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NORTHROP SPACE LABORATORIES

FOREWORD

The research effort described in this report was performed by Northrop
Space Laboratories, Huntsville Department, for the Aero-Astrodynamics Laboratory
of George C. Marshall Space Flight Center under Contract NAS8-20183. Mr. Mario
Rheinfurth, Chief of Control Theory Branch, Dynamics and Flight Mechanics

Division, acted as the NASA Contracting Officer's Representative for the study.
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SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS

CHARACTERISTIC OF FILTER CIRGCUITS

By
Frank B. Tatom
Theodore J. Thomas
Robert G. Schroeder

Northrop Space Laboratories
Huntsville, Alabama

ABSTRACT

11778

This report presents the culmination of a research effort by the Huntsville
Department of Northrop Space Laboratories concerned with the development of a
digital computer program for use in filter circuit analysis problems. The program
is designed for use in obtaining roots to sets of nonlinear algebraic equations
which are characteristic of filter circuits. The program utilizes a combination
of Kizner's method and the Freudenstein-Roth technique in solving for the roots
to the equations. After obtaining the roots, the program selects standard circuit
components whose values approximately match the actual roots, determines the
transfer function characteristic of the circuit elements selected, and finally
generates frequency response curves for this transfer function. Results of

computer runs involving sets of equations in six, thirteen, and fifteen unknowns

W

are discussed.
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The report indicates that the program developed is especially suitable to
filter circuit analysis problem for which the corresponding set of algebraic
equations is not overly ill-conditioned. 1If the set of equations involved is
ill?conditioned, there is difficulty in obtaining a solution and the program

may fail to converge.

Certain possibilities concerning the extension of the program to algebraic
equations in general are discussed. A brief description of several engineering
problems involving simultaneous nonlinear differential equations is also
presented, based on the idea that efficient numerical processes for simultaneous
solving nonlinear algebraic equations may be useful in the numerical solution of

sets of nonlinear differential equations.

ot
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NOMENC LATURE

English

Definition
The coefficient of a specified term in the jth equation which is
systcmatically reduced to unity during the Freudenstein-Roth technique.
th : . .th .
The m~ value of the coefficient in the j =~ equation.
th .
The n capacitance, expressed in farads.
th
The degree of the ] equation.
The qth coefficient in series in denominator of transfer function.

.t .
The constant term of the j h equation.

The mth value of the constant term of the jth equation in the

Freudenstein-Roth technique.
Number of terms in the numerator of the transfer function.
Number of terms in the denominator of the transfer function.

A complex quantity corresponding to s, the Laplacian variable;

an imaginary representation of the angular frequency uw. %

A constant relating the inductive resistance to the induction of

t .
the n h inductance.

The first change in the variable x in the mth application of the

single variable Runge-Kutta integration.

The second change in x in the mth application of the single variable

Runge-Kutta integration.

ix
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(m)

(m)

(m)

nl

(m)
n2

(m)
n3

(m)
n4

L
n

n(j,i,k)

N
q
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NOMENCLATURE (Continued)
Definition
The third change in x in the rnth application of the single variable

Runge-Kutta integration

The fourth change in x in the mth application of the single variable

Runge~Kutta integration.

The first change in the variable Xn in the mth application of the

multi-variable Runge-Kutta integration.

The second change in Xn in the mth application of Runge-Kutta

integration.

The third change in Xn in the mth application of Runge-Kutta

integration.

The fourth change in Xn in the mth application of Runge-Kutta
integration.

th . . .
The n~ inductance, expressed in henries.
The subscript for the kth factor in the ith term of the jth equation.
The qth coefficient in series in numerator of transfer function.
The number of unknowns.

. .th

The number of terms in the j equations.

The number of terms in the longest equation.

The number of applications of the coefficient method minus 1.



Symbol

R

n

R (b)
n

R (s).
n

S

T

tji

u

v

v

Viimit

W

X

X

n

X (m)
n
nim

step
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NOMENCLATURE (Continued)
Definition

th , .
The n resistance, expressed in ohms.

th |
Natural resistance for the n inductance (m=1,2,...v) expressed

in ohms.

. . t
Surplus resistance in the n h resistance Rn (m=1,2,...v) expressed

in ohms.

Laplace transform variable.

Transfer function.

The ith term of the jth equation.

The number of resistances in the circuit.
Number of inductances in the circuit.

The selected number of iterative steps in the Freudenstein-Roth

technique.
Maximum number of steps in the Freudenstein-Roth technique.
Number of capacitances in the circuit.

