FF（15），XGJES（15），LMAX（15），X2（15），FXLIM（15） ）［MtNSIWV PHIP（15），DX（15）
110 ＋ORFAI（／16H SINGULAR MATRIX／）
130 FWRMAT（SH GRID $=,[4,3 X, 4$ HNES＝，I4）
320 トथRHAT（／／2ЭH COMMENCIVG CDNSTANT APPRØACH／／）
WRITE 16,320 ）
IERK＝1
1） $61 \quad I=1$ ，NMAX X（I）＝XOUES（I）
$1 \times 1(1)=x(I)$
IGK1D＝1
$33 \mathrm{KSWICH}=0$
LSWTCH＝0
ANDS＝NBS
$V S=0$
22 WKIft $(6,180)$ IGRID，VOS
KUTTA＝1
$43062 \quad I=1$ ，NMAX
2 OELX（I）＝3．
こALCULATE PARTIALS
OL 3 M $=1$ ，NMAX
IF（ $\mathrm{N}:-\mathrm{NR}) 4,4,5$
$5-5(M)=0$ ．
$4 \quad V K M=N R+M$
$F X(F)=-(Y) * X(N R M)+X(Y)$
3 EDNIINJE
D® $10 \mathrm{~J}=1, \mathrm{JMAX}$
$\operatorname{SUM}(J)=0$ ．
J $11 \quad V=1$ ，NMAX
$11 \operatorname{PSUM}(J, N)=0$ ． $I J M A X=I M A X(J)$
DO $12 \quad I=1$ ，IJMAX
$T(I)=1$.
LJMAX＝LMAX（J）
DG 13 L＝1，LJMAX
$N K=K(J, I, L)$
$13 \quad \mathrm{r}(\mathrm{I})=\mathrm{T}(I) * F X(N K)$
Uめ $14 \quad V=1$ ，NMAX
$P(I, N)=0$ ．
DD 1S L＝1，LJYAX
$V K=K(J, I, L)$
$15 P(I, N)=P(I, N)+T(I) * D F X(N K, N) / F X(N K)$
CALCULATE TOIAL PARTIALS
$14 \operatorname{PSUM}(J, N)=\operatorname{PSJM}(J, N)+P(I, N)$
$12 \operatorname{SUM}(J)=\operatorname{SUM}(J)+T(I)$
IF（KSWTCH－1）28，29，29
EALCULATE COVSTAVT TERM
23 FURG；（J）＝SUM（J）
27 IF（LSWTCH－1）$\div 0,41,41$
40 GRIU 4 IGRIU
IF（FORG（J）） $50,51,51$

NLE

```
    50 FF(J)=F(J)**IGRID/ANOS)*(-(ABS(F\emptysetRG(J))+2.*F(J))**(1.-GRIO/ANOS))
    l+2.*'(J)
        30 10 41
    5L FF(J)=F(J)**(GRID/ANDS)*FORG(J)**(1.-GRID/ANøS)
    41 IF(KUTTA-1) 10,411,10
411 PHIP(J)=-SUM(J)+FF(J)
    10 PHI(J)=PHIP(J)
        <SWTCH=1
        LSWICH=1
        ZALL SIMEQ (JSUM,DELX,PHI,JMAX,IE)
        IF(IE .EQ. 1) GO TD 17
        SALL RJNKA(X,OELX,FXLIM,PTDL,X2,KUTTA,NMAX)
        G0 T|(20),43,43,43), KUTTA
200 VS=iNS+1
    16 DO 18 I=1,NMAX
```



```
    18 GDNIINUE
        U0 20 I=1,NMAX
    20 x(I)=X(I)+DELX(I)
    21 DO 34 I=1,NMAX
        VRI=NR+I
    34 FX(I)=6(I)*X(NRI)+X(I)
        VS=0
        LSWICH=O
        IGKID=IGRID+I
        IF (IGRID-VAJ-1) 42,99,99
    99 IERK=IERR+1
        RETURN
    42 Dis 10 I=1,NMAX
        vx(I)=x(I)-xI(I)
        xl(I)=x(I)
    30 x(I)=x(I)+DX(I)
        G0 Te 22
    19 LSWTCH=LSWTC ++1
        IF(:IS-KK)24,25,25
    24 DO 26 I =1,NMAX
    26 X(I)=X(I)+DELX(I)
        O0TE43
    17 WRITE (0,110)
    25 VOS =2*(NDS+1-IGRID)
        IF(:NOS-MAXNOS)31,23,23
    31 OD 32 I =1,NMAX
        DX(I)=DX(I)*.5
    32 x(I)=X1(I)+D\times(I)
        IGRID=1
        G8 I& 33
    23 UD 35 V=1,NMAX
        VRM=NR+N
    35 FX(iN)=C(V)*X(NRM)+X(V)
    36 RETURN
        ENU
```

NL t

SUBRDUIIVE SIMEQ (A, X, B, N IERR) SOLUIIDN ふF SIMULTANEWUS LINEAR EOUATIWIS OIMLNSIOV A (15,15), X(15), B(15), IND(15)
うWl $I=1$; iv
$1 \quad$ INU(I) $=1$
DD Ib $K=1, N$
SEAKCH array for largest value
I $X=r$.
$J X=k$
Dis $3 I=K, N$
U0 $3 J=K, N$
$\operatorname{IF}(A t S(A(I, J))-A B S(A(I X, J X))) 3,3,2$
$21 X=1$
$J X=J$
3 CIONTINJE
IF (A(IX,JX)) 5,4,5

* IERQ=1

REIUKN
j IF (IX-K) $8,8,6$
EXCHANSE RGWS
5 DE $7 \mathrm{~J}=\mathrm{K}, \mathrm{N}$
TEMP =A $(I X, J)$
$A([X, J)=A(K, J)$
$7 A(K, J)=$ TEMP
IENP=B(IX)
$B(I X)=B(x)$
$B(K)=T E M P$
3 IF (JX-K) 11,11,9
EXCHANSE CQLJMNS
$\exists 100101=1, V$
$\operatorname{rEMP}=A(I, J X)$
$A(I, J X)=A(I,<)$
$1) A(I, K)=T E M P$
INUEX=INO(JX)
$\operatorname{INU}(J x)=\operatorname{IND}(<)$
$\operatorname{IND}(K)=I \operatorname{VDEX}$
11 PIV,I $=A(K, K)$
UB $12 \mathrm{~J}=\mathrm{K}, \mathrm{V}$
$12 A(K, J)=A(K, J) / P I V Q T$
$B(K)=E(K) / P I V E T$
DN Lb $I=1, N$
IF $(I-K) 13,15,13$
$13 \operatorname{TEMP}=A(I, K)$
DE $14 J=K, N$
$14 \Delta(I, J)=A(1, J)-A(K, J) *$ TEMP
$B(I)=B(I)-B(\langle) * I E M P$
15 CENTINJE
UO $16 \quad I=1, N$
I NOLX=INO(I)
$15 X(I$ IUUEX $)=$ is (I)
IERB=0
RETURN
END

NLL

```
    SUBKDUTIVE RUNKA(X,OELX,XI,PTOL,X2, KUTTA,NMAX)
    JIMINSIOV X(15),DELX(15),X1(15),PTDL(15),X2(15)
400 G% 10 (bJG,520,540,560),KUTTA
500 jiv 505 I=1,N4AX
    xl(1)=x(1)
    x(I)=xl(I)+UELX(I)/2.
    X2(1)=DELX(1)
    KUT1A=2
    G0 10443
520 00 525 I=1,NMAX
    X(I)=x1(I)+DELX(I)/2.
525 x2(1)=x2(I)+2.*OELX(1)
    KUTIA=3
    G6 IE 43
540 D0 545 I=1,VMAX
    X(I)=x1(I)+DELX(I)
545 x2(1)=x2(1)+2.*DELX(1)
    KUTTA=4
    G0 1&43
560 DU 565 I=1, VMAX
    JELX(I)=(x2(I)+DELX(I))/6.
565 x([)=x1(1)
    KUIIA=1
    43 RETURN
    LNL
```


NLt

```
        SUBK@UIIVE ESTIMM (NMAX,JMAX,NR,NL,NER,IX,IMAX,LMAX,F,C,FXGRIG.
    >
        MIMLNSIGV FXORIG(15),FXLIM(15),X1(15),XP(15),C(15),FX(15),SUM(15),
    UF(1',),IMAX(15),LYAX(15),I(215),PHI(15),CHX(15),TDL(15)
110 F6R:AI (/3\times3HLX=,I4)
    VCC:NR+NL+1
    JB L=NCC,NMAX
    FXLIM(L)=1./FXLIM(L)
    FXNKIG(L)=1./FXURIG(L)
    TEMP=FXNRIG(L)
    FXLGIG(L)=FXLIM(L)
29 FXLIM(L) =TEMP
    IF (ABS(FXDRIG(1)-FXLIM(1)).LT.FXERIG(1)/1000.1 GD T0 200
    JJ=1
    LX=?
20 If (JJ-1) 16,15,16
15 DW 3 J=2,NMAK
    3 FX(J)= EXP((ALDG(FXLIY(J)*FXOQIG(J)))/2.U)
16 )iD l JK=1,NMAX
    D0&I=1,NDR
    AP=1-1
    XNDS=NDK
    FX(JK)=FX|RIG(JK)*EXP(AP*ALDG(FXLIM(JK)/FXDRIG(JK))/(XNDS-L.O))
    T& & M=L,JMAX
    SUM(M)=-F(M)
    I MMAX= IMAX(M)
    [0) J = 1, IMMAX
    I(J)=1.
    LMMAX=LMAX(M)
    U) 10 N=1,LMMAX
    NK=K,(M,J,N)
10 I(J)=T(J)#FX(NK)
    9 SUN(M)=SUM(M)+T(J)
    8 PHI(M)=-SUM(Y)
        APHI=0.
        UD 11 N=1,JMAX
11 APHI=APHI+ABS(PHI(V))
        IF (I-1) 22,12,22
22 IF (APHI-APHI1) 12,12,13
12 APHIL=APHI
    UO 19 N=1,NMAX
19 <1(N) =FX(N)
    2 CgNIINUE
    Gis 12 26
13 UB && N=1,NMAX
24+X(:)=X1(N)
25 IF (JJ-1) 18,17,18
18CHX(JK)=\triangleBS(ALQG(XP(JK)/XI(JK)))
    IOL(JK)=IX*ALOG(FXLIM(JK)/FXZRIG(JK))/(XNQS-1.)
    IF(CHX(JK)-TEL(JK)) 21,21,23
21 LX=LX+1
    IF (LX-NMAX) 30,24,24
23 LX=6,
30 NRITE (6,110) LX
17 DKC 14 V=1,NMAX
```

NLL
TR-292-6-078
NSLII
$14 \times P(\ldots)=F \times(N)$
1 CuNIIVJE
$J J=J J+1$
CD 1 20
24 wRIIt: 16,110 LX
) F_{L} - $\mathrm{I}=1$, NMAX
$25 \mathrm{FX}(\mathrm{I})=\mathrm{XP}(\mathrm{I})$
REILRN
200 0. $2011=1$, V4AX
201 FX(I) FFXDRIG(I) RETURN
END

NLI
NSLIL
September 1966

SUBK, UUTIVL PRIR(X,C,NR,NL,JMAX)
DIM:NSIjy $X(15), C(15)$
$V C=J M A X-V R-V L$
Od $10 \quad 1=1$, NR
VKM=NR+I
$10 \times(I)=x(I)+C(I) * X(N R M)$
Un yu $I=1$, JMAX
I $\mathrm{J}=\mathrm{C}$
wKIIt(6,904)
IF(I-NR) $30,30,40$
30 nKIIE (6,9UI) I,X(I)
I $J=I$
40 IF(I-NL) $50,50,60$
$50 \quad \forall R M=i v R+I$
WRITE(6,902) I,X(NRM)
IJ=1
60 IF (I-NE) $70,70,80$
70 NRM $=N K+N L+1$
wRIIE (6,9U3) I, X(NRM)
IJ=1
$801+(1 J) 90,100,70$
90 CONIINJE
100 2ETUKN
$\rightarrow 01$ FURMAT ($1 H+3 \times 2 H R(, I 2,2 H)=, E 16.8,2 \times 4 H E$ HMS $)$
$\exists 02$ F 2 KWAT $(1 H+37 \times 2 H L(, 12,2 H)=, E 16.8,2 \times 7$ HHENKIES)
ЭЭ3 FथRNAT $(1 H+73 \times 2 H C(, 12,2 H)=, E 16.8,2 \times 6 H F A R A D S)$
9J4 FOR:ATILH)
END

TR－292－6－078
＂．SLlる
September 1966

```
    SUGRDUTIA {2,:THK (X,JMAX)
    CIM!NSIG, x(!う),N(8:),RF(1t),RC(1t),C.2Et(41)
    IIMINSINA &AGVIz )
```



```
    1)
```



```
    IAl!G!P IW:NY
    INTGGR:LANS
    INTEG!R 1LE
```



```
    LATA {LANK/lH/
    REA[(3,; :) '
    KHA[(b,O 1) HAX
    NCEN=?
    NNUM=.
    [: 10 I=?,1!
    !(J)-i
10んC(J)=.
    k=0
    iLE &' J=1,NM:X
20 k=k+1
```



```
    IF(N(M).!1.,BLANK) G* T! 20
    k.A=k
    ivA= j
3!`*}=k+
```



```
4" `(k)=`.(k)/1:?,741324
    iA=1O*NA+N(k)
    k=k+1
    IF(N(K).1I.*) ri) TO45
    IF(N(r).1.1.Tm:-NTY) GR T: 4)
45 K=K-1
```



```
    {!(NA+1)=x(.))
    IF(NA.OT,NOUF) NNUM=NA
    OC}1:
50 RC(NN+1)=x(J)
    IF(NA.GT..N心ご:)NOEN=NA
63 CRNIINGF
    ACC=1.1-1:
    i^7, I= , 1;
    Catr(I)=?(1)
70 RE(I)=\because.
    11=NNUN+1
    L\because7: I=!,11
    I }=11-
75 RE(12+1)=rごG(1)
    & }77\quadI=1,1
77COEF(1)=!!(1)
    CR &D I=1.C"
    ソ日まし(1)= -
80 R<&11(1)= .
    C^LL !OTPLY(`NUM,COEF,4, ACL,RTP,PII,CQNV,A,V,C,L,E)
    [2 S.) I=1,N\MN
```

```
        IK=I%
        R巴0T(15-1) -!l!(1)
    OC KODT(1K)-N|1(1)
    1: %; 1:1,1"
    (!1111)-!(1)
    )', 事(1)
        I]=NL!N+1
    1: 57 I=1,11
    12=11-1
97 PC(I%+1)=CxtF(I)
    & 9% I=1,16
98 CCLF(I)='C(1)
    (ALL STP:LY(NLEA,CDEF,4, ACC,RTR,RTI,CQCV,A,L,C,D,E)
    E& 1!,I=1,N:EN
    IK=I*O
    ?こそ「1(IK-1)=`「O(1)
LO. ぶE| (IIK)=RTI(I)
    !ETUP:
SCE r.RMAT(& A1)
GOl F \RMAI(I:)
    iNO
```

SUbixdulive AROEV
FREWUEVCY RESPD：ISE PRODRAM
UIMENSIBV X（150），Y1（150），Y2（150），Y3（150），XLAB（12）
$J I M L N S I U V F S(40,3), G S(40,3), F D(40,2), G \neq(40,2)$ ，

Z $\operatorname{CCDIKQ(12),~BCDAMP(12),BCDPHZ(12),XFKEQ(150),YAMP(150),YPHL(150)~}$
JIMTNSIUV BCDMAG（12），YYAG（150），YLMAP（150），KRDSS（150），KROS（150）
DIMINSIOV XCPS（150），BCDCPS（12），F360（40），G360（40）
DIMENSIAV SATF（40），SATG（40）
DIMFNSIOV RE（10），RC（16）
COMMEN／PLETER／RE，RC，VN，ND，RDQT，RDETI
रEAL MSQ
DATA BCDFRQ（1）／72H
$\times 0$
UAIA GCDAMP（1）／72H
X
UATA BCDPHZ（1）／72H

X
UATA BCDMAG（1）／72H
X
DATA BCDCPS（1）／72H
／
X （）
IF（INNNO EN．O）RHTURN
REAU（5，1）ICPS，USTPS，FRQMIN，FRQMAX，DEMIN，
KDBMAX，AMPMIV，AMPMAX
1 FDR…AT（11．4X，I5，5F10．5）
IF（（1RQMAX－FROMIV）．GT．．OOO1）G才 TE 101
FRLMAX $=25$ ．
FRWNIN＝．OUI
101 NI＝KWMIN＊6．2832
$\omega F=1$ RWMAX＊6．28．32

DBMI： $1=-60$ ．
ObNAX＝40．
201 IF（（AMPMAX－AYPMIV）．GT．．0001）GD Ti 301
AMPMIV＝．OUl
AMPBinX＝100．
301 ICAM＝0
IF（：NSTPS． EQ .0 ）NSTPS $=25$ ．
VSTRPS＝ALQGIO（FRJMAX／FRQMIV）
VSTHPS＝NSTEPS＊NSTPS
KUU．$=0$
$K \equiv L i / 1=3$
人 1 L12 $=$ ）
100 LINLS $=50$
$K T K=40$
D』 $\therefore 00 \quad I=1,40$
$\operatorname{FS}(1,1)=0$ ．
$\operatorname{GS}(1,1)=0$ ．
$F S(1,2)=0$ ．
$\operatorname{GS}(1,2)=0$ ．
$+S(1,3)=1$ ．
$200 \operatorname{GS}(1,3)=1$ ．
IPSINT＝0
wRIIt（5，1543）

NSL 14

$$
K P L .: I=1
$$

If（ILAM）0，3，6

11（ILAM）り，O，＇
；CALI（AMRAV（935）
6 CWNIINJ．
$260 \quad N=N:$
wKIIt15，210）NN
210 rWRHATI／33X，2GHTHE NUMERATQR IS OF DRDER，I 2 ，
142H．THE PELYVBMIAL IN DESCEVDING DROER BELøW／／）
FACIF＝RE（1）
$L=N i v+1$
WRIIt（6，280）（RE（I），I＝1，L）
280 FERMAI（ 34×4 ， 4 E 16.3 ）
wRITE（5，310）
310 FORAAT（／33X，14HTHE RZOTS ARE－）
wKIIt $(6,3 \angle 0)$

11OHIMAJ．PARI）
$V=N: * 2$

340 FNKMAT（ $33 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X}, \mathrm{E} 12.5,8 \mathrm{X}, \mathrm{E} 12.5,5 \mathrm{X},[12.5$ ）
$370 \quad \mathrm{I}=1$
$375 \mathrm{~J}=1+1$
F36U（1）$=0$ ．
$K=J+J-3$
IF（：$-J+1)$ 90），40つ，380
380 IF（kxit $(x+1)) 382,381,382$
$381+S(1,3)=R \Delta Q T(K) * R \varnothing 2 T(K+2)$
FS $(1,2)=-R D D T(K)-R Q O T(K+2)$
30 Gij IE 383