The independent variable -of the single variable application of

Kizner's method.

th . )
The n~ unknown, defined by equation (2-13).
The mth estimate of Xn'

The root Xn at the th step of the Freudenstein-Roth process.

xi
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(b)

(s)

£(x)
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NOMENCLATURE (Cancluded)
Definition
The nth circuit element (resistance, inductance, or reciprocal of
capacitance) of unknown magnitude.

The natural resistance of the inductor.

Surplus resistance in series with inductor.

Greek

A non-trivial equation involving the functions ¢j. Equal to zero
if the equations are dependent.

(mt1) (m)
(Xn - X )

The mth value of the jth residual.
th
The reference residual at the m = step.

The derivative of an independent variable with respect to a

function, as shown in equation (2-46).

In a one variable function, the inverse of the derivative of the

function with respect to its variable, as in equation (2-32).

The jth function of the form of equation (2-14).

(m) (m) (m))

¢,J.(X1 > X, ...Xp
The dependent portion of the term ¢j in ill-conditioned systems.
The independent portion of the t:erm'cbj in ill-conditioned systems.

The j':h function of the form of equation (2-2).

xii
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SUMMARY

A research effort by Northrop Space Laboratories/Huntsville Department has
been carried out to develop a general digital computer program which is capable
of solving, by numerical techniques, sets of simultaneous nonlinear algebraic
equations which arise in problems involving filter circuit analysis, and

presenting the solution in a form useful to filter circuit designers.

The Freudenstein-Roth technique modified to incorporate Kizner's method
was found to be the most promising numerical technique. A technique was
developed whereby the exact roots to the equation could be approximately matched
by standard circuit componengs. The frequency response curves for the transfer

function resulting from the approximate matching could then be plotted.

The processes described were incorporated into a digital computer program
which was tested on sets of equations in six, thirteen, and fifteen unknowns.
The program successfully solved the equations in six and thirteen unknowns
including the selection of components to match roots, and the generation of
frequency response curves. Only limited success was achieved in solving the set
of equations in fifteen unknowns. However, all available evidence strongly

supports the hypothesis that the latter set of equations is quite ill-conditioned.

The conclusion was reached that the program, utilizing the numerical
techniques previously mentioned, is a useful tool in problems of filter circuit
analysis so long as the algebraic equations involved are not overly ill-conditioned.
The numerical techniques developed, along with all other available numerical

techniques, encounter serious difficulties with ill-conditioned sets of equations.

xiii
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Although the program is specifically designed to handle equations

associated with filter circuit analysis, only minor modifications would enable

it to be applied to other classes of simultaneous nonlinear equations.
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. NORTHROP SPACE LABORATORIES

SECTION I

INTRODUCTION

In filter circuit analysis, problems arise which involve the simul-
taneous solution of nonlinear algebraic equations. Solution of such sets of
equations by hand can be extremely laborious, and, if large number of equations
are involved, hand calculations become impractical. The use of digital computers,
coupled with appropriate numerical techniques, is a logical approach to such
problems. In developing the necessary digital computer program, consideration
must be given to the fact that many different filter circuits exist, and the
set of equations which correspond to one filter circuit will not generally
correspond to other filter circuits. Therefore the most desirable program is
one which is sufficiently general to solve a large number of different sets
of filter circuit equations. In addition, it is highly desirable to present
the solutions in a form that is most useful to filter circuit designers. For
this reason, the program should incorporate routines to calculate attenuation

and phase shift vs frequency plots on the basis of the solutions obtained.

The Huntsville Department of Northrop Space Laboratories has been engaged
in the development of a digital computer program capable of solving sets of
nonlinear algebraic equations associated with filter circuit analysis and
presenting the results in a form useful to filter circuit designers. Initial

research efforts under this contract were reported in reference 1.

Section II of this report provides a detailed technical discussion of
the problem involved, the numerical techniques used, and digital computer
considerations. A discussion of the computer program is presented in Section

III. A discussion of the results obtained is provided in Section IV. Conclusions

1-1
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and recommendations are presented in Section V. Several appendixes are provided

to augment the main body of the report. Throughout the report, the nomenclature

used is generally the same as that employed in reference 1.