FS（I，2）$=-2$＊RODI（K）
$383+S(1,1)=1$ ．
$I=1+1$
Gथ 1x 375
$400+S(1,1)=0$ ．
FS $(1,2)=1$ ．
トS（1，3）＝R RDD（K）
900 CDNIINJE
$910 \quad N=N:$
WKIIE 6,9201 NO
720 FORMAT $/ 33 X, 28 H T H E$ DEIDMINATRR IS OF ZRUER ，I2，
142H．THE PDLYNQMIAL IN DESCEVDING ORDER BELDW／／I
FACI $\mathrm{C}=2 \mathrm{C}(1)$
$L=i v+1$
WRIIE（6，280）（RC（I），I＝1，L）
WRIIE（ 6,310$)$
WRITE 6,320$)$
$\mathrm{N}=\mathrm{ill}: 2$
ix $935 \quad I=1, v$

WKITE（6，340）（RDUT（I），I＝1，N）
$770 \quad I=1$
$780 \mathrm{~J}=\mathrm{I}+\mathrm{I}$
G360（I）＝0．

```
    k= J+J-3
    IF(%-J+1) 1200,1000,740
    990 1+(к&心\(k+1)) 992,991,992
    771 6S(1,3)=2x#T(K)*200T(K+2)
    GS(I,2)=-R#DT(K)-RADT (K+2)
    180 (iv 10 793
```



```
    GS(1,2)=-2.* *DDT(K)
    7\ni3 GS(1,1)=1.
        I=I+I
    (G0 Ik 980
    1000 GS(1,1)=0.
        GS(1,2)=1.
        G)}(1,3)=-R0.\T(K
    1200 wR11E(6,1201)
    1201 FERFAI(1X)
C PHASL CHFGKER LODP 320J THRU 3234
    UU 3234 I=1,<TR
    IF (FS(I,1)) 3202,3205,3202
    3202 IF (FS(I,3)) 3210,3203,3208
    3203 FS(I,3)=ABS(FS(I,3))
    IF(1-S(I,2)) 3213,3204,3207
    3204 FS(1,2)=4BS(FS(1,2))
    G& 1k 3207
    3205 IF(1S(1,3)) 3207,3205,3207
    3206 FS(I,3)=AUS(FS(1,3))
    3207 SAT&(I)=+1.0
    +360(1)=0.0
    GN 1& 32.14
    3203 IF(1S(I,2)) 3213,3209,3207
    3209 FS(I,2)-AuS(FS(I,2))
    SAIt(I)=-1.0
    F30C(I)=+1.0
    G0 1』 3214
    3210 IF (FS(I,2)) 3213,3204,3207
    3213 SAIF(I)=+1.0
    F36:(I) = +1.0
    3214 COHTINJE
    IF(uS(I,1))3222,3225,3222
    3222 IF(6,S(I,3))3230,3223,3228
    3223GS(1,3)=AES(GS(I,3))
    IF(:S(I,2))3233,3224,3227
    3224 GS(1,2)=ABS(GS(I,2))
    G(x) In 3227
    3225 IF(!,S(1,3)) 3227,3226,3227
    3226 GS(1,3)=ABS(GS(I,3))
    3227 SATG(I)=+1.0
    G36:(I)=0.0
    GD Ik 3234
    3228 IF(US(I,2))3233,3229,3227
    3229\operatorname{GS}(1,2)=AUS(GS(I,2))
    SATi,(I)=-1.0
    G30((I) = +1.0
    G| IN 3234
    3230 IF(GS(I, 2)) 3233,3224,3227
    3233 SAT(,(1)=+1.0
```

$(.36 .11)=+1.0$
$3<34$（．Hidlld．
S\｜PG－N：リリS

1230 WR111（6，1240）
1240 FNKAAI（／／／30X，27HNUMBER DF STEPS IS NEGATIVE）
1245 GALL GETBUT（ICAM）
1250 IF（VSTEPS．VE．1）G0 T0 1300
$1260 \mathrm{~W}=\mathrm{wl}$
ASSIGN 1200 T IFFY
GD 1x 1500
1270 It（nI） $1280,1280,1250$
1280 hRIIt（6，1290）
1290 FOKRAT（／／／30X，44HIVITIAL DMEGA IS EQUAL TO DR LESS THAN LEREZ．）
3D IN 1245
1300 IF（ht－WI） $1310,1310,1321$
1310 wRIIt $(0,132)$ ）
1320．FORAAII／／／30X，42HFINAL GMEGA EQUAL TO QR LESS THAN INIIIAL．I
GD 16 124＇
1321 NUMPTS＝STEPS＋ 1 ．
$1330 \mathrm{XX}=\therefore \mathrm{L}$ W（WI）
$Y Y=N L X_{i} J(W F)$
$Z Z=(Y Y-X X) / S T E P S$
$W=W I$
1335 ASSIGN 1340 TV IFFY
G\＆ 181500
1340 STEPS＝STEPS－1．
IF（SIEPS） $1230,1360,1350$
$1350 \quad x x=x x+L L$
$W=E X P(X X)$
Gv 1t 1335
$1360 \mathrm{~W}=\mathrm{WH}$
ASSIGN 20u0 TA IFFY
1500 IF（LINES－50）1500．1520，1520
1520 ASSIGN 1560 TO JIFFY
1530 WRITE（6，1540）
1540 FDR：AT（1HL）
WRIIE 16,155 ）
1550 FORAAI（／32X，41HOYEGA－RAD／SEC F－CYCLES／SEC AMPLITUDE？
$124 H 2 O L G O$ AMP PHASE－DEG／／）
LINES＝O
GOTE JIFFY，（1560，1720）
$1560 \mathrm{WSG}=W * W$
ANS：AG＝FACTF／FACIG
$\triangle N S P H L=0$ ．
（i） $1650 \quad I=1,\langle T R$
F© $(I, 1)=F S(I, 3)-F S(I, 1) * W S 2$
Gid（I，1）$=$ GS（I，3）－GS（I，1）＊NSQ
Fも（1，2）＝FS（I，2）\＃W
1570 Gu（1，2）$=\operatorname{GS}(1,2) * W$

IF（：SQ－1．） $1580,1590,1580$
$1580+M(I)=S Q R T(M S Q)$
G0 TV 1600
$1590+M(1)=M S 2$
1500 MSG＝G民（I，1）＊GB（I，1）＋G0（I，2）＊G0（I，2）

IF（：Su－1．）1610，1620，1610
1610 GM（1）＝SNRT（M）Q）
（iv） 161630
$1620 \mathrm{GM}(1)=4 \mathrm{Sin}$
1630 FP（I）$=S A T F(I) * A I A N 2(F Q(I, 2), F D(1,1))+F 360(1) * 6.2831853$
$\mathrm{GP}(1)=5 \wedge I ;(I) * A T A N 2(G \Delta(I, 2), G D(I, 1))+G 360(I) * 6.2831853$
$A N S: A G=A N S M A G * F M(I) / G M(I)$
1650 ANSHHL＝ANSPHZ＋FP（I）－GP（1）
$F C P S=W / 6.2831853$
［F（NTS YAG） $1560,1670,1570$
1660 AbSGivS $=$－ANSMAG
GD 1́o 1680
1670 ABSANS＝ANSMAG
1680 EXPMAG $=20 . * A-N G 10(A B S A N S)$
ANSPHL＝57．2957795＊ANSPHZ
WRIIE（S，1700）W，FCPS，AVSMAG，EXPMAG，ANSPHZ
1700 FHRNAT（21X，5F14．5）
$I \rho_{W I N T}=I P \dot{x} I N T+1$
$K K D S(I P D I N T)=0$
KNER $1=0$
Kiven $2=0$
10 IF（ANSPHZ．LT．O．）GD ID 20
ANSPHL＝ANSPHZ－360．
KNE～1＝くNEW1＋1
3́x 1k： 10
20 IFIMNSPHL．GI．－360．）G6 TD 30
A．ISPHL＝ANSPHZ +360 ．
KNEM $2=$ KNEW2＋1
つい 1k 20
30 IH（KiVENL．NE．（DLDL．JR．KVEW2．NE．KDLD2）KROS（IPDINT）＝1
KかLl $=$ KiNEWl
KめLI $2=$ KNEW2
YPHZ（IPEINT）$=A \downarrow S P H Z$
$X F R: Q(I P G I N J)=W$
$\left.X C P>\left(I P_{0}\right) I N T\right)=F C P S$
YANIP（IPGINT）＝EXPMAG

$L I N_{L} S=L I V_{L S}+I$
IF（LINES－50）1720，1710，1710
1710 ASSIGN 1720 T\＆JIFFY
G：「k 1530
1720 G6 Ik IFFY，（1200，134 ，2000）
2000 IF（KPLOT．LQ．））OD TO 100
NPQLiv $=I P D I N I$
2005 EDNIINJE
2018 IF（IGPS．VE．O）GW TA 2100
FRUAIN＝WI
FRW：AX＝WF
$1=0$
$J=0$
$2020 \quad \mathrm{I}=\mathrm{I}+1$
IF（I．GI．NPDIVT）GOTD 2200
IF（XFREQ（I）．LT．FRQMIN）G TQ 2020
IF（XFREQ（I）．GT．FRQMAX）GD TE 2200
$J=J+1$
X（J）＝XFR［U（I）

NL:
NSL14

```
    Y ((J)=YP+L(1)
    YIMAP(J)-45.+.25*Y1(J)
    KRUSS(J)=KRWS(I)
    Y<(J)=YAMP(I)
    IF(Y((J).LT.DBMIV) Y2(J)=0甘MIN
    IF(Y&(J).{T.DBMAX) Y2(J)=0BMAX
    Y3(J)=YMAu(1)
    1F(Y3(J).LT.AMPMIV) Y3(J)=AMPMIN
    IF(Y3(J).GT.AMPMAX) Y 3(J)=AMPMAX
    Go Ix 2020
2100 I=0
J=0
2120 I= I +1
    IF(I.GT.NPDINT) GD rD 2200
    IF(XCPS(I).LT.FRQMIN) GE TZ 2120
    IF(XCPS(I).OT.FROMAX) GX TD 2200
    J=J+1
    X(J)=XCPS(I)
    YL(J)=YPHL(1)
    YlMAP(J)=45.+.25*Yl(J)
    KKwSS(J)=KR&j(I)
    Y2(J)=Y^MP(I)
    IF(YZ(J).LT.DBMIN) YZ(J)=DBMIN
    IF(Y2(J).GT.DBMAX) Y2(J)=0BMAX
    Y3(J)=YMAG(1)
    IF(YS(J).LT.AMPMIN) Y3(J)=AMPMIN
    IF(Y3(J).GT.AMPMAX) Y 3(J)=AMPMAX
    G0 1m 2120
2200 VP:NTS=J
    IF(ICPS.NE.J) G% TD 2220
    D& 2<1) I=1,12
2210 xLAu(I)=6CDF2Q(I)
    #B I* 2240
2220 0& <23J I=1,12
2230 XLAH(I)=BCOCPS(I)
2240 CALL (JJKLGII-1,FRQMIN,FKQMAX,-360.,O.,42,XLAB,BCDDHZ,NPNTS,X,YY,
X KK_SS,1,1,0,1.,10.)
    GALI QJKLGII-1,FRQMIN,FRQMAX,DBMIN,DEMAX,42,XLAB,BCDAMP,VPNTS,X,Y2
    X ,KK&SS,0,1,0,1,,10.1
    CALL GJKLGI(-1,FRQMIV,FRQMAX,AMPMIN,AMPMAX,42,XLAB,BCDMAG,NPNTS,X,
    X Y3,KROSS,0,1,1,1.,1.1
```

3797 CALL CLEAN
RETUKN
ENU

SUBriulive getdul(icam)
IF(ICAM.VE.O) CALL CLEAN
CALI FXII
REIURN
ENU

```
        SUG&WUIINE WJKLGIIL,XL,XR,YH,YI,ISYM,BCDX,HCDY,VP,X,Y,NDLINE,
    X IBNL^人,MX,MY,DX,DY)
        plal Lag-L|G WR SI MI-L|G
        DIMINSIBV X(500),Y(500),BCDX(12),BCDY(12),NOLINE(500)
        If(L)20,200,100
20 Ll=1
    Gis 1: 110
    100 Ll=:
    110 NCX=72
        NCY=12
        0cx=10.
        DCY=10.
        INCRY=-14
    140 CALL MAROIN(L,ICY)
    IX=`24-4*iNCX
    IY=ICY+I*iNCY
    G0 1e (142,1'44,146),L
142 IYI=U.
    G0 lk 150
144 IYI=ICY-253
    G& le 150
146 [Y]=1CY-169
    150 NX - ?
        NY=?
        CALL SMXYV(MX,MY)
        DC=10.
        NYY=4
        IF(MY)11,10,11
    10 CALL DXOYV(2,YB,YT,DY,M,J,NYY,DC,IERR)
    11 If (MX) 12,13,12
    13 CALL UXDYV(1,XL,XR,OX,N,I,NXX,UC,IERR)
    L2 CALL GRIUIVILI,XL,XR,YB,YT,DX,DY,N,M,I,J,NX,NY)
    CALL PRIVIV(NCX,BCDX,IX,IYI)
    CALL APRUTV(O,INCRY,NCY,BCDY,O, [Y)
    200 130 <70 K=1,N?
        vXI=rNX (X(K))
        NY1-NYV(Y(K))
        It(k.tN.1)co ra 22J
        IF(IUREAK.EQ.O)G# TO 210
        IF(iNLINE(K).VE.O)GD TD 215
    210 CALL LINEV(NXO,NYO,NXI,NYI)
    21j CALL PLDIV(NXI,NY1,ISYM)
220 C&NILNJE
        vxO-NXI
    NYO=ivYl
    270 CDinIINJE
        REIURN
    END
```


APIPENDIX B

SUBROUTINES

Abstract

A description of the operation of the MAIN program is provided in subsection 3.1. The discussion which follows in part B-1 provides a brief description of each of the subroutines used in conjunction with the MAIN program. For convenience, these descriptions are arranged in alphabetical order as opposed to sequential order of use. In part $B-2$, a discussion of internal routines is provided.

B-1. DESCRIPTION OF SUBROUTINES

ARDEN

This subroutine uses the complex roots obtained by ROOTER to compute the magnitude and phase angle of the complex quantity $N(j \omega) / D(j \omega)$ for the values of the frequency specified to it.

BLOCK DATA

The block data routine contains the necessary decade tables for CMPSEL and PTMCH.

CMPSEL

This subroutine utilizes the technique presented in subsection 2.4 to select the approximate components corresponding to each root. The relationship between inductance resistance and inductance is taken into consideration. External input to the routine consists of a control digit, specifying whether or not to select components and plot the transfer function, and a maximum number of components allowed for each variable.

EQPRT (Equation Printer)

This subroutine prints out the set of equations specified to the program In terms of resistance, inductance, and capacitance. It compares the units of each term in a particular equation to the units of the first term of the equation, and gives an error message if the units do not agree. If more than five error messages occur, the subroutine prints the following equations, and then stops execution. A term number is printed out under each term for easy reference.

ESTIM (Selection of Initial Estimates)

This subroutine is a technique for obtaining a set of initial estimates for the variables. The range of interest and the number of increments to be taken for each variable are inputs to the subroutine. The variables are first given the value of the logarithmic mean of their respective ranges. Each variable is then varied in turn over its range, according to its number of increments. The variable is then given the value which causes the equations to be most nearly satisfied, and the next variable processed. The process is repeated until an increment or decrement in any variable will cause the equations to be less nearly satisfied. The set of variables is then returned as the initial set of estimates.

FCON (Constant Approach)

This subroutine applies the Freudenstein-Roth Method in conjunction with Kizner's method to the set of equations and unknowns. It differs from the main program in that it increments (or decrements) the constant term associated
with each equation, rather than a coefficient of one of the terms. Experience has shown this method to be superior to the coefficient approach.

GETOUT

If a severe error results in ARDEN, this subroutine is called to turn off the cameras (turned on for plotting in ARDEN) and to stop execution of the remainder of the program.

INTEGER FUNCTION K

The method used of storing equations involves storing the subscripts of the unknowns in positions that are a function of equation number, term number, and factor number. The rather standard method of storing the unknown's subscripts is by storing them in a variable with three dimensions. However, unless the equations all have the same number of terms and factors per term, this practice can lead to much unused (and needed) storage. A method was found to store these subscripts sequentially, using the previously used dimension variables to define a single subscript in the sequential storage. The function K is used to determine this subscript, and thus the desired unknown. In the case of the 15 equations and unknowns presented in this report, it reduced required storage for the equations from 24,000 to 6,000 words.

PRTR

This subroutine prints the roots obtained by the main program and FCON. This print routine was made into a subroutine that could be "overlaid" for additional storage.

This subroutine does the actual component matching for CMPSEL.

Abstract

QUKLQ1

This subroutine plots the results from ARDEN using the SC4020 plotter on both microfilm and paper. The various options available allow the specification of the frequency range and the upper and lower limits of the amplitude plots. Upon exit from this program, control returns to the main program for further attempts at obtaining solutions to the set of equations and unknowns. READK

This subroutine reads in the subscripts of the unknowns for each term of each equation.

ROOTER

As the equations may be input in any order, a method is necessary to specify to which powers of s in $N(s)$ or $D(s)$ (the numerator and denominator polynomials of the transfer function) the various constant terms belong, in order that the root plotting subroutine may have the correct transfer function. ROOTER does this, reading in the specifications off one card. ROOTER also obtains the complex roots of $N(s)$ and $D(s)$ necessary for the root plotting subroutine.

RUNKA

The Runge-Kutta integration necessary for Kizner's method is performed in RUNKA. The subroutine is called four times for each integration.

SIMEQ (Simultaneous Equation Solver)

This routine employs the Gauss-Jordan technique of reducing a matrix by the pivotal method. The matrix is the Jacobian matrix of the set of equations to be solved. The values of the unknowns used correspond to the current estimates. The largest element of the matrix is sought and, should this largest element be trivial, an error message is returned and printed out.

B-2 INTERNAL ROUTINES

The program makes use of several subroutines available on the 7094 library tape. These decks include POLRT, LOGB2, and the SC 4020 plot routines. These subroutines are included in the overlay structure of the program.

APPENDIX C

OVERLAY FEATURE

The complete deck, dimensioned to be able to handle a set of fifteen equations and fifteen unknowns, uses approximately 41,000 words. The IBM 7094 at the MSFC facility can store only 33,000 words. This obstacle was overcome by use of the overlay system, which stores the subroutines on a systems tape. The subroutines are then loaded into memory only when needed, and thus several subroutines can share the same storage locations. The major restriction to this system is that one subroutine cannot call another subroutine that would cause the first to be overlaid. The system is used by specifying with a SORIGIN card the mnemonic or absolute storage location that the first command of the following subroutine is to take. All following subroutines and internal storage areas, such as input/output buffers, are loaded sequentially until the next SORIGIN card. A schematic of the overlay system used for this deck is shown on Figure C-1. The two mnemonics used are ALPHA and BETA.

It is suggested that the user make no attempt to rearrange the sequence of the deck, to avoid the accidental overlaying of a portion of some subroutine.

Figure C-1. OVERLAY STRUCTURE OF PROGRAM

APPENDIX D

FILTER CIRCUIT WITH SIX UNKNOWNS

D-1 Circuit Diagram

D-2 Identity of Unknowns

$$
\begin{array}{lll}
Y_{1}=R_{1} & Y_{4}=L_{1} & Y_{6}=1 / C_{1} \\
Y_{2}=R_{2} & Y_{5}=L_{2} & \\
Y_{3}=R_{3} & &
\end{array}
$$

D-3 Transfer Function

$$
\mathrm{T}=\frac{1.2 \times 10^{6} \mathrm{~s}+1.6 \times 10^{4} \mathrm{~s}^{2}}{3.4 \times 10^{7}+8.4 \times 10^{6} \mathrm{~s}+1.64 \times 10^{5} \mathrm{~s}^{2}+8.0 \times 10^{2} \mathrm{~s}^{3}}
$$

D－4 Example Inputs and Outputs

Two input samples and the outputs which resulted from them for the set of 6 equations in 6 unknowns are presented on the pages which follow．The plots from the frequency－response subroutine are included only with the first case． The range of interest of the unknowns in Case $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 1 is identical to that presented on page 35 in reference 1.