1-2
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SECTION II

TECHNICAL DISCUSSION
2.1 STATEMENT OF PROBLEM

A digital computer program was developed under Contract NAS8-20183 which,
by numerical procedure, is capable of solving sets of nonlinear algebraic equa-
tions for positive roots within a prescribed range of values. The unknowns
in the equations are the values of resistances, inductances, and reciprocals
of capacitances which occur in a filter circuit. Each equation consists of a
sum of terms with each term consisting of the product of several unknowns and

with the coefficient of each term equal to unity.

The research effort has been extended with the objective of allowing several
refinements and additions to the existing computer program. The refinements
under consideration should both improve convergence of the numerical techniques

and shorten running time.

The need for additions to the program already developed results from the
fact that the roots obtained in solving the equations are generally not equal to
standard values of off-the-shelf electrical components, ordinarily used in
actual filter circuits. Thus an actual filter circuit composed of standard
off-the-shelf components, which most nearly match the values indicated by
the equation's roots, would only approximate the theoretical circuit. The
determination of the effect of such an approximation is important to circuit

designers.
2,2 BACKGROUND

This section reviews portions of the technical sections of the previous
report (ref., 1). Its purpose is to provide completeness and continuity to

the present report.

2-1
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Transfer functions associated with electronic filter circuits, such as that

shown in Figure 2-1, have the general form

q-1

s (2-1)

G
T = El N1

q
where
T = transfer function

G = number of terms in the numerator

Nq = qth coefficient of the series in the numerator
g = Laplace transform variable = complex representation of angular velocity (juw)
n H = number of terms in the denominator
Dq = qth coefficient of the series in the denominator,
| —AAA—QQY it
! by 1
)

Figure 2-1. TYPICAL ELECTRONIC FILTER CIRCUIT

2-2
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Generally, the numeric values of the coefficients, N and D_are obtained by
curve fitting. Based on circuit analysis, a set of algebraic equations containing
the unknown circuit elements can be derived by means of a flow graph (ref. 2) or

topology (ref. 3).

The number of these equations may be less than, equal to, or greater than
the number of unknowns. Although not significant from the standpoint of filter
circuit theory, this situation can present difficulties to the solution of

such equations.

If there are less equations than unknowns, additional equations must be
generated until there are as many equations as unknowns to form a solvable set.
These additional equations may be generated by assigning values to the required
number of unknowns. The only physical restriction is that the resulting

equations should possess a set of real, positive roots.

If there are as many equations as unknowns, the equations possess a solution,
if they are independent. If they constitute a dependent set of equations,
discrete sets of roots do not exist. While it is true that a dependent set of
equations may possess solutions, such solutions are not obtainable by general

mathematical means.

If there are more equations than unknowns, a serious uncertainty exists.
There is no a priori reason to believe that any set with as many equations as
unknowns, taken from the available equations, will form an independent, hence

uniquely solvable, set of equations. If such a case arises in connection with

physical problems, some auxiliary means is necessary to generate a set of independent

equations. The mathematical difficulties associated with dependent and nearly
dependent, or ill-conditioned, sets of equations is discussed more fully in

subsection 2.2.3.

2-3
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The equations resulting from circuit analysis can be written as

v (Y., Yo vee, Y)=F, (=1, 2, ..., p) (2-2)
A A P 3

where

p = the number of unknowns

and

Nj-l(j = 1, 2, e o0 G)

F, = .
i P61 (j = G+l, ... GHH)

Yn — clrcult elements (resistances, inductances, and reciprocals

of capacitances) of unknown magnitude
If the number of unknowns, p, is not equal to the number of coefficients
in the transfer function, G+H, then steps must be taken, as already outlined,
to generate or delete equations. Thus for each coefficient Nq or Dq there is an
equation in which the coefficient appears as a constant, Fj' The reciprocal

of capacitance is used because the resulting form of wj is easier to work with,

These functions Y, consist of a sum of terms of the form

3

J
.= i 2-3
b 121 tJ1 (2-3)

where the term tji has the form

t =

it (2-4)

s fe

Yn(j,i,k)

~

=1
The expression n(j,i,k) denotes a subscripted subscript and specifies the

subscript of an unknown corresponding to a given j (equation), i (term), and k

(factor). For any equation, all terms of the equation are of the same degree,

dj’ but d, is not necessarily the same from equation to equation.

3

2-4
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In order to establish an orderly relationship between Yn and the resistances,

capacitances, and conductances, it is convenient to use the following arrangement:

Y =R (n=1,2, vse, u)

n n
Y = Ln+1-u (mn=u+1, ..., utv) (2-5)
_ 1
Y = —— (n = utvtl, ..., utviw)
n C
ntl-u-v
where
' Rn = the nth resistance
| _ th
: Ln = the n inductance
l C_ = the nth capacitance

u = number of resistances in the circuit
v = number of inductances in the circuit

w = number of capacitances in the circuit.