Case $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ presents an identical run，except that the range of interest of the unknowns was set equal to the maximum and minimum allowable values for components，as presented in Table 2－1．This was done to demonstrate the strength of convergence of the program．For brevity，the input items are listed without FORTRAN symbols，and the plots resulting from the roots obtained have been omitted．

Case 非1

$\begin{array}{rlll} \text { MAXNOS } & \text { NOS } & \text { KK } \\ \left\lvert\, \begin{array}{rr} 10 & 25 \end{array}\right. & 2 \end{array}$	$\begin{array}{cc} \text { JMAX } & \text { IZMAX } \\ 6 \mid \quad 5 \end{array}$	$\begin{array}{ccc} \mathrm{NR} & \mathrm{NL} & \mathrm{NC} \\ 3 & 2 & \end{array}$	$\begin{array}{c\|cc} & \begin{array}{c} \text { NOR } \end{array} & \mathrm{MR} \\ 1 & 4 & 1 \end{array}$	$\begin{array}{cc} \mathrm{A} & \mathrm{NTB} \\ & 0 \end{array}$	
$\begin{aligned} & \operatorname{IMAX}(1) \operatorname{IMAX}(2) \operatorname{IMAX}(3) \operatorname{IMAX}(4) \operatorname{IMAX}(5) \operatorname{IMAX}(6) \\ & {\left[\begin{array}{lll} 1 & 4 & 4 \end{array}\right]} \end{aligned}$					
$\left.\begin{aligned} & \operatorname{LMAX}(1) \operatorname{LMAX}(2) \operatorname{LMAX}(3) \operatorname{LMAX}(4) \operatorname{LMAX}(5) \operatorname{LMAX}(6) \\ & 2 \mid \\ & 2 \mid \\ & \mid \end{aligned} \right\rvert\,$					
$\begin{array}{r} \text { PTOL(1) } \\ .01 \end{array}$	$\begin{gathered} \text { PTOL }(2) \\ .01 \end{gathered}$	$\begin{gathered} \operatorname{PTOL}(3 \\ .01 \mid \end{gathered}$	$\begin{gathered} \operatorname{PTOL}(4) \\ .01 \mid \end{gathered}$	$\begin{gathered} \operatorname{PTOL}(5) \\ .01 \end{gathered}$	$\begin{gathered} \operatorname{PTOL}(6) \\ .01 \end{gathered}$
XRMIN $.24$	$\begin{gathered} \text { XLMIN } \\ .00005 \end{gathered}$	$\begin{aligned} & \operatorname{XCMIN} \\ & 1.0 E-11 \end{aligned}$	$\begin{aligned} & \text { XRMAX } \\ & 22.0 E+06 \end{aligned}$	XLMAX 350.1	$\begin{gathered} X C M A X \\ 1 \cdot 5 E-01 \mid \end{gathered}$
$\begin{gathered} \text { FXORIG(1) } \\ 100 . \end{gathered}$	$\begin{gathered} \text { FXORIG(2) } \\ 100.1 \end{gathered}$	$\begin{gathered} \text { FXORIG(3) } \\ 100 \end{gathered}$	$\begin{gathered} \text { FXORIG(4) } \\ 10.1 \end{gathered}$	$\begin{gathered} \text { FXORIG(5) } \\ 10.1 \end{gathered}$	$\begin{aligned} & \text { FXORIG(6) } \\ & 1.0 E-05 \end{aligned}$
FXLIM (3) $1.0 \mathrm{E}+05$	$\begin{gathered} \operatorname{FXLIM}(4) \\ 1.0 \mathrm{E}+04 \end{gathered}$	$\begin{gathered} \operatorname{FXLIM}(5) \\ 1.0 E+04 \end{gathered}$	$\begin{gathered} \operatorname{FXLIM}(6) \\ 1.0 E-02 \end{gathered}$		

$\left.\left\lvert\, \begin{array}{rr}T X \\ 1 & 1 \\ \hdashline 4(111) & K(112) \\ 4 & 5\end{array}\right.\right]$

$K(211)$	$K(212)$	$K(221)$	$K(222)$	$K(231)$	$K(232)$	$K(241)$	$K(242)$
2	4	3	4	$1 \mid$	5	3	5

K(311) K(312) K(321) K(322) K(331) K(332) K(341) K(342)

K(411) K(412) K(421) K(422)

Abstract

\qquad - 3 . 6

$\left|\begin{array}{rr}K(511) K(512) \\ 3 & 5\end{array}\right|$
$K(611)$
$\left\lvert\, \begin{array}{rrr}K(612)\end{array}\right.$

HE FDLLOWINO IS THE LIST OF LQUATIØNS SPEEIFIED TO THE PROGRAM FGRMAT IS.... EVUATII:N INUMUER

TERMS XF EGUATIANS (THREE PEK LINE)
VUMISER EF FACH TERM
A JHECK IS MADE OF IHF UVITS XF EACH TEZM. IF THE UNITS UIFFER IV AV FQJATIXV, AN ERKAR MESSAGE RESULTS

EQUATIDN 1

L1 LZ

1

EQUATIDN 2

२2 Ll
$+23 \mathrm{LI}$

+ R1 L2
2
3

23 L2

4

EQUATIDN 3
$\begin{array}{ll}L 2 & +R 1 R 2+R 1 R 3\end{array}$
C1
1
2
3

R2K3

4
23
Cl
1
$+22$
51
2

EQUATIAN 5

Q3 L2
1

EQUATIDN 6

र2 k3
1

meneer ef sters 35

CZUSTANT TEKNS

RASCE FPR VANIAPLES Fメ2RIに

r.1:Cncratea
j. 1

FXLIN

THERE ARE G EGLATIRNS ANE G LNKNRMNS,CRASISTING RF 3 RESISTAN tre lzher boulcaries fer the rfsistances, the incuctances, and t AND -1CCCr PE-1r, RESFECTIVELY, WHILE THEIR LPPER BQLNCARIES $\because 15-1 \cdot E$ RESPECTIVFLY.
$L x=1$
$L X=2$
$L X=\quad \exists$
$L X=4$
$L X=E$
$L x=t$
variables

CZNNEACIAE CRASTANT AFPRZALH

C.34こいつ: 88
.16:GCOOESE
$.12: 00005 \mathrm{E}$ O

- $E(\leq), 2$ INCLCTANCE $(S), A N L \quad 1$ CAPACITANCE(S).
HE CAPACITANCKS ARE $3.24 C C C C O O E$: $0.500000 C O E-04$,

\qquad

crccie c2	U．1006000ne

$$
\begin{array}{lll}
G \times 1 C= & i 4 & n i S= \\
G Q I C= & 25 & \therefore 2 S= \\
i z
\end{array}
$$

ALL QE:TS IA IFE FQLLZMINE SET LIE WITHIN THE PHYSICAL LIMITS SP

R(: $1=$	5t: $2=\quad 4$	RTNS	L	1) $=$	-28586Eこ2E	C	2
R(え) =	21362475= 04	RTNS	L	¢) $=$. 29483 ¢C2E		2

$Q(3)=\cdots E 6173262 E C 3$ RHNS

```
C(1)= 0.75352362E-C4 FARADS

HRRCAFMCIT：RC：THF P CRNP：NUNT（S）ARF －iعGort t a －Jrarrore ad

C I ISTLS－78CMPAE\＆NICRQNICROFARACS

FQR INCLCT： L ：TFF I CRNPGNENT（S）ARE r．zerircces 2



FRR IAELCTRQ l TFE 1 CRNPGNENTIS）ARE －7pの心になt


```

FRQ QESIST:Z: = IH1 COMPMNENT(S) ARE

```

```

 *.4&4rracta
 R ISTHLS -s7!ccscF a mFN

```
FQR RFSIST: R \(\therefore\) THE 2 CQNPDNENT(S) ARE
    - ISE・ロロシ 34
    - J 4 7 •rner



FQR RESISTSR R ：It＇ 2 CRNFANENT（S）ARE
 \(\therefore .13\) כCOMr．Me



THF ALNERATRR IS UF RREER 2. THE PRLYARNIAL IN CESCENDING RREEK BILAA

THERCVTS \(\Delta R E-\)

THE CENKNIADTER IS CF AREER 3. THE PQLYARNIAL IN CESCENLIAC RRCER EEL:A

THF K \(\because, T S A 2 F-\)
EEAL PARI INAC.FART
REAL PART
- C.1く192E \(\because\)
INAC PART
\(\because \because \because E-38\)
-•• Or -28
\begin{tabular}{|c|c|c|c|c|}
\hline CA－RLC／SEC & F－Cycles／sec & AMPLItUEE & \(\angle E L Q E A N P\) & Phase－ctg \\
\hline  & 1. & \(\cdots\) Ofrs & －33．53979 & －57．64230 \\
\hline t．egcic & 1．9648 & 0.01887 & － 24.48554 & －59．76t22 \\
\hline 7－5．行7 & 1．2：227 & 3． 01766 & －35．06258 & －02．42667 \\
\hline E． \(2 \boldsymbol{4}=9\) & 1.21826 & v．C1647 & －25．tt861 & －65．61267 \\
\hline Q．\({ }^{\text {a }}\)－ 5 c & 1.44544 & －．c1521 & －36．3：117 & －67．52655 \\
\hline －csear & 1.5449 & 9．01415 & －36．95777 & －65．c4389 \\
\hline  & 1．7378： & 0.01213 & －37．63595 & －72．28234 \\
\hline 11.57235 & 1．9．54t & 1）． 01212 & －38．23342 & －74．54123 \\
\hline \(13.1274 t\) & 2.08. & 9．C111t & － 5 ¢． 484.5 & －75．72227 \\
\hline 14.25298 & 2．2s＊ 81 & \(\therefore\) Cl－26 & －35．77294 & －78．83214 \\
\hline 15.78268 & 2．51185 & 1．ccs42 & －4：．52144 & － 8 －e8212 \\
\hline 17．2．537 & 2.75423 & च．cest3 & －41．27715 & －92．8788 \\
\hline 18.97476 & 3．\(\because 1596\) & 6．co7sa & －42．04354 & －84．82374 \\
\hline 2－．pis63 & 3.31232 & 0.65723 & －42．82－56 & －96．75828 \\
\hline 2？．4．192 & 2．63：79 & 1－rctar & －43． \(6.77 t 2\) & －revetくz \\
\hline 25.11306 & 2.98106 & \(2 . C C C C 2\) & －44．4358 & －9．564 5 \\
\hline ¿7．4271t & 4.36517 & （．）ces49 & －45．2588 & －92．46S98 \\
\hline 2r．67328 & 4.70631 & \(\because \cdot C 050\) & －4大．0くこご， & －94．35458 \\
\hline \(37.974 \times \mathrm{c}\) & 5.248 .5 & \(\because \cdot 01455\) & －4t．84819 & －9t． 35023 \\
\hline 35.156 & \(5.7544=\) & j．cc4l3 & \(-47.68363\) & －9と．34Eヶ7 \\
\hline \(29.644: 3\) & t．\({ }^{\text {2 }}\) 559 & ：00375 & －48．53094 & －1．\(\therefore\) 40225 \\
\hline 43.45911 & t．91832 & 1．rcz3s & －45．39121 & －i．2．52． 67 \\
\hline \(47 . t \in \geq c^{2}\) & 7.58575 & 9.0027 & －Es．2676 & －14．71 260 \\
\hline \(52 \cdot 26!97\) & 9．3176 & \(\because \lll 677\) & － 1.15958 & －1．6．98874 \\
\hline 57.345 & 5.1312 & \(\therefore\)－ 0249 & －5？． 7120 & －104．251tt \\
\hline  & 15．\％＂ & \(\because \cdot C 0224\) & － 3.69450 & － 1.11 .80532 \\
\hline
\end{tabular}

CRNNENCING GREHFICIHAT AEFRRACF
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{N} \wedge=\) & & \\
\hline GRIC．\(=\) & 1 & N：S \\
\hline GRIT＝ & 2 & N：S \(=\) \\
\hline CRIC＝ & 3 & ARS＝ \\
\hline G२ I［ \(=\) & 4 & A：C \(=\) \\
\hline GRII：\(=\) & 5 & AVS \(=\) \\
\hline GRIC．\(=\) & \(t\) & N：S \(=\) \\
\hline GQ1［ \(=\) & 7 & A：s \(=\) \\
\hline GQIC＝ & \(\varepsilon\) & ArS \(=\) \\
\hline GRIC＝ & 9 & 10c \\
\hline GRIC＝ & 1 & 1せら＝ \\
\hline G2IT＝ & 11 & ASS \(=\) \\
\hline GPIT．＝ & \(1 ?\) & ALS \(=\) \\
\hline GPIC＝ & 13 & APS \\
\hline GRIC＝ & 14 & べく \(=\) \\
\hline GRIP＝ & 15 & NQS \\
\hline GRIC＝ & 14 & A 2 S \(=\) \\
\hline GRIC \(=\) & 17 & A：S \(=\) \\
\hline GRIC＝ & 14 & ACS \(=\) \\
\hline GRIC＝ & 15 & AB：\(=\) \\
\hline GRIC＝ & \(2:\) & N：S＝ \\
\hline GRIC＝ & 21 & DQS \(=\) \\
\hline GRIC＝ & 22 & A6S \(=\) \\
\hline GRIL \(=\) & 72 & A：9： \\
\hline GQIC＝ & 24 & ARS \(=\) \\
\hline GRIC＝ & 25 & NQS \(=\) \\
\hline
\end{tabular}

ALL Q刀OTS IA THE FQLQZINC SET LIE WITHIA THE PHYSICAL LIMITS SP


CRNNEACINS GEEFFICIEMT AFFRZACH


ALL RRETS IA THE FRLLRAAG SET LIE WITHIN THE PHYICAL LIMITS SPE


CZRNEACIAG CEFFFICIENT AFFPPACF


TR-292-6-078
September 1966
\(C(1)=.7535252 . E-C 4\) FARAUS

\section*{\(C 11)=0.75352511 E-C 4 \quad F A R A D S\)}
\begin{tabular}{|c|c|c|c|}
\hline SMIL：\(=\) & ＋ & AES \(=\) & 5 \\
\hline GeIC＝ & 7 & AVS \(=\) & C \\
\hline G6IF＝ & 8 & へVS & 5 \\
\hline G215＝ & 5 & 人民S \(=\) & － \\
\hline Gelf＝ & 1 & Nes＝ & ¢ \\
\hline GRIC＝ & 11 & 185 \(=\) & －5 \\
\hline G\％15＝ & 12 & A8S \(=\) & c5 \\
\hline G915 \(=\) & 13 & \(\wedge 2 S=\) & く \\
\hline Gritc & 14 & NQS \(=\) & ： \\
\hline G：2IC＝ & 15 & A8S＝ & 25 \\
\hline GRIC＝ & 16 & へeS \(=\) & 25 \\
\hline GQIC＝ & 17 & \(\wedge E S=\) & 25 \\
\hline GRIC＝ & 18 & ARS \(=\) & 25 \\
\hline GPIL \(=\) & 15 & NeS \(=\) & 25 \\
\hline GRIE \(=\) & 20 & ARS \(=\) & ＜5 \\
\hline GRIL \(=\) & 21 & A0S＝ & ； \\
\hline T，115 \(=\) & 22 & ARS \(=\) & 25 \\
\hline GRIT \(=\) & 23 & 12S \(=\) & 5 \\
\hline GRIC＝ & 24 & NQS＝ & こう \\
\hline GRIL \(=\) & 25 & Nes & こう \\
\hline
\end{tabular}

ALL RRPTS IA THE FQLLQMINE SET LIE hITHIA THE PHYSICAL LINITS SP
\begin{tabular}{|c|c|c|c|c|c|}
\hline R1．1）＝ & \(\therefore 253561 \leq 1504\) & QtNS & （1 1）＝ & 6． 28086559 E & 2 \\
\hline R1 \(21=\) & C－213t25325 C4 & 2tNS & L（z）＝ & \(\bigcirc 28433376 E\) & 2 \\
\hline R（ 2）\(=\) & －E6173117E 0 & \(2+\) & & & \\
\hline
\end{tabular}

CORNENCIAGCREFFICIEAT AFFRRACF


\section*{\(C(1)=0.75352481 E-C 4 \ldots\) FARADS}

ALL RQZIS IA THE FVLLQHIAE SET LIE hITHIA THE PFYSICAL LIMITS SP
\begin{tabular}{|c|c|c|c|c|}
\hline \(11=\) & 545-4 & \(2+N S\) & \(111)=\) &  \\
\hline - く! = &  & PrNs & L( こ) = & \(\therefore 28483387 \mathrm{E}\) O2 \\
\hline F \((3)=\) & - 173 SEE & RTNS & & \\
\hline
\end{tabular}

CZMNENCIAG CREFFICIEAT AFPRZACH


ALL RZETS IA tre fellening set lie nitrin tre prysical limits sp 1


CRNNEACIA; CREFFICIEAT AFFRRACF

TR-292-6-078
```

C1): % F%:E-54 FARADS

```

                                    )
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(C 111=3.79352499 E-C 4\) FARADS

frequency in cycles/secono

Figure D-1. AMPLITUDE VERSUS FREQUENCY SIX EQUATIONS, SIX UNKNOWNS, CASE 非1

TR-292-6-078
September 1966

frequency in cycles/secone

Figure D-2. PHASE SHIFT VERSUS FREQUENCY SIX EQUATIONS, SIX UNKNOWNS, CASE 非1


FREQUENCY in CYCLES／SECOTO

Figure D－3．GAIN VERSUS FREQUENCY SIX EQUATIONS，SIX UNKNOWNS，CASE \(⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ I ~\)

Case 非2

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

2
6xt671711/17710
5678901234567890

```

IHF FOLLQKING IS THE LIST QF FGUATIANS SFECIFIEE TE THE FRQGRAM IFE FKPNEI IS.e.e ELLAIIEA ALMESR TSONS RF EQLATIR'S (THRFE PER LINE) MUNATR QF EACF TERN

A CHECK IS NAEF OF THF LAITS EF EACH TERN. IF THE LNITS CIFFER In. An TGUATIZN, AV FRO:Q NESSACE KESULTS

\section*{EGUTIEN 1}

L1 LZ

J

\section*{GCUATIEN?}
\begin{tabular}{ccc}
\(R 2 L I\) & \(+R Z L I\) & \(+R L L 2\) \\
1 & 2 & 3
\end{tabular}

Q3 Lこ

4

EGLATIEN 3
\begin{tabular}{ccccc}
\(L 2\) & \(+R 1 R \overline{2}\) \\
1 & 2 & \(R 1\)
\end{tabular}

P2 R?