Because the circuit element values are positive real numbers, the desired

roots must also be in this category. For practical purposes there exist maximum

and minimum values for the roots, as indicated in Table 2-1.

Table 2-1,
RANGE OF VALUES FOR FILTER CIRCUIT COMPONENTS
COMPONENT MINIMUM MAXIMUM
, -1 7
Resistor (ohms) 2.4 x 10 2.2 x 10
Inductor (henrys) 5.0 x 107° 2.0 x 10°
Capacitor (farads) 1.0 x 10.11 1.5 x 10-1
2-5

i

P
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Because each inductance in a circuit also has a '"built-in" or natural resistance
associated with it in series, consideration must be given to the functional
relationship between each inductance and its natural resistance. In formulating
equation (2-2), these natural resistances are treated as portions of unknown
resistances, but actually they are each dependent on a particular inductance.

Thus, in the circuit these exists v resistances each of which contains a natural
resistance. For ease in relating these resistances to the appropriate inductances
it is convenient when numbering the circuit components to use the same numerical
subscript for an inductance and the corresponding resistance. Thus R1 contains
the natural resistance for Ll’ R2 the natural resistance for L2’ etc., In

general, based on the relationships provided in equations (2-5), the natural

resistance for Ln’ where

L =Y (n=1, 2, ...,v) (2-6)

R :Yn (n=1, 2, ..., v) (2-7)

With the numbering arrangement outlined, all resistances with subscripts equal

to or less than v are composed of two parts. One part is the natural resistance,

Rn(b), for an inductance and the second part is a '"surplus" resistance, Rn(s).
Thus,
b
R =k P ar & m=1,2 .., (2-8)
or
y =y ® 4y (s (2-9)

n n n

2-6
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The functional relationship between an inductance and its natural resistance is
dependent on the electrical characteristics and physical dimensions of the wire
which makes up the inductance. For practical purposes, however, a linear

relationship between inductance and natural resistance appears satisfactory.

Thus,

(®) _ K L (a=1,2 ..., v) (2-10)

or

(b) _ _
Yn = Kn Yu+n (n=1, 2, ..., v) (2-11)

where Kn = a constant (normally taken as unity).
Thus, by substitution,

~ v (8) -
Yn - Yn + Kn YL\’*I‘TI (n - 1, 2, oo ey V) (2“12)

From equation (2-12) it can be seen that for n = 1, 2, vuey v, Yn(s) are the true
independent variables instead of Yn’ To avoid unnecessary use of superscripts,
while at the same time positively identifying the true independent unknowns,
a change of variable is convenient. Thus by definition,
Y (s) (n=1, 2, eou, V)
X = (2-13)
Y (n = v+, v2, ..., p)

All previously mentioned physical constraints for Yn apply also to Xn' In terms

of the new variables, Xn,equations (2-2) may be written

¢j(X1, X2, ose Xh’ cee X%) = Fj (3=1, 2, ... p) (2-14)

An examination of equations (2-14) reveals that while the form of functions has

changed from wj to ¢j the problem remains essentially the same.

2-7



TR-292-6-078
' September 1966

As part of the original investigation, the Freudenstein-Roth technique
(ref. 4) combined with the Newton-Raphson method was incorporated into a digital
computer program designed to solve sets of equations of the type given by
equation (2-14). 1In the subsections which follow, a description of these two
numerical techniques is provided, along with a discussion of the difficulties

generated by nonlinear dependent sets or ill-conditioned sets of equations.

2.2.1 Newton-Raphson Method

Probably the most widely used method for solving simultaneous nonlinear
algebraic equations, as well as transcendental equations, is the Newton-Raphson
method. The method is described in various numerical analysis texts (refs.

5 through 8) and only a brief description need be given here.

The Newton-Raphson method is a successive approximation technique. Based
on an initial estimate of the unknowns, Xn(o), the values of ¢j(°) are calculated

and compared with the values Fj' The difference is the residual € (o). Thus

3
Ej(O) - ¢j(0) - ¥, (2-15)
where
¢j(0) = 0, (xl(O)’ Xz(O)’ vn, XP(O))
or, in general,
e, M _y (W 4 (2-16)

where
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X (m)

= th estimate of X
n n

Obviously, when the residuals are all simultaneously zero, a solution has been

achieved. A first-order Taylor's series expansion is used to approximate the

functions. Thus

(o) P g, @ (1) (0) |
= (o] ] Te) ;
JRRTRR Eroulll LR (2-17)

By definition

ax @ - x @) 4 () (2-18)
n n n
By equation (2-14)
9 ¢,(m)
(m) (m)
- 2-19
Fp=o, 0 + n£ X AX_ ( )
Based on the definition of the residual, |
. P gy (@
e (2 | ) T‘L“ ax (@ (2-20)
] n=1 Xn n
or, in general,
P 3¢ (m)
em = 7 _J @ (2-21)
j n=1 8Xn n

Equation (2-21) represents a set of p linear equations, with the Axn(m) as the

unknowns. This system of equations can be solved by the Gaussian method of

pivotal condensation (ref. 9).

(m) by solution of

In actual practice, the repeated approximation of Xn
equation (2-21) for AXn(m) will result in a systematic reduction of the residuals
toward zero, if convergence occurs. Normally, a solution is considered to have

been obtained when all residuals have been reduced to some prescribed level.

2-9
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2.2.2 Freudenstein-Roth Technique

In applying the Newton-Raphson method, convergence is not likely to occur
unless the initial estimates of the roots are in the neighborhood of the actual
values. Obviously, in many cases, the locations of such neighborhoods are unknown.
Application of the Freudenstein-Roth technique (ref. 4) enables convergence even
though the estimates are much further out than the Newton-Raphson technique alone

would allow.

The first step in the Freudenstein-Roth technique involves assuming a set
of initial values Xn(o) for the roots. These initial values will in general not
satisfy the original equations. However, one coefficient in each equation
may be altered by increasing or decreasing its value so that the altered set of
equations is satisfied by the original estimates of the roots. If the altered
coefficients of the equations are changed slightly in the direction of their
original values a new set of equations is generated which may be solvable by the
Newton-Raphson method using the roots to the previous set of equations as initial
estimates. The altered coefficients are theﬁ changed slightly further toward

! their original values and the resulting set of equations is again solved by the

| Newton-Raphson method, using the roots of the previous initial step as estimates.

5 This stepwise process is repeated until the original equations are reproduced
and solved. The solution of each intermediate set of equations completes what

is termed, for convenience, a "Freudenstein-Roth step" or !step',

Two different methods of altering one coefficient in each equation have
been used. For convenience, they are referred to as the '"coefficient approach"

and the '"constant approach'.
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For the coefficient approach, one coefficient of a nonconstant term in
each equation is multiplied by a constant, Aj(o), which is chosen so that the
equation is satisifed by the original estimates. The altered equation satisfied

by the original estimates can be written

A

F, = 21 cji(°) + (AJ(°) ORI (2-22)
i:

in which L is any integer from 1 to Qj’ thus specifying a specific term in the
equation. The value of L can change from equation to equation. A recursion

relation is used to vary the constant Aj for each Freudenstein-Roth step.

The relation is

)

Aj(m) = AJ,(°) m=0,1, 2, ..., V) (2-23)

The value of m is increased by one prior to starting each step. Obviously,
when m is equal to V, the original equations are reproduced. The solution of

this set of equations is the desired solution.

The constant approach method alters the constant term Fj' The initial

(o)

value of the altered constant, Fj » 1s calculated by the equation

F (0) _ G (2-24)

The Fj's are modified for each Freudenstein-Roth step by the recursion relation
V~-m
g (0 )
F® g | i (2-25)

. F.
J J 3

so that at the end of V steps
F ) =F. (2-26)

The solution obtained at this step is the desired solution.
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The convergence criteria for the Freudenstein-Roth technique are discussed
in reference 4. The proper use of this method ensures that the initial estimates
for the set of roots at each step are close to the true roots for that step.
Obviously, 1f the step size is too large, reflecting a small value of V, the
Newton-Raphson method may fail for some individual step. This may be corrected
by increasing the value of V, but a point may be reached beyond which further
increases of V are not practical. In such a case, the problem should be

started over using a new set of estimates.

2.2.,3 Nonlinear Dependent or Ill-Conditioned Systems

The Newton-Raphson method, in common with other numerical techniques, is
incapable of solving a functionally dependent system of equations and encounters
great difficulties solving ill-conditioned systems of equations. These two cases
are not unrelated, for ill-conditioned system border on being functionally
dependent. They differ in that functionally dependent systems of equations do
not possess any discrete solutions whereas ill-conditioned systems possess

discrete solutions but great practical difficulties are encountered in obtaining

such solutions.