4
```

R?
C!
I
+N2
Cl
2

```

EGUatiqn s

D3 L2
1

EGUATIRN 6

Q2 :
1

IVPJT UAIA
\[
\begin{aligned}
& \text { MAXIMJM NC. OF STEJS } 100 \\
& \text { NMBER OF STEPS } 25 \\
& \text { IIMES THR.UGH RUVGE KUTTA } 20 \\
& \text { EEUSTANT TERMS } \\
& 0.8000000 \text { E } 03 \quad 0.16400000 \mathrm{E} 06 \quad 0.84000000 \mathrm{E} 07
\end{aligned}
\]

RAVOE FOR VARIAELEJ
FXDRIG
J. 24050000 E 00 0.24000000E 00
\[
\text { C. } 24000000 \mathrm{E} 30
\]
FXLI:
3.220:00JOE 08
0.22000000 E 08
\[
0.22000000 \mathrm{E} 08
\]

There art 6 equatigns avd 6 UNKNanvs, CZYSISTING of 3 RESISTANC THe lõner hojindaries for the resistavces, the inductanies, and th AVD 2.1000 JOJOE-10, RESPECTIVELY, WHILE THEIK UPPER SDUNJARIES 0.15000COOE JO RESPEこTIVELY.
\[
\begin{aligned}
& L X=1 \\
& L X=2 \\
& L X=3 \\
& L X=4 \\
& L X=5 \\
& L X=6 \\
& \text { VARIABLES } \\
& 0.4879240 J E J 5
\end{aligned} \quad 0.10821357 E 03 \quad 0.10821357 E 03
\]
\[
D-24-1
\]

\section*{\(T\)}
\(0.50000000 \mathrm{E}-04\)
\(0.10000000 E-10\)

03
\(0.35000000 E 03\)
\(0.15000000 \mathrm{E} \quad 0\)
2. INDUCTAVEE(S), AND 1 CAPACITANCE(S).

FITANCES ARE \(0.24000000 E\) OO, \(0.50000000 E-04\), J. \(22005000 \mathrm{E} 08, \quad 0.35000000 \mathrm{E} 03\), AND

ExMMENEIN: CDNSTAVT APPRZAEH
\begin{tabular}{|c|c|c|c|}
\hline 3K10 \(=\) & 1 & ves = & 25 \\
\hline 3kiO= & 2 & VIDS \(=\) & 25 \\
\hline \(3 \mathrm{ORO}=\) & 3 & \(V\) VS \(=\) & 25 \\
\hline 3kIU= & 4 & Ves = & 25 \\
\hline 3रIU \(=\) & 5 & vos= & 25 \\
\hline 3RID \(=\) & 0 & vos= & 25 \\
\hline 3RID= & 7 & VOS \(=\) & 25 \\
\hline कर10= & 8 & Vas= & 25 \\
\hline 3riju= & 9 & 135 \(=\) & 25 \\
\hline SRIO \(=\) & 10 & V®S \(=\) & 25 \\
\hline 3kID= & 11 & V12S \(=\) & 25 \\
\hline Sर10= & 12 & VJS \(=\) & 25 \\
\hline 3RIU= & 13 & V85 \(=\) & 25 \\
\hline 3R10= & 14 & ves= & 25 \\
\hline 3<10 \(=\) & 15 & ves = & 25 \\
\hline SR10 \(=\) & 16 & vos= & 25 \\
\hline 3210= & 17 & VOS \(=\) & 25 \\
\hline \(3210=\) & 18 & Vos \(=\) & 25 \\
\hline 3र10 \(=\) & 19 & v2S \(=\) & 25 \\
\hline 3R10 \(=\) & 20 & Ves= & 25 \\
\hline GRID= & 21 & VDS \(=\) & 25 \\
\hline 3RIU= & 22 & Ves \(=\) & 25 \\
\hline SR10 \(=\) & 1 & VES \(=\) & 8 \\
\hline 3र10 \(=\) & 2 & V®S \(=\) & 8 \\
\hline GRID \(=\) & 3 & vos \(=\) & 8 \\
\hline CKID \(=\) & 4 & \% \(\mathrm{iL} 5=\) & \\
\hline GRID= & 5 & VE5 \(=\) & , \\
\hline GRID \(=\) & 6 & Hes \(=\) & 8 \\
\hline GRIU= & 7 & , in \(5=\) & 8 \\
\hline GRID= & 8 & HeS \(=\) & 8 \\
\hline
\end{tabular}

ALL RZOTS IA THL FBLLÖWING SET LIE WITHIN THE PHYSICAL LIMITS SPE:
\begin{tabular}{|c|c|c|}
\hline \(1)\) & 319E J & DH \\
\hline \(21=\) & 0.30000157 E 34 & DHMS \\
\hline \(31=\) & 788E & \\
\hline
\end{tabular}
L1 \(11=\mathrm{J}=19999894 E 02\)
HElif
L( \(21=1.43000212 \mathrm{E} 02\) HENF
FOR CAPACITiAR 1 THE 1 CDMPRIVENT（S）ARE0.100 .0000 O OG
C 1 IS rius ..... \(0.100 .10000 E\) ：19 MICRUMICREFARADS
FQR INOUCTAR L 2．TH． 1 CDMPGNENTIS）ARE \(0.40 J 00000 E\) ..... 02
\(L 2\) IS THUS 0．400000U0E 02 NRIES，AND THE INDUCTIVE PART \＆F \＆？IS \(0.40000000 E 02\) gHMS
FOR INDUCTWR L 1 THL I CDMPDNENT（S）ARE 0．LコOU0000F 02
L 1 IS THUS O． \(190.00: 0 \mathrm{O}\) O2 HENRIES，ANU
IHE INDUCTIVE PART AF R 1 IS O． \(19000000 E\) OZ eHMS
FOK RESISTOR R 3 TH：ZOMPONENTIS）VRE
0.38300000 E ..... 03
0．162v00UUE ..... 02
R 3 IS THUS ..... \(0.399200: 19 E\) ..... 33 EHMS
FGR RESISTAR R 2 THE EUMPUNENTISI AKE 0． \(297 \cup 00\) UUE 04 0.42500001502
WITH AN INOUCTIVE R：SISTAVCE מF ..... \(0.40 J 00 L O D E ~ O 2\) RHMS
\(\therefore 2\) IS THUS ..... \(\therefore .297250 .0 \mathrm{OE}\) J4 EHMS
FOR RESISTUR R 1 THL CUMPCNENT（S）ARE
0.17600 ）nve 04
\(0.176 リ 00\) UE 02
WITH AN INOUCTIVF RESISTANCE DF 0．19UUJOOOE 02 RHNS
〔 1 IS THUS \(0.19996090=\) 34 EHNS



THIC RGOTS ARE-

\begin{tabular}{|c|c|c|c|}
\hline - 0.74812 E & 0.000 OUE-j3 & 0.00JOOE-38 & \[
0.0010 J E-38
\] \\
\hline
\end{tabular}
 \(0.76000 .00003 \quad 0.1633430 E \quad 06 \quad 1.83132374 \mathrm{E} \quad 07 \quad 0.33416999 \mathrm{E} 08\)
THE RXUTS TKE-
REAL PART
-0.73554 02
\(-0.44163 \mathrm{~J}\)
\[
\begin{aligned}
& \text { INAG PART } \\
& 0.000 \text { UE }-39 \\
& 0.000 .10 t-38
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline REAL PART & INAG. PART \\
\hline -0.12792e 03 & 0.0000je-38 \\
\hline
\end{tabular}

\section*{TR－292－6－078}

WMFGA－RAO／S：C1－EYCLFS／SEC AMPLIIUJE
\begin{tabular}{|c|c|c|}
\hline 6.81370 & 1．J0， 0 & U．02024 \\
\hline 6.98939 & 1．\({ }^{\prime} 1648\) & 0．0189； \\
\hline 7．らいがつ & 1．20．27 & U． 1.177 ） \\
\hline 8．3世」と7 & 1．11826 & 0． 0165 ， \\
\hline 9．00197 & 1．44！44 & U．1113 3 \\
\hline  & 1． \(3!490\) & 0.101423 \\
\hline 14．9190り & 1.73780 & 0.01317 \\
\hline 11.97239 & 1．70546 & 0．0121， \\
\hline 13.12740 & 2.199930 & U．0111\％ \\
\hline 14.34398 & 2．29087 & 0.01029 \\
\hline 15．78＜68 & 2.51189 & 0.00944 \\
\hline 17．30337 & 2.75423 & t． 1085 \\
\hline 19.97496 & 3.11996 &  \\
\hline 20．90．63 & 3.31132 & 0.0072 ． \\
\hline 22．8．1292 & 3.63079 & \(0.0065 \%\) \\
\hline 25.31386 & 3． 78108 & 0.00434 \\
\hline 27.42716 & 4.36517 & 0．00551 \\
\hline 30.07328 & 4.78631 & U．U¢ 00 \\
\hline 32.97464 & 5.24809 & 0.04457 \\
\hline 36.15003 & 5.75441 & 0.00415 \\
\hline 39.64430 & 6．30959 & 0．v037？ \\
\hline 43.46911 & 6.91832 & 0.00342 \\
\hline 47.66 .293 & 7．03579 & 0.00359 \\
\hline 52.26137 & 8.31765 & U．0128： \\
\hline 57.30345 & ＋． 12013 & 0.00252 \\
\hline 62.83200 & 10．00002 & 0.04227 \\
\hline
\end{tabular}

1．010000

1．30227
1.11826

1．44！44
1． 73780
1．30546
30

2．51189
2.75423
3.11996

3．31132

3． 38108
4.36517
4.78631
． 24809
． 7,441 6.91832

7． 53579
1.12013
10.00002

201．VG ANB
\(-33.9769 j\)
\(-34.42981\)
\(-34.11335\)
－3！．62ら21
\(-36.26<89\)
－ 30.92388
－ 37.60573
\(-39.30014\)
－39．02299
\(-39.15440\)
\(-40.49871\)
\(-41.25454\)
\(-42.02073\)
\(-42.79641\)
\(-43.58095\)
\(-44.37399\)
\(-45.17539\)
－45．90332
\(-46.80429\)
\(-47.03274\)
\(-48.47195\)
\(-49.32314\)
－50．16797
－91．10837
\(-51.90067\)
\(-52.83534\)

PHASE－0「：
\(-57.44433\)
\(-60.13132\)
\(-62.7 \cdot 003\)
\(-85.23106\)
\(-67.741331\)
\(-70.11890\)
\(-72.40299\)
\(-74.60390\)
－76．72416
\(-78.77322\)
－ 90.75556
\(-92.63473\)
\(-84.57743\)
\(-86.43283\)
\(-54.26792\)
\(-90.97466\)
\(-91.92395\)
\(-93.774 \mathrm{~J}\)
－95．65187
－97．27173
\(-97.54563\)
\(-101.55489\)
\(-113.67774\)
\(-103.69993\)
－1．8．1433
－110．57503

COMMENCIN：CKEFFICIENT APPRQACH
\(N A=1\)

GRIU＝ \(1 \quad v_{k} S=25\)
GRIU \(=2 \quad\) VRS \(=25\)
GRIU \(=3 \quad \mathrm{~N} w \mathrm{~S}=25\)
GRIU \(=4 \quad\) N：S \(=25\)
GKIU \(=3 \quad N_{k S}=25\)
GRIU \(=6\) NES \(=25\)
GRIU \(=7\) NuS \(=25\)
isRIU \(=8 \quad\) NaS \(=25\)
GRIU \(=\quad \rightarrow \quad V_{n} S=25\)
\(G R I U=1 \quad N: 34\)
GRIU \(=2 \quad N_{x} S=34\)
GRIU \(=3 \quad\) Nix \(=34\)
GRIU \(=4 \quad{ }^{2} \mathrm{~V} S=34\)
GRIU \(=5 \quad\) Ni．S \(=34\)
GRIO \(=0 \quad\) V2S \(=34\)
GRIU \(=1 \quad N \quad N S=34\)
GRIU \(=\quad 3 \quad N \mathrm{NLS}=34\)
GRIU \(=1\) NixS \(=34\)
USING THIS SFT LF ESTIMATES，NX RUQTS WERE FQUNO
\begin{tabular}{|c|c|c|c|}
\hline NA \(=\) & 2 & & \\
\hline GR I \({ }^{\text {G }}=\) & 1 & VRS \(=\) & 25 \\
\hline GRID = & 2 & NoS = & 25 \\
\hline SRIU \(=\) & 3 & NRS = & 25 \\
\hline GRID= & 4 & NCS \(=\) & 25 \\
\hline GRID \(=\) & 5 & \(\mathrm{NES}=\) & 25 \\
\hline GRID \(=\) & 6 & NeS \(=\) & 25 \\
\hline GRIU= & 7 & ves \(=\) & 25 \\
\hline GRIU \(=\) & 4 & vis \(5=\) & 25 \\
\hline GRID \(=\) & 9 & NeS \(=\) & 25 \\
\hline GRIU \(=\) & 10 & NES \(=\) & 25 \\
\hline GRID \(=\) & 11 & W6S \(=\) & 25 \\
\hline GRID= & 12 & veS \(=\) & 25 \\
\hline GRID = & 13 & V× \(\times 5=\) & 25 \\
\hline GRIU \(=\) & 14 & 4n: \(5=\) & 25 \\
\hline TRID \(=\) & 15 & NKS \(=\) & 25 \\
\hline GRID= & 16 & \(1505=\) & 25 \\
\hline GRIU \(=\) & 17 & NxS \(=\) & 25 \\
\hline GRID= & 18 & NeS \(=\) & 25 \\
\hline GRIU= & 19 & NaS \(=\) & 25 \\
\hline GR10 \(=\) & 20 & NiS \(=\) & 25 \\
\hline GRID = & 21 & NDS \(=\) & 25 \\
\hline GRID \(=\) & 22 & VES \(=\) & 25 \\
\hline GR10= & 23 & NES & 25 \\
\hline GRID \(=\) & 24 & N6S \(=\) & 25 \\
\hline \(G R I D=\) & 25 & NiS \(=\) & 25 \\
\hline
\end{tabular}

ALL ROQTS IN THE FQLLQWING SET LIE WITHIN THE PHYSICAL LIMITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R 1 & 1)= & \%-2300004E & 34 & 3 HMS & L1 & \(11=\) & J. 20.100005 E & 02 \\
\hline Kl & \(21=\) & U. \(29999992 E\) & 04 & 3HMS & 11 & \(21=\) & U.39999989E & 了2 \\
\hline
\end{tabular}
\[
L(2)=0.39999989 E 22
\]
\[
K(3)=0.40000011 \mathrm{E} 03 \quad 2 \mathrm{HMS}
\]

C\&MMENCING GREFFICIENT APPRDACH
```

NA= 3
GRID= 1 NUS= 25
GRID= 2 NES= 25
GRID=3 N\&S=25
GRID=4 NES= 25
GRID= 5 NLS= 25
GRIU= 6 'VES= 25
GRIU= 7 NWS=25
GRIL= \& NLS = 25
GRID= 1 *NS = 36
GRIU= 2 NES= 36
GPIU= 1 NLS=
THIO= 2 NES=70
USING THIS SFT UF ESTIMATES, ND ROQTS WERE FZUND

```


ALL ROOTS IN THE FOLLEWING SET LIE WITHIN THE PHYSICAL LIMITS
\begin{tabular}{lllll}
\(R(1)=\) & \(0.23356151 E\) & 04 & JHMS \\
\(R(2)=\) & \(-21362544 E\) & 04 & OHMS \\
\(R(3)=\) & \(0.36173084 E\) & 03 & JHMS
\end{tabular}
L( 1) = U. 28086542E 02
\(L(2)=0.28483392 E 02\)

COMMENCITG CKEFEICIENT APPROACH
```

NA= j
GRID= 1 NES= 25
GRID=2 N\&S=25
GRIU = 3 V2S = 25
GRIU= 4 NRS= 25
ORIC= 1. NiNS= 44
GRID= 2 N\angleS= 44
GRIU= 3 N\&S = 44
GRIU= 1 i\&S= 84
GRID= 2 'V'S= 84
GRID= 3 *eS= 84
GRID= 4 NrS = 24
GRIL= 5 SkS= 34
GRIO= S veS = 84
GRIL= 7 *ES= 34
GRIU= 8 NS= 84
GRID= 9 NES= 84
SKIL=10 NES= 84
USING THIS SET RF ESTIMATES, NO RQQTS WERE FRUND

```

C(1) \(=0.79352508 E-04\) FARADS

\section*{APPENDIX E}

\section*{FILTER CIRCUIT WITH THIRTEEN UNKNOWNS}

\section*{E-1 Circuit Diagram}


\section*{E-2 Identity of Unknowns}
\[
\begin{array}{rlrl}
\mathrm{Y}_{1} & =\mathrm{R}_{1} & \mathrm{Y}_{6}=\mathrm{L}_{1} & \mathrm{Y}_{10}=1 / \mathrm{C}_{1} \\
\mathrm{Y}_{2}=\mathrm{R}_{2} & \mathrm{Y}_{7}=\mathrm{L}_{2} & \mathrm{Y}_{11}=1 / \mathrm{C}_{2} \\
\mathrm{Y}_{3}=\mathrm{R}_{3} & \mathrm{Y}_{8}=\mathrm{L}_{3} & \mathrm{Y}_{12}=1 / \mathrm{C}_{3} \\
\mathrm{Y}_{4}=\mathrm{R}_{4} & \mathrm{Y}_{9}=\mathrm{L}_{4} & \mathrm{Y}_{13}=1 / \mathrm{C}_{4} \\
\mathrm{Y}_{5}=\mathrm{R}_{5} & &
\end{array}
\]

\section*{E-3 Transfer Function}
\[
\begin{gathered}
\mathrm{T}=\left(1.2 \times 10^{11} \mathrm{~s}+5.8 \times 10^{10} \mathrm{~s}^{2}+6.78 \times 10^{9} \mathrm{~s}^{3}\right. \\
\left.+1.5 \times 10^{8} \mathrm{~s}^{4}+9.0 \times 10^{5} \mathrm{~s}^{5}\right) /\left(9.0 \times 10^{12}\right. \\
+7.225 \times 10^{12} \mathrm{~s}+1.8186 \times 10^{12} \mathrm{~s}^{2} \\
+1.77245 \times 10^{11} \mathrm{~s}^{3}+5.5399 \times 10^{9} \mathrm{~s}^{4} \\
\left.+5.965 \times 10^{7} \mathrm{~s}^{5}+2.22 \times 10^{5} \mathrm{~s}\right) \\
\mathrm{E}-1
\end{gathered}
\]

Y-A Example Input and Output

A sample input for the set of thirteen equations in thirteen unknowns and the output which resulted from it are presented in this portion of the appendix. For the sake of brevity, the input items are listed without FORTRAN symbols. The plots from the frequency-response subroutine for this sample input are included in this appendix as Figures E-1, E-2, and E-3. The range of interest of the unknowns is identical to that presented on page 37 of reference 1. \(123456789012345678 \cdot 012345671.3456161234567090123456\)

wbwcoe! !111:110

\(7.225 E+12\)
\(1 \cdot 20 E+11\)
.01
.01
-UE+00 40.0E +UU
\(. U 5+03 \quad 10 \cdot 0 E+\cup 3\)
\(0.05-030.833 E-04\)
\(\frac{5}{9}-\frac{7}{1}-\frac{8}{8}-\frac{6}{4}\)
\begin{tabular}{lllll}
6 & 9 & 11 & 8 & 9 \\
8 & 2 & 5 & 8 & 3 \\
5 & 7 & 1 & 4 & 7 \\
2 & 5 & 9 & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr}
6 & 7 & 13 & 1 & 8 \\
2 & 1 & 9 & 12 & 2 \\
0 & 11 & 2 & 9 & 1 \\
\hline & 9 & 10 & 3 & 9 \\
0 & 3 & 3 & 2
\end{tabular}
\(\begin{array}{rrrr}11 & +3 & 1 & 2 \\ 1 & 5 & 12 & 2 \\ 12 & 2 & 4 & 0\end{array}\)
\begin{tabular}{llll}
10 & 13 & 4 \\
\hline 5 & 10 & 13 & -11 \\
5
\end{tabular}