If a set of p equations of the form

are functionally dependent, based on reference 10, there exists a non-trivial

equation involving the functions ¢, of the form

J

Y(¢1’ ¢2, se ey ¢p) =0 (2-27)
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This equation, which may be taken to be a definition of functional dependence,
holds for all values of the independent variables. Therefore, it is impossible

to vary the ¢j independently.

The general method of determining whether a set of equations 1s dependent

is to determine whether their Jacobian matrix

3¢

X

n

is identically singular. Unfortunately, this method is not feasible when even

a moderately large number of independent variables are involved, for it involves
the direct expansion of the determinant of a high-order matrix, each term of
which 1s an algebraic expression. Therefore, it is generally impractical to
attempt to establish conclusively whether or not simultaneous equations having

a large number of independent variables are dependent.

It appears more practical to detect the dependence of a set of equations
by numerical means. This approach calls for the determinant correéponding to
the Jacobian of a set of equations to be evaluated using several different
sets of values of the Xn. If the determinant is zero or nearly so for each
set of values, there is strong indication of a singular matrix. Unfortunately,
1f the magnitude of the unknowns within a set varies significantly, accurate
numerical evaluation of the determinant is difficult even on a digital computer.

This is primarily due to truncation error.

The term "ill-conditioned" as applied to a set of simultaneous equations is
not clearly defined. The term is of a qualitative rather than a quantitative
nature. Its practical value is that the term ill-conditioned singles out those
sets of simultaneous equations which are exceedingly difficult to solve by numeri-
cal methods and which require great accuracy when exact methods are applicable.
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To be more definitive, an 1ll-conditioned system may be considered to be
a simultaneous set of equations between functions that can be transformed into a
functionally dependent set by minor modification of one or more of the functions.
That is, ill-conditioned systems border on being functionally dependent. The

concept of "bordering on functional dependence" for p functions ¢j can be expressed

by the relation

~

Y( ¢1’ ¢2’ coey ¢P) =0 (2-28)

For this case each function ¢j can be considered to consist of two parts

= t o ¢om 2.29
oY (2-29)

in such a manner that

f 1 1
Y(¢1 R ¢2 s sees ¢p) =0 (2-30)
and
lo | = [o."] >> [6"] (2-31)
j ] j

A truly independent variation of any ¢j can only be accomplished by a variation

1
of ¢j”’ but due to its small size, variation of ¢j can only result in small
H
changes in ¢j. If ¢j' is varied in any equation then ?j and thus ¢j of the

other equations are strongly affected. 1In actual cases the ¢; and ¢j" of most
equations cannot be identified and separated. Thus any variation of ¢j for one
equation in an ill-conditioned system is likely to have a strong influence 1in
the ?j of the other equations. When cast in this light, insight is gained into
the difficulties of obtaining numerical solutions of ill-conditioned systems

of simultaneous equations.
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The numerical methods already described for obtaining solutions of simultaneous
equations (Newton-Raphson and Freudenstein-Roth) involve approximations which
are valid only for small changes in the independent variables Xn. These approximations
yield a set of linear simultaneous equations for the changes in the independent
variables. The solution of this set of linear equations gives a refinement to
the original estimates of the roots. This process is repeated using the refined

values of the roots as new estimates until sufficient accuracy is obtained.

In the case of ill-conditioned simultaneous equations, their near funce
tional dependency generates situations in which the elimination of a relatively
small residual, Ej(m), in at least one equation calls for large changes in the
values of the unknowns. These large changes often invalidate the approximations
based on small changes of the independent variables Xn' This is the dilemma

ill-conditioned systems present to numerical solution techniques.,

2.3 IMPROVED NUMERICAL METHODS OF SOLUTION

The previous discussion presents ideas which resulted from the work
accomplished under the original research effort. The discussion which follows
presents the refinements to the original numerical approach which have been

considered during the contract extension.

2.3.1 Kizner's Method

The Freudenstein-Roth technique removes the major limitation of the Newton-
Raphson method in that the initial estimates of the roots of the simultaneous
equations do not need to be close to the actual roots of the equations to ensure
convergence. However, as originally presented, each step, or set of intermediate

equations, of the Freudenstein-Roth technique is solved by the Newton-Raphson method.
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For a given step, the roots of the previous step serve as initial estimates. These
must be close to the roots of the given step for the Newton-Raphson method to
converge. This requirement often results in an undesirably large number of

steps being necessary to obtain a solution. Consequently, a method more strongly

convergent than Newton-Raphson's is desirable for these steps.