FeLLowing is the list gf evuatiens specifiec te the pregran :
FLRMAT IS... EQUAIISN NLMGER

CHECK IS MADE AT IHL LUITS IFF EACF TERN. IF THE UNITS CIFFER AN! !GUATIBN, AN: L\&RQR HESSAGE RESULTS
```

EqUATIGNL

```


\section*{EGUATIRN 2}


11 L 2
\(+k 5 \mathrm{LLL3}\)
\(+R 5 \mathrm{~L} 2 \mathrm{~L} 3\)
j
6

L1 L4
\(+23 \mathrm{LlL} L\)
\(+R 5 L 1 L 4\)

7
8
9
\(12 L 4\)
+ R3 L2 L4
\(+R 5\) L2
L4

11
12
13 L4
\(+R 4 L 3 L 4\) 14
11 L2
C4
1
\(+L 1 L 3\)
\(<\)
\(+\mathrm{L}_{\mathrm{C}} \mathrm{L}^{\mathrm{L}} \mathrm{B}\)
3
111.4
C 3
4
\(+12 L 4\)
C 3
b
\(\mathrm{LL} L 4\)
\(C 2\)
6
L3 L4
C2
+ L2 L4
Cl
৪
R2R4 LL
\(+22 k 5 \mathrm{Ll}\)
11
\(+R 2\) R4 L3
12
P. \(2<5 \mathrm{~L} 3\)
13
\(+R 324 \mathrm{Ll}\)
14
+ R3 R5 Ll 15
R4 R5 LI
\(+R 3 R 4 \mathrm{~L} 2\)
17
\(+R 3 R 5 L 2\)
18
K4k5 1.2
\(+K 1\) R4 L2
20
\(+R 1 R 5\) L2 21
R1 in 4 L3
22
+ RI RらL3
23
+ R1 R2 L4
24
R1 R3 L4
\(+\mathrm{RLKSL4}\)
\(+R 2\) R3 L4
25
26
27

R2 K5L4
28
K 2 LI
C 4
l
\(R 3 L 1\)
\(C 4\)
2
R5 \(L 1\)
C4
RIL. L
C4
4
\(R 1 \quad 13\)
\(C 4\)
7
\(+R 3 L 2\)
\(+\begin{array}{r}R 5 L 2 \\ C 4\end{array}\)
6
5
\(+R 2 L 3\)
8
\(+\mathrm{R}_{4} \mathrm{LL}\)
C3
9
K5 L.
C 3
10
\(+R 4 \mathrm{~L} 2\)
\(+\quad R 5 L 2\) C3 12
\(\begin{array}{ll}\text { K1 } & L 4 \\ \text { C } 3 \\ 13\end{array}\)
\(\begin{array}{cc}R 5 & \text { L } \\ \text { C2 } & \\ 16\end{array}\)
124 L 3
\(\mathrm{C2}\)
\(+R 5 L 3\)
C2 18

R1 L4
\(+R 2 L 4\)
\({ }^{C 2} 20\)
\(+R 5 L 4\)
C 2
21
\(\begin{array}{ll}\mathrm{R} 4 & \mathrm{~L} 2 \\ \mathrm{C} 1 & \\ 22\end{array}\)
\(+25 L ?\)
\(C 1\)
23
\(+\mathrm{R4L} 3\)
\(\mathrm{Cl}_{24}\)
\(\begin{array}{ll}\text { R } 5 & \text { L } 3 \\ \text { C } 1 & \\ 25\end{array}\)
\(+\mathrm{R2L} \mathrm{~L} 4\)
Cl
26

R 314
Cl
27
\(R 5 \quad 14\)
Cl
28
\(+R 1 R 2 R 4\)
\(+R 1 R 3 R 4\)
24

R2R3R4
\(+R 1 R 2 R 5\)
32
\(+R 1 R 3 R 5\)
September 1966
33

R2R3R5
34

\section*{EGUATIEN 5}
\(\stackrel{\mathrm{L}}{\mathrm{C}} \underset{1}{ } \mathrm{C} 4\)
\(+\begin{gathered}\mathrm{L}_{2} \\ \mathrm{C} \\ \\ \\ \\ \\ 2\end{gathered}\)
\(+\begin{gathered}\mathrm{L1} \\ \mathrm{C} 2 \mathrm{Cl}_{4} \\ \\ \end{gathered}\)
\(\mathrm{Cl}_{4} \mathrm{Cl}_{4}\)
\(+13\)
\(\begin{array}{cc}C 1 & C \\ 5\end{array}\)
\(+\begin{gathered}\mathrm{L} 3 \\ \mathrm{C} 2 \mathrm{C} \\ 6\end{gathered}\)
R1 K2 7
\(+R 1 R 3\)
8

R1 R5
C4
9
R1R4
C2
10
+ R1 R5
C2
11
\(+R 1 R 4\)
C 3
12
R1 R5
C 3
13
\(+R 2 R 3\)
\(C 4\)
+ R2 R5
C4
15
R2 R 4
Cl
16
\begin{tabular}{cc}
\(+R 2 R 5\) & \(+R 2 R 4\) \\
\(C 1\) & \(C 3\) \\
17 & \multicolumn{2}{l}{\(\left.\begin{array}{ll}18\end{array}\right)\)}
\end{tabular}
R 2
C
K
C3
19
+ R3 R4
\(\mathrm{Cl}_{20}\)
\(R 3 R 5\)
\(C 1\)
21
R3 R4
C2
22
\(+R 3 R 5\)
C2
23
R1
C \(3 \quad C 4\) 1
\(+\mathrm{Rl}\)
C2 \({ }_{2}\)
\(+\mathrm{R} 2\)
\(\begin{array}{cc}C 3 & C 4 \\ & 3\end{array}\)
R2
\(\mathrm{Cl}_{4} \mathrm{C}_{4}\)
\(+\mathrm{R} 3\)
\(\begin{array}{cc}C 2 & C_{4} \\ & \end{array}\)
\(+R 2\)
\(\begin{array}{cl}C l \\ & \\ 6\end{array}\)
R4
C2C3
7
\(+R 4\)
\(C 1 \mathrm{Cl}_{3}\)
\(+\mathrm{R} 4\)

8
\(R 5\)
C 3 C4
10
\(+k 5\)
C2 C 4
\(+R 5\)
C2C3 12
R 5
Cl 14 13
\(+\mathrm{R} 5\)
C1 C. 3 14
\(+85\)
C1 C2 15
\begin{tabular}{|c|c|c|}
\hline & EGUATIEN 7 & \\
\hline & + & + \\
\hline C2 C3C4 & \(\mathrm{ClC3}^{\text {c }}\) & \(\mathrm{Cl} \mathrm{Cl}^{\text {C4 }}\) \\
\hline 1 & 2 & 3 \\
\hline
\end{tabular}

EGUATIRA 8
\(R 5 L 2 L 4\)
\begin{tabular}{|c|c|}
\hline R2 KJ L4 & + R4 K5 L2 \\
\hline 1 & 2 \\
\hline
\end{tabular}

EGUATIEN 10
R5 L4
C2
\(+\mathrm{R} 5 \mathrm{~L} 2\)
\({ }^{C} 4\)
+ R2 R4 R5
3

EGUATIRIN 11
R2 23
C. 4
1
\(+R 4 R 5\)
C2
2

EGUATIEN 12
\(R 5\)
C2 C4
1

EGUATIRN 13

R 5
1
```

MAXINUM 1.'WF STEPS 120
NUP!ite G:F STEPS 30
TlHMS rrk@lHH RLNGE KUTTA 15
CEtsoTNT ILKNS
!.2%.ccu0w: 05
:.46u.0000E 13
O.jc(ccocO\& 03
RAA.GE FKR variakles
FX\mathscr{UNG}
0.195000005 04
0.3940COCOE 04 C.456COOOCE 04
C. }2
0.600!0000t 02
0.10CCCCOOt-04
0.5.05cccre ce
U.553GSCCOE10

```

```

 O.3940COCOE 04 C.456COOOCE O4
 C. }1
 FXLIM
 0.100C00nOF
 0
 C.1CCCOOCCE 05
 0.100000CCE 03 C.llululíe Oj
 C. }1
 0.10vcocoor 0
 C.10
    ```

THERE AKE 13 EGLATIMUS ANE 13 UNKNRW:NS,CDNSISIING JF 5 KESISTAA THE LL\&ER DQUNDAKIES FZR THE RESISTANCES, THE INDUCTANCES, AIVL TH ANU O.1CCOOOOCE-U4, रESPECTIVELY, WHILE THEIR LPPER BALNDARIES

\(L X=1\)
\(L X=2\)
\(L X=3\)
\(L X=4\)
\(L X=5\)
\(L x=6\)
\(L X=7\)
\(L x=8\)
\(L X=\quad G\)
\(L X=\quad C\)
\(L X=1\)
\(L x=2\)
\(L X=3\)
\(L X=4\)
\(L X=5\)
\(L X=\quad \epsilon\)
\(L x=7\)
\(L x=8\)
\(L x=9\)
\(L X=10\)
\(L X=11\)
\(L X=12\)
\(L X=13\)
variables
\begin{tabular}{lll}
0.19500000 E 04 & 0.394 CCOCOE C4 & C.496CCOCOE C4 \\
0.600 COOOOE 02 & 0.4000 COOOE 02 & C .3000 CCOOE 02 \\
0.34199519 E 05 & &
\end{tabular}

CENMENCIAG CRNSTANT APPRDACH
\(G R I D=1 \quad\) NRS \(=30\)
GRID= 2 NRS \(=30\)
GRIC= 3 NQS = 30
GRID \(=1\) NRS \(=56\)
GRID \(=1 \quad\) NZS \(=112\)
GRID \(=2\) NZS \(=112\)
\(\ldots \quad \mathrm{GRID}=3 \quad \mathrm{~N} 2 S=112\)
USING THIS SET RF ESTIMATES, NO RDQTS WERE FØLND

CENRENCINE CDEFFICIENT APPRQACH


E-11-1
```

.1:190COCE 13
C.7225000CH 13
\thereforeOOCOCCE 11
C.1200000CE 12

```
\(C .5000000030 .5000 C O C O E \quad 02\)
U.1000000t-04 C.10CCCOCCE-04
a. 5 aconono 03
\(0.10 \operatorname{cocccec} 03\)
0.33300000E-04
\(0.667 C C C C O E-04\)

OUCTAAC: (S), ANC 4 CAPACITANCE(S).
.CES ARE O. \(24000000 E\) OO, \(0.5 C 000000 E-04\),
CoCotr up, \(0.350 C 00 C C E C 3\), AND

TR-292-6-078
\(\begin{array}{lll}0.50000000 E & 03 & 0.5000000 C E \text { C2 } \\ 0.12004802 E ~ 05 & C .149925 C 4 E ~ C 5\end{array}\)
0.5000000CE C2
\(346 E 04\)
\(\qquad\) ) )
```

D=11 NDS=104

```
\(0=12 \quad\) NSS \(=104\)
\(10=13 \quad\) NQS \(=104\)
\([D=14 \quad N 2 S=104\)
\(I D=15 \quad\) NQS \(=104\)
\(1 D=16 \quad N D S=104\)
\(I D=17 \quad\) VeS \(=104\)
\(10=18 \quad\) NES \(=104\)
\(I D=19 \quad N D S=104\)
\(I D=20 \quad N E S=104\)
\(1 D=21 \quad N \mathrm{XS}=104\)
\(I D=22 \quad\) inss \(=104\)
\(I D=23 \quad N R S=104\)
\(I D=24 \quad\) NDS \(=104\)
\(10=25 \quad!105=104\)
\(I D=20 \quad\) NSS \(=104\)
\(I U=27 \quad\) NDS \(=104\)
\(I D=28 \quad N X S=104\)
\(I D=29 \quad\) VES \(=104\)
\(10=30 \quad\) NeS \(=104\)
\(110=31 \quad\) N2S \(=104\)
\(I D=32 \quad\) ines \(=104\)
\(I D=33 \quad\) NCS \(=104\)
\(: I D=34 \quad\) iURS \(=104\)
\(\because I D=35 \quad N E S=104\)
\(11 D=36 \quad \mathrm{NDS}=104\)
\(10=37\) i日S \(=104\)
\(10=38 \quad\) NiS \(=104\)
\(\because D=3 ; \quad i N S=104\)
\(8 I D=40 \quad\) V2S \(=104\)
RID \(=41 \quad\) id \(2 S=104\)
\(K I D=42 \quad\) iN \(2 S=104\)
\(R I D=43 \quad N 2 S=104\)
\(2 I D=44 \quad\) N2S \(=104\)
RID \(=45 \quad\) NQS \(=104\)
RIC \(=46 \quad\) NLS \(=104\)
RIU \(=47\) NES \(=104\)
KIO \(=48 \quad N 2 S=104\)
RID \(=49 \quad\) VSS \(=104\)
\(R I D=50 \quad\) V \(\mathrm{R}=104\)
\(\mathrm{K} I O=51 \quad V 2 S=104\)
\(K I C=52 \quad \forall 2 S=104\)
\(\mathrm{RID}=53 \quad \mathrm{NQS}=104\)
\(R I O=54 \quad\) NES \(=104\)
RID \(=55 \quad\) VRS \(=104\)
RIO \(=56 \quad\) NES \(=104\)
RID \(=57 \quad\) NES \(=104\)
\(\mathrm{RID}=58 \quad\) NQS \(=104\)
RRID \(=59 \quad\) NES \(=104\)
\(\mathrm{RID}=60 \quad \mathrm{NDS}=104\)
RID \(=61 \quad\) NES \(=104\)
BRID \(=62\) NES \(=104\)
\(5 R I D=63 \quad \mathrm{NES}=104\)
SRID \(=64 \quad N Q S=104\)
\begin{tabular}{|c|c|c|c|}
\hline GKID \(=\) & 65 & NQS \(=\) & 104 \\
\hline GкiU= & 66 & N2S \(=\) & 104 \\
\hline \(3 \mathrm{<} 10=\) & 67 & V2S \(=\) & 104 \\
\hline GrIU= & 68 & N2S \(=\) & 104 \\
\hline GR10= & 69 & N2S \(=\) & 104 \\
\hline G*I0= & 70 & NQS \(=\) & 104 \\
\hline GRID \(=\) & 71 & N2S \(=\) & 104 \\
\hline GR10= & 72 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 73 & NeS \(=\) & 104 \\
\hline GKID \(=\) & 74 & N2S = & 104 \\
\hline GKID = & 75 & NOS \(=\) & 104 \\
\hline GRID= & 76 & NeS \(=\) & 104 \\
\hline GRID \(=\) & 77 & NRS \(=\) & 104 \\
\hline GRID \(=\) & 78 & NES \(=\) & 104 \\
\hline GRID \(=\) & 79 & NDS \(=\) & 104 \\
\hline GRID \(=\) & 80 & N2S \(=\) & 104 \\
\hline GRIO = & 81 & NRS \(=\) & 104 \\
\hline GR1D= & 82 & NRS \(=\) & 104 \\
\hline GRID = & 83 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 84 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 85 & N0S \(=\) & 104 \\
\hline GRID \(=\) & 86 & NQS \(=\) & 104 \\
\hline GRID \(=\) & 87 & NQS \(=\) & 104 \\
\hline GRID = & 88 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 89 & N2S \(=\) & 104 \\
\hline GRID= & 90 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 91 & NRS \(=\) & 104 \\
\hline GRID \(=\) & 92 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 93 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 94 & NOS \(=\) & 104 \\
\hline GRID \(=\) & 95 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 96 & N2S \(=\) & 104 \\
\hline GRIC= & 97 & \(\because 25=\) & 104 \\
\hline GRID \(=\) & 98 & , 22S \(=\) & 104 \\
\hline GRID \(=\) & 99 & N2S \(=\) & 104 \\
\hline GRID= & 100 & N82= & 104 \\
\hline GRID \(=\) & 101 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 102 & N2S \(=\) & 104 \\
\hline GRID \(=\) & 103 & V2S \(=\) & 104 \\
\hline GRID \(=\) & 104 & + 25 S \(=\) & 104 \\
\hline
\end{tabular}

ALL RZQTS IN THE FQLLQWING SET LIE WITHIN THE PHYSICAL LIMITS SPECIFIED
\begin{tabular}{|c|c|c|c|c|c|}
\hline R(1) \(=\) & \(0.19999993 E 04\) & EHMS & L1, 1) = & C.49999994E 02 & HEARIES \\
\hline \(R(2)=\) & \(0.39999999 E C 4\) & EHMS & (1 2) = & C.6000C002E 02 & Henries \\
\hline R( 3) = & 0.50000002 E 04 & DHMS & (1 3) = & C. \(4000 C 0 C 6 E 02\) & HEARIES \\
\hline R( 4) = & 0.30000000 C 4 & 2 HMM & L( 4) = & C.2999S999E 02 & renkie \\
\hline
\end{tabular}

E-13-1

TR-292-6-078
September 1966
\(\qquad\)
\(\qquad\)

```

 DR CAPACITXR C 4 1HE 1 COMPQNENT(S) ARE
 0.4EGS9G99E 08
 4 IS THUS 0.4649GGS9E O8 MICRZ̈MICREFARADS
 OR CAPACITQR C 3 THE 2 CDMPQNENT(S) ARE
 0.56CCCCCOE 08
 0.1CCCOOCOE O8
 3 IS THUS O.GGOOCOCOE O8 MICRQMICREFARADS
 FDR CAPACIINK C L THE \angle COMFEONENTISI ARE
0.6धCCCOOCE 08
O. 150COCOOE O\&
C 2 IS TrUS 0.830OCCCOE C8 MICRUMICRUFARADS
FOR CAPACITAR C I THE 2 CGMPONENT(S) ARE
0.68CCCCCOE O8
0.33CCOOOOE 08
C I IS THS O.LOLOCCCOE OG MICRQMICRQFARADS

```
FAR INDUCTUR L 4 THE 1 CQMPRNENT(S) ARE
                        0. 3CCCOOOOE 02
\(\begin{array}{lllll}\text { IL IS THUS C. } 400 C C C C O E & 02 & \text { HENRIES, ANC } \\ \text { THE INOUCTIVE PART DF K } 4 & \text { IS } & 0.30 C C O C O C E ~ & 02 \text { DHNS }\end{array}\)
FOR INCUCTER L 3 THE 1 COMFRNENTISI ARE
                        \(0.4 C C C C O O C E \quad 02\)
L 3 IS THUS \(0.4000 C O C O E ~ 02\) HENRIES, ANC
THE INDUCTIVE PART OF R 3 IS 0.4 COCCCOCE 02 DHINS

FOR INCUCTOR L 2 THE 2 COMPGNENT(S) ARE \(0.5 C C C O C O O E \quad 2\) \(0.1 C C C O C C O E 2\)

12 IS TIUS C. GOCOCCCOE 02 HEINRIES, ANC
THE INCUCTIVE PART OF R 2 IS \(0.510 C O C O C E O 3\) DHNS
\[
\mathrm{E}-14
\]

\title{
FER INDUCTER L 1 THL I CQNPRNENT(S) ARE \(0.5 \operatorname{cococcce} 02\)
}

```

rHE INOUCTIV PAII \&I K L IS O.5COCOCOCE O2 GHNS

```

FQR RESISTQR R 5 THE 2 COMPRNENT(S) ARE
\(0.464 C O C O O L ~ 03\)
0.34 CCCOOOE 02

R 5 IS THUS C.4Sg8CCCCE O3 DHMS

FDR RESISTER \(<~ 4\) THE ב̈ CDMPENENTISi ARE 0. \(2<7 C C C O C=04\) \(0.9 C G C O C O O E ~ 02\)

WITH AN INEUCTIV: KESISTANCE RF C. 3 COCOCOOE 02 E'INS R 4 IS THUS C. \(29 Y C S C C C E ~ C 4\) EHMS

FOR RESISTミR R 3 THE © COMPQNENT(S) ARE 0.422 CCCOCE 04 \(0.237 C O C O O E \quad 03\)

WITH AN INCUCTIVE RESISTANCE QF C.4COCOCOOE 02 EHNS R 3 IS THUS C.4497CCCCE 04 9HMS

FOR RESISTOR R 2 THIE CZMPQNENTIS) ARE \(0.383 \operatorname{cccc} 04\) (3. 162COCOOE 03

WITH AN INDUCTIVE RESISTANCE DF C.SIOCOCOOE 03 RHNS R 2 IS THUS C.4502COCOE 04 GHMS

FOR RESISTBR R 1 THL CCOMPQNENT(S) ARE 0.178 CCCOCE 04 C. \(162 \operatorname{cccce} 03\)

WITH AN INDUCTIVE RESISTANCE OF C.5COCOCOOE 02 RHNS
R 1 IS THUS C. \(1992 C C C O E \quad 04\) EHMS

THE NUMERATUR IS AF ORDER 5. THE PDLYNQNIAL IN DESCENDING ZRCER KELQW
0.85783958L
C6
C. 15687958E C9
C. 75334129 E
10
C.65752899E
11 \(0.127864 \in 5 \mathrm{~L} \quad 12 \quad\) C. COOCOOCOE- 38

THE RLUIS ARE-
RHAL PAKI INAG. FART REAL FART IMAG. PART
-C.72.254E C2
- C. 27791E Cl
C. CCOOCL -38
C. CCOOCE-38
O.OCOOCt-38
-0.91SE7E 02
\(-0.771 \mathrm{COE} \mathrm{Cl}\)
0.00000E-38 \(0.0000 C E-38\)

THF UENZMINATiR IS \&F JRCER G. THE PDLYNRMIAL IN DESCENOING RREER BELAN
0.22200 CCOL
C6 C.58627997E C8
C. 551146 C 2 E
10
\(0.17911432 E \quad 12\) \(0.14477981 t\) 13
C. 76232013 t
13
C.96138811E 13

REAL PART
\[
-\mathrm{C} .35507 \mathrm{E} \mathrm{C}
\]
\[
-0.61914 \mathrm{Cl}
\]

> INAG. FART
> \(-C .45353 E C 2\)
> \(C . C C O O C E-38\)
> \(0.70123 E C O\)
\[
\begin{array}{cc}
\text { REAL FAKT } & \text { IUAC.PART } \\
-0.1 C 6 G 1 E ~ 03 & 0.45333 E C 2 \\
-0.61914 E ~ O L & -0.70123 E C C \\
-0.23254 E \quad 01 & 0.00000 E-38
\end{array}
\]

TR-292-6-078
September 1966
PHASE-CEG
\(-0.00367\)
\(-0.00406\)
\(-0.00449\)
-0.c0457
\(-0.00550\)
\(-0.00609\)
\(-0 . \operatorname{co6} 74\)
\(-0 . \operatorname{cc} 746\)
-0.00825
\(-0.00913\)
\(-0.01 \mathrm{ClC}\)
-0.01118
-0.01237
\(-0.01369\)
\(-0.01515\)
\(-0.0167 ?\)
\(-0.01856\)
\(-0.02055\)
-0.02274
\(-0 . \mathrm{C} 2518\)
\(-0.02787\)
\(-0.03086\)
\(-0.03417\)
-0.03785
\(-0.04153\)
-0.04647
\(-0.05150\)
\(-0.0571 \mathrm{C}\)
\(-0.06335\)
\(-0.07031\)
\(-0.07809\)
\(-0.08681\)
\(-0.09659\)
\(-0.10760\)
\(-0.12004\)
-0. 13414
\(-0.15021\)
\(-0.16862\)
-0.18984
\(-0.21445\)
\(-0.24322\)
-0.27711
\(-0.31737\)
\(-0.365 t 4\)
\(-0.42400\)
\(-0.49519\)
\(-0.58271\)
\(-0.69115\)
\(-0.82638\)
\(-0.99590\)

TR-292-6-078
September 1966
C. 99346
1.09934
1.21649 1.34614 1.489 tc 1.64835
1.82401 2.01840 2.23350 2.47153 2.734 Hz 3.02635 3.34891 3.70581 4.10074 4.53111 5.02136 5.55649 6.14866 t. 80393 7.52903 8.33141 9.21930 C. 20181 11.29901 12.49212 3.82342 5.2966 C 16.92678 \(18.730 t \varepsilon\) C. 72684 \(2.9357 \pi\) 5.380 C \(8.084 / \mathrm{c}\) 1.07782 4.38983 8.05430 2.11034 t. 59810
1.56412 7.05937
\(3.1402 t\) 9.86919 17.31524 5.55482 4.67251 4.76187 5.42647 8.28 C 5 C 1.95196
C. 15811
C. 17496
C. 19361
0.21424
C. 2370 e
0.26234
\(0 .{ }^{2} 9630\)
C. 32124
0.35547
C. 35336
C. 43528
C. \(4816 t\)
0.51300
C. 58 S8C
0.65265
(.) ici2i
0.19917
C. 88434
C. 97859
1.08288
1.15828
1. 32599
1.46730
1.62367
1.79671
1.98818
2.2CCC7
2.43453
2.69398
2.98108
3.25878
\(3.65 C 33\)
4.03535
4.45983
\(4.94+19\)
5.47231
t.05tel
6.10207
7.41632
8.20668
G.ce128
10.04508
11.12 CO 3
12.3051 C
13.61647
15.0676 C
16.61337
18.45 C 27

2C.41654
22.59236
\begin{tabular}{|c|c|}
\hline C. \(\cos 15\) & -45.76044 \\
\hline C. \(\operatorname{Cu518}\) & -45.70750 \\
\hline C. \(\operatorname{Co522}\) & -45.64587 \\
\hline c. \(\cos 26\) & -45.57488 \\
\hline C. \(\cos 31\) & -45.49416 \\
\hline C. 00537 & -45.40376 \\
\hline C. 00543 & -45.30441 \\
\hline C. 00550 & -45.19769 \\
\hline C. 00557 & -45.08624 \\
\hline C. 00564 & -44.97396 \\
\hline C. \(\mathrm{C0571}\) & -44.86608 \\
\hline C. 00577 & -44.76923 \\
\hline C. \(\mathrm{CO5} 83\) & -44.69122 \\
\hline C. C 0586 & -44.64079 \\
\hline C. 00587 & -44.62719 \\
\hline  & -44.65950 \\
\hline C. \(\cos 79\) & -44.74648 \\
\hline C. C 0569 & -44.89512 \\
\hline C. \(\cos 55\) & -45.11104 \\
\hline C. CO 537 & -45.39773 \\
\hline C. \(\mathrm{C0515}\) & -45.75663 \\
\hline C. CO 491 & -46.18717 \\
\hline C. 00463 & -4t.68720 \\
\hline C. 00434 & -47.25335 \\
\hline C. C0404 & -47.88155 \\
\hline C. 00373 & -48.56748 \\
\hline C. \(\operatorname{C0342}\) & -49.30693 \\
\hline C. CO 013 & -5C.09602 \\
\hline C. 00284 & -5C.93140 \\
\hline C. 00257 & -51.81019 \\
\hline C.C0231 & -52.72999 \\
\hline C. \(\mathrm{CO2O}\) & -53.68869 \\
\hline C. CO 184 & -54.68429 \\
\hline C. \(\mathrm{CO164}\) & -55.71472 \\
\hline c. C0145 & -56.77766 \\
\hline C.CO128 & -57.87044 \\
\hline C. 00112 & -58.99003 \\
\hline C. \(\cos 88\) & -6C.13314 \\
\hline C. 10086 & -61.29654 \\
\hline C. 00075 & -62.47734 \\
\hline c. 00066 & -63.67353 \\
\hline C. \(\operatorname{Co057}\) & -64.88435 \\
\hline C. 00049 & -66.11065 \\
\hline C. 00043 & -67.35501 \\
\hline C. COO37 & -68.62156 \\
\hline C. 00032 & -69.91551 \\
\hline C. 00027 & -71.24236 \\
\hline C. 00023 & -72.60707 \\
\hline C. \(\mathrm{COO2O}\) & -74.01321 \\
\hline C. C0017 & -75.46248 \\
\hline
\end{tabular}
phase-ceg
\(-1.20529\)
\(-1.47854\)
\(-1.81857\)
\(-2.24757\)
\(-2.78739\)
\(-3.46361\)
\(-4.30533\)
\(-5.34467\)
\(-6.61551\)
\(-8.15186\) \(-9.98558\)
\(-12.14369\)
\(-14.64553\)
\(-17.5 C C 12\)
\(-20.70410\)
\(-24.24063\)
-28.07962
- 32.17928
\(-36.48898\)
- 40.95298
\(-45.51461\)
- 50.12015
-54.72206
-59.281C2
\(-63.76680\)
\(-68.15757\)
\(-72.44085\)
\(-76.60782\)
\(-80.65547\)
\(-84.58277\)
\(-88.38958\)
-92.C7549
\(-95.63930\)
-99.07911
\(-102.39296\)
\(-105.58017\)
\(-108.64285\)
\(-111.58784\)
\(-114.42774\)
\(-117.18196\)
\(-119.87612\)
\(-122.54027\)
\(-125.20576\)
\(-127.90099\)
\(-130.64671\)
-133.452C3
- 136.31196
\(-139.20741\)
\(-142.10784\)
\(-144.97586\)

TR-292-6-078
September 1966



\footnotetext{
rigure E-3. GAIN VERSUS FREQUENCY
THIRTEEN EQUATIONS, THIRTEEN UNKNOWNS
}


Frequency in raciansiseconc

Figure E-1. AMPLITUDE VERSUS FREQUENCY
THIRTEEN EQUATIONS, THIRTEEN UNKNOWNS
E-21

frequency in racians/seconc

Figure E-2. PHASE SHIFT VERSUS FREQUENCY THIRTEEN EQUATIONS, THIRTEEN UNKNOWNS

\section*{APPENDIX F}

\section*{FILTER CIRCUIT WITH FIFTEEN UNKNOWNS}

The circuit and its transfer function, from which the set of 16 equations was derived, is shown in Figure \(F-1\). The transfer function is shown in a normalized form in equation (F-1). In order to obtain the true constants for the equations, it was necessary to find the true values of \(N_{0}\) and \(D_{7}\). The remaining coefficients in the polynomial could then be found. After establishment of the coefficients, the circuit was scaled by a faciur of \(10^{-6}\), changing the constant terms by a factor of \(10^{-42}\), in order to prevent overflow on the IBM 7094. The resulting transfer function is shown in equation ( \(\mathrm{F}-2\) ).

The values of the circuit elements, as given in reference 18 , are provided in Table F-1 below. The equations themselves, derived during the course of the study, are presented on the pages following Figure F-1.

Table F-1.
COMPONENT VALUES FOR THE FIFTEEN-ELEMENT CIRCUIT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Resistors} & \multicolumn{2}{|r|}{Inductors} & \multicolumn{2}{|l|}{Capacitors} \\
\hline R(1) & 4580 & \(\Omega\) & L(1) & 1400 h & C(1) & \(14 \mu \mathrm{f}\) \\
\hline R(2) & 5700 & \(\Omega\) & L(2) & 1200 h & C(2) & \(14 \mu \mathrm{f}\) \\
\hline R(3) & 8610 & \(\Omega\) & L(3) & 900 h & C(3) & . \(6 \mu \mathrm{f}\) \\
\hline R(4) & 12000 & \(\Omega\) & & & C(4) & . \(7 \mu \mathrm{f}\) \\
\hline R(5) & 220 & K \(\Omega\) & & & C(5) & \(10 \mu \mathrm{f}\) \\
\hline R(6) & 2000 & \(\Omega\) & & & C(6) & \(10 \mu \mathrm{f}\) \\
\hline
\end{tabular}
\[
(\mathrm{F}-1)
\]
\[
\frac{s^{7}}{}
\]
\[
\begin{aligned}
& \mathrm{F}_{\mathrm{j}}(\text { normalized })=1.0 \\
& \mathrm{~F}_{\mathrm{j}}(\text { scaled })=.243 \times 10^{-6}
\end{aligned}
\]

R6
C1 C2 C3 C4 C5 C6

EQUATION \(2\left(\mathrm{~N}_{1}\right)\)
\[
\begin{aligned}
& F_{j}(\text { normalized })=.345 \\
& F_{j}(\text { scaled })=.839 \times 10^{-7}
\end{aligned}
\]

R6 R3
C4 C5 C2 C6 C3
+ R2 R6
+ R6 R4
C5 C1 C6 C3 C4 C1 C6 C2 C4 C5

R6 R4
C2 C3 C5 C1 C6

EQUATION \(3\left(\mathrm{~N}_{2}\right)\)
\[
\begin{aligned}
& F_{j}(\text { normalized })=.144 \times 10^{-1} \\
& F_{j}(\text { scaled })=.372 \times 10^{-8}
\end{aligned}
\]

R6 L2 R3
C2 C3 C5 C6
R6 R2 R4
C2 C4 C5 C6
R6 R2 R4
C6 Cl C4 C5
+ L3 R6 + R6 R1
Cl Cl C4 C5 C6
+ R6 R3 R4
C3 C5 C6 C3
+ R6 R3 R4
C5 C6 C1 C4
+ R6 R2 R4
C2 C3 C5 C6

EQUATION \(4\left(\mathrm{~N}_{3}\right)\)


EQUATION \(6\left(\mathrm{~N}_{5}\right)\)
\[
\begin{aligned}
& F_{j}(\text { normalized })=.473 \times 10^{-5} \\
& F_{j}(\text { scaled })=.115 \times 10^{-11}
\end{aligned}
\]


R6 R4 L2 L3
C1 C5 C6

EQUATION \(7\left(\mathrm{~N}_{6}\right)\)
TR-292-6-078
\[
\begin{aligned}
& F_{j}(\text { normalized })=.251 \times 10^{-7} \\
& F_{j}(\text { scaled })=.639 \times 10^{-14}
\end{aligned}
\]

R6 L2 R4 R3 L2 C6 C5
\[
\begin{array}{rllll}
+R 1 & L 3 & R 6 & L 1 & R 4 \\
C 6 & C 5 & & &
\end{array}
\]
+ R4 R2 L3 R6 LI C5 C6

EQUATION \(8\left(\mathrm{~N}_{7}\right)\)
\[
\begin{aligned}
& F_{j}(\text { normadized })=.149 \times 10^{-8} \\
& F_{j}(\text { scaled })-.363 \times 10^{-15}
\end{aligned}
\]

R6 R4 L1 L2 L3 C5 C6

EQUATION \(9\left(D_{7}\right)\)
\[
\begin{aligned}
& F_{j}(\text { normalized })=.610 \times 10^{-7} \\
& F_{j}(\text { scaled })=.179 \times 10^{-11}
\end{aligned}
\]

R5 L2 R4 Ll L3 C2 C6

EQUATION \(10\left(D_{6}\right)\)
TR-292-6-078
September 1966
\[
\begin{aligned}
& \mathrm{F}_{\mathrm{j}}(\text { normalized })=.17 \times 10^{-5} \\
& \mathrm{~F}_{\mathrm{j}}(\text { scaled })=.511 \times 10^{-10}
\end{aligned}
\]


\[
\begin{aligned}
& F_{j}(\text { normalized })=.125 \times 10^{-3} \\
& F_{j}(\text { scaled })
\end{aligned}
\]
```