Such a method is presented by Kizner in reference 11. Kizner showed that,
by considering the independent variables Xn as functions of the dependent variables
¢J, a system of simultaneous algebraic equations can be treated as a simultaneous
system of ordinary first-order differential equations. These differential equations
can be approximately solved by a one-step Runge-Kutta numerical method, using
the estimates of the roots and the functions evaluated at these estimates as
initial values. Since these differential equations interchange the role of
independent and dependent variables with respect to the original equations, the
roots of the original equation are obtained by evaluating the solutions of the
differential equations at zero. This process can be repeated, using the new

approximations of the roots as initial estimates, until the desired accuracy

is attained. A more detailed discussion of Kizner's method follows.

For simplicity, one equation in one unknown will be considered first.

e T YT TN T D T T T Ty € T

The equation is assumed to be of the form
f(x) = £ =0,

The initial estimate of the root is x(oz and
£00) = £(x(0)y,

The function £ is defined by the differential equation

; E(x) = % = 1/%xg - (2-32)
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It should be noted that the left-hand member of this equation is a function of

the variable, x, only.

o o)

dx (o) (o)
X = f == df 4+ x = g (x) df + x
r(x(0)3 r(x(0)y

The root of the original equation, X, can be written as

(2-33)

Kigner's method approximates the required integral by a one step Runge-Kutta

numerical process, which evaluates the integrand at four points and approximates

it with a cubic expression.
LD

of the root x and can be written as follows:

where

kl(0) P CO x )

(o)
ky

]

000 g (0 kl(0)/2)

k3(0) O e @ 4 k2(°)/2)

k4(0) O N k3(°))

In a more general form equation (2-34) can be written

Lm) o (m) +_é_ (kl(m) + k2(m) + k3(m) + 1(4(m))

where,

kl(m) ~ g £ (x™)

kz(m) =@ ™ kl(m)/z)

k3(m) =@ @ kz(m)/

2)

k4(m) =@ @ ks(m))‘

2-17
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The method can be readily extended to systems of several equations in several

unknowns. The original equations, ¢j, can be written in the residual form

ej=¢. - F, ‘ (2-36)
or
Ej = EJ. (Xl’ X2, x3, cees Xp) =0 (2-37)

With the initial estimates Xn(o)

(o) (©) 4 (@) 4 (o)

- . (o)
E_'] - ej (xl ] 2 ’ 3 9 eeey Xp ) (2‘38)

If the independent variables X are considered to be functions of the dependent
variables, ej,and if one of the €j'S, designated 52, is treated as the only
independent variable, the total derivative of Xn with respect to the one

variable t-:2 can be written

an z axn 2:.1
= = L3z 3%, (2-39)
L J J

In a manner analogous to the solution of one equation for one variable,

o X de
X = ! » i de  +x (@ (2-40)
n aej d€2 2 n

Ez(o)

The total derivative d€j/de2 can be established by assuming a linear

relation between ej and 82 as follows:

ej = aj € (2-41)
Then
de €,
— = a, = - (2-42)
dsl j €,
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In actual numerical calculations, the assumption of a linear relationship between

Ej and 62 does not exactly hold. For any iterative step, m, however,

dej e (m)

i
= (2-43)
dez ez(m)

A combination of equations (2-40) and (2-43) yields

° P e m
X_ = I 2 i g +x @ (2-44)
n * de, e, (m) 2 n
(m) j j 2
€2

The partial derivatives 3Xn/3€j can be formally obtained through the well-known

Jacobian matrix equation

de X

—d ~—21 = -

X 5o I (2-45)
n j

where I = the unit matrix.

In a manner analogous to that used for the case of one unknown, a function

Cn can be defined by the differential equation

dx X de.