3

```



    C3 C5 C1 C5 C2 C2
\(+\begin{array}{lllllllll}L 2 & R 4 & L 2 R 4 R 3 \\ C 5 & C 3\end{array} \quad+\begin{array}{llll}L 1 & R 2 & R 5 & R 6 \\ C 1 & C 1 & C 5\end{array}\)
+ L1 R2 L2 R5 \(\quad\) + R4 L3 R3 L2
    C3 C5 Cl


C1 C1 C5
    + R6 R4 R2 L3
\(\begin{array}{rrrr}\text { L1 } & \text { R4 } & \text { R6 } & \text { R3 } \\ \text { C4 } & \text { C3 } & \text { C1 }\end{array}\)
C3 C5 Cl
L3 R6 Ll R4 R1
C5 C3
+ Ll R3 R5 R6
+ L2 R4 Ll L2 R2
\(\begin{array}{llll}\text { L1 } & \text { R1 } & \text { L3 } & \text { R4 } \\ \text { C6 } & C 1 & C 2 & \end{array}\)
\(+\mathrm{R1}\) L2 R2 L1
\(\begin{array}{llll}R 4 & R 4 & R 2 & \text { L3 } \\ C 4 & C 2 & C 2\end{array}\)
\(\begin{array}{llll}\mathrm{L} 2 & \mathrm{R} 2 & \mathrm{R} 5 & \mathrm{R} 3 \\ \mathrm{C} 4 & \mathrm{C} 3 & \mathrm{Cl} & \end{array}\)
\(\begin{array}{rlll}\text { L3 } & \text { R4 } & \text { L3 R4 R2 } \\ \text { C6 } 65 & & & \end{array}\)
\(\begin{array}{cccc}L 1 & R 4 & R 6 & R 5 \\ C 1 & C 1 & C 6 & \end{array}\)
+ L1 R1 L3 R5
\(+\begin{array}{lll}R 2 & \text { L2 R2 LI } \\ \text { C3 C6 Cl }\end{array}\)
\(\begin{array}{llll}\text { L3 } & \text { R5 L1 LI R2 } \\ \text { C3 } & \text { C5 }\end{array}\)
R4 R4 R1 L3
C4 C2 C2
+ Ll R1 R6 R2
\(\begin{array}{rrll}\text { L3 } & \text { R4 L3 R4 R2 } \\ \text { C6 } & \text { C5 }\end{array}\)
\(\begin{array}{llll}L 2 & R 4 & R 5 & R 6\end{array}\)
\(+\begin{array}{lll}\text { L3 R6 L3 L1 R2 } \\ \text { C3 } & \text { C5 }\end{array}\)
\(\begin{array}{ccc}\mathrm{L} & \mathrm{Rl} & \mathrm{L} 3 \\ \mathrm{C} & \mathrm{R} 6 \\ \mathrm{C} & \mathrm{Cl} & \mathrm{C} 2\end{array}\)
R3 L2 R3 Ll
C3 C6 C1
\(+\mathrm{R}_{4} \mathrm{R4}\) R1 L3
\(+\begin{array}{llll}\text { L1 } & \text { R3 R5 R2 }\end{array}\)
    C4 C5 Cl
L2 R4 L2 R4 R3
+ Ll R2 R6 R5
\(+\begin{aligned} & \text { L2 R4 L3 L1 R3 } \\ & \text { C3 C5 }\end{aligned}\)
Ll R1 L2 R4
C6 C1 C2
\begin{tabular}{lllll}
\(R 2\) & \(L 2\) & \(R 3\) & \(L 2\) \\
\(C 3\) & \(C 5\) & \(C 1\) & \\
& & & & \\
L3 & \(R 6\) & L2 & \(R 4\) & R3
\end{tabular}
\(\begin{array}{lllll}\text { L3 } & \text { R6 L2 } & \text { R4 R3 }\end{array}\)
L1 R1 L2 R6
C6 C2 C2
L1 R3 R6 R3
C4 C3 Cl
C5 C3
\(+\begin{array}{rllll}\mathrm{L3} & \text { R6 } & \text { L3 Ll R1 } \\ \mathrm{C} 3 & \mathrm{C} 3 & & & \end{array}\)
\(+R 4 R 4 R 1 L 3\)
\(\begin{array}{rllll}L 1 & R 2 & R 5 & R 6 \\ C 1 & C 1 & C 5 & \end{array}\)
+L R2 L2 R5 \(\quad+\mathrm{R} 4 \mathrm{L3}\) R3 L2
\(+\begin{array}{llll}\text { L3 R } \\ \mathrm{C} & \text { R } & \text { LI R4 R1 }\end{array}\)

L2 R2 L3 R6
+ R6 R4 R2 L3
\(\begin{array}{rlll}\text { L1 } & \text { R4 } & \text { R6 } & \text { R3 } \\ \text { C4 } & \text { C3 } & \text { C1 }\end{array}\)
+ L1 R3 R5 R6 \(\quad+\) L2 R4 L1 L2 R2

\(\begin{array}{rlll}\text { L3 } & \text { R4 } & \text { L3 R4 R2 } \\ \text { C6 } 65 & & & \end{array}\)
\(\begin{array}{rrrr}\text { L1 } & R 4 & \text { R6 } & \text { R5 } \\ \text { C1 } & \text { C1 } & \text { C6 } & \end{array}\)
\(\begin{array}{llll}\text { R2 } & \text { L2 } & R 2 & \text { LI } \\ \text { C3 } & C 6 & C 1\end{array}\)
\(+\begin{array}{llll}\text { L3 } & \text { R4 L3 R4 R2 } \\ \text { C6 } & \text { C5 }\end{array}\)
\(\begin{array}{ccc}\mathrm{L} & \mathrm{Rl} & \mathrm{L} 3 \\ \mathrm{C} & \mathrm{R} 6 \\ \mathrm{C} & \mathrm{Cl} & \mathrm{C} 2\end{array}\)
\(+\mathrm{R}_{4} \mathrm{R} 4 \mathrm{Rl} \mathrm{L}_{3}\)
\(+\begin{array}{llll}L 1 & R 3 & R 5 & R 2 \\ C 4 & C 5 & C 1 & \end{array}\)
\(+\begin{array}{ll}\text { L2 R4 L3 L1 R3 } \\ \text { C3 C5 }\end{array}\)
+24 L3 R3 L1 \(\quad+R 5 \mathrm{R} 4 \mathrm{RI}\) L2
C4 C6 Cl

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(R 2\)
C 4 & & R3
C1 & L3 & & R4 & \[
\begin{aligned}
& \mathrm{R} 4 \\
& \mathrm{C4}
\end{aligned}
\] & & Cl & & L1 & & R6
62 & R3 \\
\hline L3 & R4 & L1 & R4 R1 & + & 1.2 & R4 & R5 & R6 & + & L3 & R6 & L1 & L2 L1 \\
\hline 66 & C3 & & & & C2 & C2 & C4 & & & C5 & C3 & & \\
\hline 11 & R1 & L3 & L2 & \(+\) & R3 & L2 & R2 & L3 & + & R4 & R4 & R2 & \\
\hline C6 & Cl & C5 & & & C4 & C6 & Cl & & & C6 & C4 & C2 & C1 \\
\hline Ll & R3 & R5 & R3 & + & L2 & R4 & L3 & R4 R4 & + & L1 & R2 & R6 & R5 \\
\hline C5 & C6 & C2 & & & C6 & C3 & & & & C2 & C2 & C6 & \\
\hline L2 & R4 & L1 & L1 L1 & + & 11 & R1 & L3 & L2 & \(+\) & R1 & L3 & R2 & L3 \\
\hline C5 & C3 & & & & C6 & C2 & C5 & & & C3 & C6 & Cl & \\
\hline i< 4 & र 4 & K1 & & + & L2 & R4 & R6 & R2 & + & L3 & R5 & L3 & R4 R4 \\
\hline C4 & C4 & C3 & Cl & & C5 & C5 & C2 & & & C6 & C4 & & \\
\hline L1 & R1 & R5 & R6 & + & L. 2 & R4 & L3 & Ll L1 & + & L2 & R1 & L3 & L2 \\
\hline C2 & C2 & C5 & & & C5 & C3 & & & & C6 & C2 & C5 & \\
\hline R4 & L3 & R3 & L3 & + & R5 & R4 & R1 & & + & L2 & R4 & R5 & R2 \\
\hline C3 & C6 & C1 & & & C4 & C4 & C3 & C1 & & C5 & C5 & C2 & \\
\hline L3 & R6 & L2 & R4 R2 & \(+\) & L1 & R2 & R6 & R5 & + & L2 & R3 & L3 & L1 L1 \\
\hline C6 & C4 & & & & C2 & C2 & C6 & & & C5 & C3 & & \\
\hline R4 & R1 & L3 & L2 & \(+\) & R4 & R5 & R3 & L3 & + & R6 & L1 & \(R 4\) & R1 \\
\hline C6 & C2 & C5 & & & C3 & C6 & Cl & & & C4 & C3 & C1 & \\
\hline L2 & R2 & R6 & R3 & + & L3 & R4 & L2 & R4 R2 & + & L 1 & R2 & R5 & R6 \\
\hline Cl & C5 & C2 & & & C3 & C5 & & & & C2 & C2 & C6 & \\
\hline L3 & R3 & L2 & L1 L1 & + & R4 & R2 & L3 & L2 & \(+\) & R4 & R6 & R3 & L3 \\
\hline C5 & C3 & & & & C6 & C2 & C5 & & & C3 & C6 & Cl & \\
\hline R5 & L1 & R4 & R1 & \(+\) & 11 & R1 & R5 & R3 & + & 13 & R4 & L1 & R4 R3 \\
\hline C4 & C3 & C1 & & & C1 & C5 & C3 & & & C3 & C4 & & \\
\hline L2 & R1 & R6 & R5 & + & 13 & R2 & L2 & Ll L1 & + & R4 & R2 & L2 & L2 \\
\hline C2 & C2 & C5 & & & C3 & C5 & & & & C5 & C2 & C5 & \\
\hline R4 & R5 & R3 & L3 & + & R6 & L3 & R4 & R2 & + & L1 & R3 & R6 & R5 \\
\hline C3 & C6 & Cl & & & C4 & C3 & C1 & & & Cl & C5 & C3 & \\
\hline L3 & R4 & L1 & L1 R3 & + & L1 & R1 & 13 & R6 & + & L2 & R2 & L1 & L1 \\
\hline C3 & C5 & & & & C2 & C2 & C6 & & & C3 & C5 & C1 & \\
\hline R4 & R1 & L2 & L2 & \(+\) & R4 & R6 & R2 & L3 & + & R5 & L3 & R4 & R2 \\
\hline C5 & C2 & C2 & & & C4 & C3 & C1 & & & C5 & C3 & C1 & \\
\hline L2 & R4 & R5 & R6 & + & 13 & R5 & L3 & L1 R2 & + & L1 & R1 & 43 & R5 \\
\hline C1 & C5 & C4 & & & C3 & C5 & & & & C2 & C2 & C6 & \\
\hline
\end{tabular}
\[
\begin{aligned}
& F_{j}(\text { normalized })=.163 \times 10^{-2} \\
& F_{j}(\text { scaled })=.455 \times 10^{-7}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(R 4\) & L2 & R3 & L3 & + & L1 & R6 & R2 & & & & R3 & L2 & R4 \\
\hline C5 & C6 & C2 & & & C6 & C2 & C3 & C1 & & C4 & C4 & C3 & \\
\hline R4 & R5 & R3 & & + & R5 & R1 & L3 & L1 & + & 11 & R4 & L2 & R2 \\
\hline C2 & C5 & Cl & C5 & & C3 & C2 & C6 & & & C4 & C3 & C1 & \\
\hline R5 & R2 & L1 & & + & R4 & L2 & R3 & L3 & + & L2 & R5 & R2 & \\
\hline C5 & C3 & C5 & Cl & & C5 & C6 & C2 & & & C6 & C2 & 64 & C1 \\
\hline L3 & R3 & L1 & R4 & + & R4 & R6 & R5 & & \(+\) & R6 & R1 & L3 & L1 \\
\hline C4 & C5 & C2 & & & C2 & C5 & C1 & C3 & & C3 & C2 & 66 & \\
\hline L1 & R4 & L2 & R5 & \(+\) & R6 & R2 & L1 & & + & R4 & L2 & R3 & L. 3 \\
\hline C4 & C3 & Cl & & & C5 & C3 & C5 & C1 & & C5 & C6 & 62 & \\
\hline L1 & R6 & R1 & & \(+\) & L3 & R1 & L1 & R3 & + & R3 & R5 & R6 & \\
\hline C6 & C2 & C4 & Cl & & C4 & C5 & C2 & & & C2 & C5 & C1 & C3 \\
\hline R4 & R2 & L2 & L. 1 & + & L2 & R3 & L2 & R6 & + & R4 & R1 & L1 & \\
\hline C3 & C2 & C6 & & & C5 & C3 & Cl & & & C6 & Cl & C5 & Cl \\
\hline R4 & L1 & R2 & L3 & + & L2 & R5 & R1 & & + & 13 & R1 & L3 & R3 \\
\hline C3 & C6 & C2 & & & C4 & C2 & C4 & Cl & & C4 & 65 & C2 & \\
\hline R4 & R6 & R2 & & + & R5 & R2 & L2 & L1 & + & L2 & R4 & L3 & R3 \\
\hline C2 & C5 & C1 & C3 & & C3 & C2 & C6 & & & C5 & C5 & Cl & \\
\hline R5 & R1 & L1 & & + & R4 & L1 & R2 & L. 2 & + & 11 & R6 & R3 & \\
\hline C6 & Cl & C5 & C1 & & C3 & C6 & C2 & & & C4 & C2 & C4 & Cl \\
\hline L2 & R1 & L3 & R4 & + & R4 & R5 & R1 & & + & R6 & R2 & L2 & L2 \\
\hline C4 & C5 & C2 & & & Cl & C5 & C1 & C3 & & C3 & C2 & C6 & \\
\hline L2 & R4 & L3 & R1 & + & R6 & R1 & L2 & & + & R4 & L1 & R3 & L3 \\
\hline C4 & C5 & Cl & & & C6 & C1 & C5 & Cl & & C3 & C6 & C2 & \\
\hline L1 & R5 & R3 & & + & L3 & R2 & L2 & R4 & + & R3 & R6 & R3 & \\
\hline C4 & C2 & C4 & Cl & & C4 & C5 & C2 & & & C1 & C5 & C1 & C3 \\
\hline R4 & R1 & L2 & L 1 & + & L1 & R2 & L2 & R5 & + & R4 & R1 & L 1 & \\
\hline C3 & C2 & C6 & & & C4 & C5 & C1 & & & C6 & C1 & C5 & Cl \\
\hline R4 & L3 & R3 & L3 & + & L1 & R6 & R1 & & \(+\) & L2 & R2 & L2 & R2 \\
\hline C3 & C6 & C2 & & & C4 & C2 & C4 & Cl & & C4 & C6 & C2 & \\
\hline R4 & R4 & R5 & & + & R5 & R1 & L3 & L1 & + & L1 & R3 & L2 & R5 \\
\hline C2 & C5 & C1 & C3 & & C3 & C2 & C5 & & & C4 & C5 & Cl & \\
\hline R4 & R2 & L2 & & \(+\) & R4 & L2 & R3 & L3 & + & L1 & R5 & R1 & \\
\hline C6 & Cl & C5 & C1 & & C3 & C6 & C2 & & & C4 & C2 & C4 & Cl \\
\hline
\end{tabular}


TR-292-6-078
September 1966
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{RI} \\
& \mathrm{C} 4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} 2 \\
& \mathrm{CS}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R} 2 \\
& \mathrm{C} 3
\end{aligned}
\] & R3 & & \[
\begin{aligned}
& \text { R3 } \\
& \text { C5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { R5 } \\
& \text { C3 }
\end{aligned}
\] & \[
\begin{aligned}
& R 3 \\
& 64
\end{aligned}
\] & R4 & & & \[
\begin{aligned}
& \mathrm{R4} \\
& \mathrm{C4}
\end{aligned}
\] & \[
\begin{aligned}
& R 1 \\
& C 5
\end{aligned}
\] & & R & R5 \\
\hline L2 & R2 & R5 & R1 & + & R4 & R1 & L1 & L2 & & + & L3 & R4 & L3 & R & \\
\hline C5 & Cl & C1 & & & C1 & C3 & C3 & & & & C3 & C5 & C2 & & \\
\hline R6 & R1 & R2 & & + & R2 & L2 & R3 & R3 & & + & R3 & R5 & R3 & R & \\
\hline C6 & Cl & C3 & C1 & & C4 & C5 & C3 & & & & C5 & C3 & C4 & & \\
\hline R4 & R1 & L2 & R4 R6 & + & L1 & R3 & R6 & R4 & & + & R4 & R2 & L1 & L & \\
\hline C4 & C5 & & & & C5 & C1 & C1 & & & & Cl & C3 & C3 & & \\
\hline L2 & R3 & L3 & R1 & + & R4 & R2 & R2 & & & + & R3 & Ll & R4 & R & \\
\hline C3 & C5 & C2 & & & C6 & Cl & C3 & Cl & & & C4 & C5 & C3 & & \\
\hline R4 & R5 & R3 & R4 & + & R5 & R1 & L3 & R4 & R5 & + & Ll & R4 & R5 & R & \\
\hline C6 & C3 & C4 & & & C4 & C5 & & & & & C5 & C1 & C1 & & \\
\hline R5 & R2 & L2 & L1 & + & L2 & R4 & L2 & R1 & & + & R5 & R3 & R2 & & \\
\hline C1 & C3 & C5 & & & C3 & C5 & C2 & & & & C6 & C1 & C3 & C & \\
\hline R3 & L1 & R4 & R3 & + & R4 & R5 & R3 & R4 & & + & R6 & R1 & L2 & R & R6 \\
\hline C4 & C5 & C4 & & & C6 & C3 & C5 & & & & C4 & C6 & & & \\
\hline L1 & R4 & R6 & R4 & + & R6 & R2 & L2 & L1 & & + & L2 & R4 & L2 & R & \\
\hline C5 & Cl & C1 & & & Cl & C3 & C5 & & & & C3 & C5 & C2 & & \\
\hline R6 & R1 & R2 & & + & R1 & L1 & R2 & R3 & & + & R2 & R6 & R1 & R & \\
\hline C6 & Cl & C3 & C1 & & C4 & C5 & C4 & & & & C6 & C3 & C5 & & \\
\hline R4 & R2 & L3 & R2 R5 & + & 13 & R3 & R4 & R5 & & + & R4 & R1 & L3 & L & \\
\hline C4 & C6 & & & & C5 & C1 & Cl & & & & C2 & C3 & 66 & & \\
\hline Ll & R2 & L2 & R1 & + & R4 & RI & R2 & & & + & R1 & L3 & R3 & R & \\
\hline C3 & C5 & C2 & & & C6 & C1 & C5 & Cl & & & C4 & C6 & C4 & & \\
\hline R4 & R6 & R1 & R4 & + & R5 & R2 & L2 & R3 & R6 & \(+\) & L3 & R4 & R4 & R6 & \\
\hline C6 & C3 & C5 & & & C4 & C6 & & & & & C5 & C1 & C1 & & \\
\hline R5 & R1 & L2 & L1 & \(+\) & L1 & R3 & L2 & R1 & & + & R4 & R2 & R2 & & \\
\hline C2 & C3 & C6 & & & C3 & C5 & C2 & & & & C6 & C1 & C5 & C & \\
\hline R1 & L2 & R4 & R3 & + & R4 & R6 & R2 & R4 & & \(+\) & R6 & R2 & L3 & R & RS \\
\hline C4 & C6 & C4 & & & C6 & C4 & C5 & & & & C5 & C6 & & & \\
\hline 43 & R4 & R5 & R2 & + & R6 & R1 & L3 & L1 & & + & L1 & R4 & L3 & R & \\
\hline C6 & Cl & C2 & & & C2 & C3 & C3 & & & & C3 & C5 & C2 & & \\
\hline R5 & R3 & R2 & & \(+\) & R1 & L2 & R4 & R3 & & + & R3 & R6 & R3 & R & \\
\hline C6 & C1 & C5 & Cl & & C4 & C6 & C4 & & & & C6 & C4 & C5 & & \\
\hline R4 & R1 & L2 & R4 R6 & \(+\) & 62 & R2 & R5 & R1 & & + & R4 & R1 & L2 & L & \\
\hline C5 & C6 & & & & C6 & Cl & C2 & & & & C2 & C3 & C3 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& R 4 \\
& C 5
\end{aligned}
\] & L3 & R1 & & & & & Cl & & & \[
\begin{aligned}
& \mathrm{L} 2 \\
& \mathrm{C} 6
\end{aligned}
\] & \[
\begin{aligned}
& \text { R3 } \\
& \text { C4 }
\end{aligned}
\] & R3 \\
\hline R3 & R5 & R2 & R4 & + & & R1 & 12 & R4 R5 & \(+\) & & R3 & R6 & R4 \\
\hline C6 & C4 & C5 & & & C5 & C6 & & & & C6 & C1 & C2 & \\
\hline R4 & R2 & L3 & L2 & \(+\) & L2 & R3 & 13 & R1 & + & R4 & R3 & R2 & \\
\hline C2 & C3 & C5 & & & C3 & C5 & C2 & & & C6 & C2 & C5 & Cl \\
\hline R3 & 11 & R4 & R3 & + & R4 & R5 & R3 & R4 & \(+\) & R5 & R1 & L 1 & R4 R6 \\
\hline C3 & C6 & C4 & & & C4 & C4 & C5 & & & C5 & C6 & & \\
\hline L1 & R4 & R6 & R2 & + & & R2 & L3 & L. 1 & + & L2 & R4 & L3 & R1 \\
\hline C6 & C1 & C2 & & & C2 & C3 & C5 & & & C3 & C5 & C2 & \\
\hline R5 & R2 & R2 & & + & R3 & L1 & R3 & R3 & + & R4 & R6 & R2 & R4 \\
\hline C6 & C2 & C5 & Cl & & C3 & C6 & C3 & & & C4 & C4 & C5 & \\
\hline R6 & R1 & L1 & R3 R5 & + & L1 & R4 & R4 & R4 & + & R6 & R2 & L1 & L1 \\
\hline C5 & C6 & & & & C6 & Cl & C2 & & & C2 & C3 & C6 & \\
\hline L2 & R4 & L3 & R1 & + & R6 & R3 & R2 & & + & R1 & L1 & R4 & R3 \\
\hline C3 & C5 & C2 & & & C6 & C2 & C5 & Cl & & C3 & C6 & C3 & \\
\hline R2 & R6 & R3 & R4 & + & R4 & R2 & L. & L1 R6 & \(+\) & 13 & R3 & 12 & R5 \\
\hline C6 & C4 & C5 & & & C5 & C6 & & & & C6 & Cl & C2 & \\
\hline R4 & R1 & L1 & & + & L1 & R2 & L3 & R1 & \(+\) & R4 & R1 & R2 & \\
\hline C3 & C3 & C1 & C6 & & C5 & C5 & C2 & & & C6 & C2 & C3 & Cl \\
\hline R1 & L3 & R4 & R3 & + & R4 & R5 & R5 & R4 & \(+\) & R5 & R2 & L3 & L1 R5 \\
\hline C3 & C4 & C3 & & & C4 & C4 & C5 & & & C5 & C6 & & \\
\hline L3 & R4 & L2 & R6 & \(+\) & R5 & R1 & L1 & & + & Ll & R2 & L3 & R1 \\
\hline C6 & Cl & C3 & & & C3 & C3 & Cl & C5 & & C5 & C5 & C2 & \\
\hline R5 & R1 & R2 & & \(+\) & R1 & L3 & R4 & R3 & + & R4 & R6 & R6 & R4 \\
\hline C6 & C2 & C3 & Cl & & C3 & C4 & C3 & & & C4 & C1 & C5 & \\
\hline R6 & R2 & L3 & L1 R6 & + & L3 & R4 & L2 & R3 & + & R6 & R1 & L1 & \\
\hline C2 & C6 & & & & C3 & C1 & C3 & & & C3 & C3 & Cl & C5 \\
\hline L1 & R2 & L2 & R1 & \(+\) & R6 & R1 & R2 & & \(+\) & R1 & L3 & R2 & R3 \\
\hline C5 & C5 & C2 & & & C6 & C2 & C3 & Cl & & C3 & C4 & C3 & \\
\hline R3 & R5 & R 2 & R4 & + & R4 & R1 & L3 & L1 R5 & + & L2 & R2 & L3 & R1 \\
\hline C4 & Cl & C5 & & & C2 & C6 & & & & C3 & C1 & C5 & \\
\hline R4 & R1 & L2 & & + & 43 & R3 & L3 & R1 & + & R5 & R1 & R2 & \\
\hline C3 & C5 & C1 & C6 & & C5 & C6 & C2 & & & C6 & C2 & C3 & C1 \\
\hline R2 & L2 & R2 & R3 & + & R3 & R6 & R1 & R4 & + & R4 & R1 & L3 & L2 R6 \\
\hline C3 & C4 & C3 & & & C4 & Cl & C5 & & & C2 & C6 & & \\
\hline
\end{tabular}
```

Ll R3 L3 R4
C3 C1 C5

+ R4 R1 L2
C3 C1 C5
C3 C5 C1 C6

```
\[
\begin{aligned}
& F_{j}(\text { normalized })=.237 \times 10^{-1} \\
& F_{j}(\text { scaled })=.676 \times 10^{-6}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { R1 } \\
& \text { C5 }
\end{aligned}
\] & & & R6 & & & & & & + & & R3 & R2 & \\
\hline C5 & C5 & C4 & & & & & & C5 & & C3 & C2 & C1 & C6 \\
\hline \(R 4\) & R4 & R5 & R1 & + & R1 & R5 & L1 & R4 & + & R2 & R3 & L3 & \\
\hline C6 & C3 & C3 & & & Cl & C6 & C4 & & & C3 & C2 & Cl & C5 \\
\hline R4 & R6 & R3 & & + & R1 & R5 & L1 & R4 & + & R2 & R2 & Ll & \\
\hline C4 & C3 & C4 & C2 & & C5 & C5 & C4 & & & C2 & C1 & C6 & C5 \\
\hline R4 & R3 & R4 & & \(+\) & R5 & R4 & R5 & R2 & \(+\) & R1 & R6 & L2 & R4 \\
\hline C3 & C2 & Cl & C6 & & C6 & C3 & C3 & & & C1 & C6 & 64 & \\
\hline R2 & R1 & 13 & & & R4 & R3 & R4 & & \(+\) & R1 & R6 & L2 & R5 \\
\hline C3 & C2 & C1 & C5 & & C4 & C3 & C4 & C2 & & C5 & C5 & C4 & \\
\hline R2 & R1 & L1 & & + & R4 & R2 & R1 & & + & R6 & R3 & R6 & R1 \\
\hline C2 & Cl & C6 & C5 & & C3 & C2 & C1 & C6 & & C6 & C3 & C3 & \\
\hline R1 & R4 & L2 & R5 & & R2 & R1 & 43 & & + & R3 & R3 & R4 & \\
\hline C1 & C6 & C4 & & & C3 & C2 & Cl & C5 & & C4 & C5 & C4 & Cl \\
\hline R1 & R4 & L2 & R6 & & R2 & R2 & L1 & & + & R3 & R3 & R2 & \\
\hline C6 & C5 & C2 & & & C3 & C1 & C6 & C3 & & C5 & C2 & Cl & C5 \\
\hline R4 & R4 & R6 & R3 & & R1 & R5 & L1 & R5 & + & R2 & R2 & L1 & \\
\hline C6 & C3 & C3 & & & C1 & C4 & C4 & & & C4 & C2 & C1 & C5 \\
\hline R4 & R3 & R3 & & & R1 & RS & L1 & R4 & + & R2 & R2 & L2 & \\
\hline C5 & C5 & C4 & C1 & & C6 & C5 & C2 & & & C3 & C1 & C6 & C3 \\
\hline R4 & R3 & R4 & & + & R5 & R4 & R6 & R2 & + & R1 & R6 & L2 & R5 \\
\hline C5 & C2 & Cl & C5 & & C6 & C3 & C3 & & & C1 & c4 & C4 & \\
\hline R2 & R1 & L3 & & \(+\) & R4 & R5 & R4 & & + & R1 & R6 & L2 & R5 \\
\hline C4 & C2 & Cl & C5 & & C5 & C5 & C4 & C1 & & C6 & C5 & C2 & \\
\hline R2 & R2 & L2 & & & R4 & R4 & R1 & & + & R6 & L1 & R2 & R3 \\
\hline C3 & C1 & C6 & C3 & & C5 & C2 & C1 & C5 & & C6 & C3 & C3 & \\
\hline R1 & \(L 3\) & R5 & & & R2 & R2 & L2 & & + & R3 & R5 & R4 & \\
\hline C1 & C1 & C4 & C4 & & C4 & C3 & C1 & C5 & & C5 & C4 & C4 & Cl \\
\hline R1 & R4 & L1 & R6 & \(+\) & R2 & R3 & L2 & & + & R3 & R4 & R2 & \\
\hline C6 & C5 & C2 & & & Cl & C1 & C6 & C3 & & C2 & 62 & C1 & C5 \\
\hline R4 & L1 & R4 & R1 & & R1 & L1 & R6 & & + & & R1 & L3 & \\
\hline C3 & C3 & C3 & & & Cl & Cl & C4 & C4 & & C4 & C3 & Cl & C5 \\
\hline R4 & R6 & R1 & & + & R1 & R5 & L2 & R2 & + & & R4 & L3 & \\
\hline C6 & C4 & C4 & C1 & & C6 & C5 & C2 & & & C1 & C1 & C6 & C3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{R} 4 \\
& \mathrm{C} 2
\end{aligned}
\] & \(R 5\)
\(C 2\) & R2
\(C 1\) & C5 & & \[
\begin{aligned}
& \mathrm{K} 5 \\
& \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& R 4 \\
& C 3
\end{aligned}
\] & R3 & & & \[
\begin{aligned}
& \mathrm{L3} \\
& \mathrm{Cl}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{K} 6 \\
& \mathrm{C} 4
\end{aligned}
\] & C4 \\
\hline R2 & R2 & L1 & & & R4 & R6 & R1 & & \(+\) & & R6 & L1 & R4 \\
\hline C4 & C3 & Cl & C5 & & C6 & C4 & C4 & Cl & & 66 & C5 & C2 & \\
\hline R2 & R4 & L3 & & & R4 & R6 & R1 & & + & R6 & L1 & R4 & R2 \\
\hline Cl & C1 & C6 & C3 & & C2 & C2 & Cl & C5 & & C3 & C3 & C3 & \\
\hline R1 & L2 & R6 & & \(+\) & R2 & R1 & L3 & & \(+\) & R3 & R2 & R2 & \\
\hline C1 & C1 & C4 & C4 & & 64 & C3 & C1 & C5 & & C6 & 64 & C4 & Cl \\
\hline R1 & R4 & L3 & R4 & + & R2 & R1 & L3 & & \(+\) & R3 & R4 & R1 & \\
\hline Có & C5 & C2 & & & C1 & \(\mathrm{Cl}_{2}\) & C & C3 & & C2 & C2 & C1 & C5 \\
\hline R4 & L2 & R2 & R3 & + & R1 & L3 & R6 & & \(+\) & R2 & R1 & L2 & \\
\hline 55 & C3 & C3 & & & C2 & Cl & C4 & C4 & & C3 & 63 & 61 & C5 \\
\hline R4 & R3 & R1 & & + & R1 & R5 & L2 & R4 & + & & R1 & 13 & \\
\hline C4 & C4 & C3 & Cl & & C6 & C5 & C2 & & & C1 & Cl & C6 & C3 \\
\hline R4 & R4 & R1 & & \(+\) & R5 & L3 & R5 & R1 & \(+\) & R1 & L3 & R2 & \\
\hline C2 & C2 & C2 & C5 & & C5 & C4 & C3 & & & C2 & Cl & 65 & C5 \\
\hline R2 & R2 & L3 & & + & R4 & R3 & R2 & & + & R1 & R6 & L 1 & R4 \\
\hline C3 & C3 & Cl & C6 & & C4 & C4 & C3 & Cl & & C6 & C5 & C2 & \\
\hline R2 & R2 & L3 & & + & R4 & R4 & R1 & & + & R6 & L1 & \(R 6\) & R1 \\
\hline Cl & Cl & C6 & C5 & & C2 & C2 & C2 & C6 & & C5 & C4 & C3 & \\
\hline R1 & L3 & R3 & & \(+\) & R2 & R1 & L2 & & + & R3 & R5 & R4 & \\
\hline C2 & C2 & C5 & C5 & & C3 & C3 & Cl & C6 & & C4 & C4 & C3 & Cl \\
\hline R1 & R4 & L2 & R5 & + & & R3 & 13 & & + & R3 & R4 & R2 & \\
\hline C6 & C5 & C2 & & & Cl & Cl & C6 & C5 & & C2 & C2 & C2 & C6 \\
\hline R4 & L1 & R3 & R2 & + & R1 & L1 & R5 & & + & R2 & R2 & L3 & \\
\hline C6 & C4 & C3 & & & C2 & C2 & C5 & C5 & & C4 & C3 & Cl & C6 \\
\hline R4 & R5 & R4 & & + & R1 & R5 & L1 & R6 & + & R2 & R4 & L3 & \\
\hline C5 & C4 & C3 & Cl & & C6 & C5 & C2 & & & Cl & Cl & C6 & C5 \\
\hline R4 & R5 & R3 & & + & R5 & L1 & R5 & R3 & + & & 11 & R5 & \\
\hline C2 & C2 & C2 & C6 & & C6 & C4 & C3 & & & C2 & C2 & C5 & C5 \\
\hline R2 & R1 & L2 & & + & R4 & R6 & R3 & & + & R1 & R6 & L2 & R4 \\
\hline C4 & C3 & C1 & C6 & & C5 & C4 & C3 & Cl & & C6 & C5 & C2 & \\
\hline R2 & R4 & L1 & & + & R4 & R6 & R3 & & & R6 & L1 & R6 & R2 \\
\hline Cl & C1 & C6 & C5 & & C2 & C2 & C2 & C6 & & C6 & C4 & C3 & \\
\hline R1 & L1 & R6 & & + & R2 & R2 & L3 & & + & & R6 & R3 & \\
\hline C2 & C2 & C5 & C5 & & C4 & C3 & Cl & C6 & & C5 & C4 & C3 & Cl \\
\hline
\end{tabular}



TR-292-6-078
September 1966
\[
\begin{aligned}
& F_{j}(\text { normalized })=.137 \\
& F_{j}(\text { scaled })=.395 \times 10^{-5}
\end{aligned}
\]

R1 R2 R6
C1 C3 C5 C5
R1 L1
C1 C2 C4 C6 C1
R1 R4 R6
C6 C1 C4 C5
R4 R5 L3
C1 C3 C5 C5
R2 R3 R5
C4 C5 C3 C3
R4 R6 R5
C1 C3 C3 C6
\(\begin{array}{lllll}\text { R1 } & \text { R3 } & & & \\ \text { C3 } & C 4 & C 5 & C 1 & C 2\end{array}\)
R1 R2 R3
C2 C2 C5 C6
\(\begin{array}{lllll}\mathrm{R} 2 & \mathrm{~L} 2 & & & \\ \mathrm{C} 1 & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{Cl}\end{array}\)
R1 R2 R6
C6 Cl C4 C5
R4 R1 Ll
C1 C4 C4 C5
R1 R3 R3
C4 C6 C3 C3
\(\begin{array}{llll}\text { R3 } & \text { R6 } & \text { R3 } & \\ \text { C1 } & \text { C3 } & \text { C5 } & \text { C6 }\end{array}\)
R2 R3
C3 C4 C6 C1 C2
\(\begin{array}{llll}\text { R1 } & \text { R2 } & \text { R6 } & \\ \text { C2 } & \text { C2 } & \text { C5 } & \text { C6 }\end{array}\)
R2 L3
C2 C2 C5 C5 Cl
R1 R3 R6
C6 Cl C4 C5
\(+\mathrm{R} 2 \mathrm{R} 3 \mathrm{R} 1\)
C1 C3 C5 C6
\(\begin{array}{lllll}\text { R3 } & \text { R3 } & & \\ \text { C3 } & \text { C4 C5 C1 } & \text { C2 }\end{array}\)
+ R1 R2 R6
C1 C2 C5 C6
+ R2 L1
Cl C? C4 C6 Cl
+ R1 R4 R4
C6 C1 C4 C5
+ R5 R6 L3
C1 C3 C4 C5
\(\begin{array}{rlll}\text { R1 } & \text { R4 } & \text { R6 } \\ C 4 & C 5 & C 3 & C 3\end{array}\)
+ R4 R3 R6
Cl C3 C3 C6
+ R1 R3
C3 C4 C6 C1 C2
+ R1 R2 R4
C2 C2 C5 C6
+ RI L3
C2 C2 C5 C5 Cl
+ R1 R2 R4
C6 C1 C4 C5
+ R4 R4 L2
Cl C4 C4 66
\(\begin{array}{rlll}\text { R1 } & \text { R4 } & \text { R5 } \\ \text { C4 } & C 6 & C 3 & C 3\end{array}\)
+ R4 R3 R1
C1 C3 C5 C6
\(+\mathrm{R} 2 \mathrm{R} 3\)
C3 C3 C6 C1 C2
+ R1 R3 R4
C2 C2 C5 C6
```

+ R4 R4 L3
C1 C3 C5 C6
+ R1 R4 R5
C4C5C3C3
+ R3 R5 R2
Cl C3 C3 C6
$+R 1 R 3$
C3 C4 C5 C1 C2
+ R1 R2 R6
C2 C2 C5 C6
+ R1 LI
C1 C2 C4 C5 C1
+ R1 R2 R5
C6 Cl C4 C5
+ R6 R1 L3
C1 C4 C4 C5
$+R 1$ R4 R6
C4 C6 C3 C3
$+R 2$ R5 R3
C1 C3 C3 C6
+ R2 R2
C3 C4 C6 Cl C2
+ R1 R2 R5
C2 C2 C5 C6
+ R2 L2
C2 C2 C5 C5 Cl
$\begin{array}{lll}\text { R1 } & R 2 & R 5 \\ C 6 & C 1 & C 4 \\ C 5\end{array}$
+ R5 R4 L2
C1 C4 C4 C6
+ R2 R4 R6
C4 C6 C3 C4
$+R 4 R 5 R 3$
Cl C3 C5 C6

```

TR-292-6-078
September 1966

```

R1 R2 R5
C2 C4 C4 C6

```

EQUATION 15 ( \(\mathrm{D}_{1}\) )
\[
\begin{aligned}
& F_{j}(\text { normalized })=.565 \\
& F_{j}(\text { scaled })=.166 \times 10^{-4}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline R1
64 & & 66 & ¢4 & C2 & \[
\begin{array}{r}
+R 3 \\
+5
\end{array}
\] & & & & C3 & & & & 2 R & & & & C4 \\
\hline R6 & R2 & & & & + R1 & R4 & & & & & & R & 2 & & & & \\
\hline C2 & C6 & C4 & C1 & C5 & C3 & Cl & C5 & C3 & C & & & & 4 & & C6 & C4 & C2 \\
\hline R2 & & & & & R2 & R4 & & & & & & R & 3 R & & & & \\
\hline C5 & C3 & C1 & C5 & C3 C1 & C4 & C2 & 66 & 64 & C2 & & & & 5 & & C1 & C5 & C3 \\
\hline R1 & R3 & & & & + R3 & R3 & & & & & & + & 2 R & & & & \\
\hline C1 & C5 & C3 & C6 & C4 & C2 & C6 & C4 & C1 & C & & & C & 3 & & C5 & C3 & C6 \\
\hline 3 & L3 & & & & + R3 & & & & & & & + & 1 R & & & & \\
\hline C4 & C2 & c6 & C4 & C2 & C5 & C3 & C1 & c5 & C & Cl & & & 5 & 2 & C6 & c4 & C2 \\
\hline R5 & R1 & & & & + R2 & R5 & & & & & & + & 3 & & & & \\
\hline C6 & C4 & C1 & C5 & C3 & Cl & C5 & C3 & C6 & C & & & & 2 C & 6 & C4 & C1 & C5 \\
\hline R2 & R5 & & & & + R5 & R1 & & & & & & + & 4 & & & & \\
\hline C3 & C1 & C5 & C3 & C6 & C4 & C2 & C6 & C4 & C & & & & 5 & 3 & Cl & C5 & C3 \\
\hline R2 & R5 & & & & + R5 & R1 & & & & & & + R & 3 & & & & \\
\hline C5 & C2 & C6 & C4 & C1 & C6 & C4 & Cl & C5 & C & & & & 1 C & 5 & C3 & C6 & C3 \\
\hline R6 & R4 & & & & + R2 & R6 & & & & & & + R & 6 & & & & \\
\hline 62 & C6 & C4 & Cl & C4 & C3 & C1 & C5 & C3 & C & & & & 4 & 2 & C6 & C4 & C \\
\hline R4 & R3 & & & & + R1 & R6 & & & & & & + R & 6 & & & & \\
\hline C5 & C3 & C1 & C5 & C3 & C5 & C2 & C6 & C4 & C & & & & 6 & 4 & Cl & C5 & c2 \\
\hline R3 & R4 & & & & + R5 & L1 & & & & & & + R & & & & & \\
\hline C1 & C5 & C3 & C6 & C3 & C2 & C6 & ¢4. & C2 & C & & & & 3 & 1 & C5 & C3 & C1 \\
\hline R1 & R5 & & & & + R1 & R6 & & & & & & & & & & & \\
\hline 1 & C2 & C3 & C4 & C6 & & C2 & C3 & C4 & C & & & & & & & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathrm{F}_{\mathrm{j}}(\text { normalized })=1.0 \\
& \mathrm{~F}_{\mathrm{j}}(\text { scaled })=.293 \times 10^{-4}
\end{aligned}
\]
```


[^0]: SUBROUTINE READK AND INTEGER FUNCTION K