T T W ] n_____J L | T

=B = 1 —_— -
b Ky Xps e X)) = e ! 2w (2-46)
J J 2
Application of a one-step Runge-Kutta method to equation (2-44) then yields
(mtl) _y (m) . 1 . (m) (m) (m) (m) .
Xn = Xn + 3 (knl + 2kn2 + an3 + kn4 ) (2-47)
where
(m)_ __ (m) (m) (m) (m) .
, k €, XX, cees xp ) (2-48)
Y K (m)
(m)_ __ (m) (m) . 11 (m) pl .
k‘12 € cn (x1 + 5 s eees Xp + 2 ) (2-49)
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m@_ . (m) @ . W . 5o
12 2
kn3m=-e£m ¢ (xlm + =5 ...,xp“‘ + —12’-—) (2-50)
(m)__ (m) (m) (m)
k 4 m. ST - (X, moy Kigs «ees X, no4 kp3) (2-51)
The quantities knl(m)’ knz(m), kn3(m), and kn4(m) can also be expressed as
T s Ty o) (2-52)
nl 'j de; ] 1 I
( Xy« @ @ ot
m) _ n m) _ m 11 - m _R__ .
k , = - § 5-53. sj (x1~x1 + =, ...,xp xp + ) (2-53)
ax - K (m) - K 2(m)
(m) . v 'n (m) _x (m 12 =x m , P2 __y (o
kg = - % T e e A e L ) (2-54)
39X
(m) _ n (m) _ o (m) (m) _ vy (m) (m)y o
a4 T § e " By =X 77 F KT e K = X T kg (2059)

(m)’k (m) K (m), and k (m)

The evaluation of kn1 can be accomplished by

observing that

X
Z _n (2-56)

s (m) J X € (m)
n
“@ - | T C lgg @ (2-57)
€ n n J
L
or
de . IX
e ™ § 1 (] 0 e @ (2-58)
j n 3% i j 3
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By means of equations (2-52 through (2-55)

9¢€
(m) _ _ (m) _ v (m) _ v (m)
€™ = E a——ixn k X, =x,"", ..., X, =x ") (2-59)
(m) i (m) (m) oy, ™ @ .
m) _ m _ m) , 1 m 1
e, ™ = E a—'an k g =% L X, =X + 2y (260
(m) i (m) (m) k™ @
m) _ j m _ m _ m 2
ej = E 5§i kn3 (xl = x1 + 51 cees Xp *,xp + _23__n) (2-61)
d¢
(m) _ j (m) _  (m) (m) : _ v (m) (m)
€ —-g X k X, =X, + kg, ...,xp—xp T Ko ) (2-62)

In each of the last four equations the partial derivatives aej/BXn are the

known elements of the Jacobian and thus serve as coefficients for the unknown

k!'s., Likewise the e.(m)

J
(2-59) through (2-63) each represent a set of linear algebraic equations which

's are known and act as constants. Clearly then, equations

can be solved by standard numerical means such as the Gaussian method of pivotal
condensation. Furthermore, each of these four equations is identical in form
with equation (2-21) which results from the Newton-Raphson method. Thus it can

be seen that each step of Kizner's method involves calculations equivalent to four

Newton-Raphson steps.

Based on an examination of Kizner's method, the question arises as to the
possibility of treating the solution of nonlinear simultaneous equations entirely
as the solution of their associated simultaneous ordinary differential equations
by the Runge-Kutta method. This can be done by subdividing the required
integration interval into several Runge-Kutta steps. This procedure would require
a large number of Runge-Kutta steps to prevent the introduction of serious cumulative

errors unless the initial estimates of the roots were quite close to the actual
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roots. To check for cumulative errors, one would have to verify the solution by
substituting the results in the original equations. 1If the original equations
were not sufficiently staisfied, the Runge-Kutta process would have to be repeated,

using the previous results as new initial estimates.

The Freudenstein-Roth technique modified to incorporate Kizner's method in
conjunction with the root prediction technique presented in the next section,
both eliminates any cumulative errors and lessens the number of Runge-Kutta
steps required to obtain a satisfactory solution. Cumulative errors can not

occur because the equations must be satisfied at each Freudenstein-Roth step.

2.3.2 Root Prediction

The equations for component values of filter circuits that are derived
from transfer functions are regular. That is, the functions that form these
equations are well behaved. Therefore, it appears likely that all of the roots
of the intermediate equations corresponding to each Freudenstein-Roth step vary

in a predictable manner from step to step.

An examination of the output of computer runs generated during the original
research effort has indicated that for any three consecutive steps each root is
an approximately linear function of the Freudenstein-Roth step number as shown
in Figure 2-2. Then the accuracy of the initial estimate of the root Xn for any

Freudenstein-Roth step (m + 1) can be greatly increased by means of the relation

(o)
X =X + X)) - (X))
n mtl n m n m n m~1

STEP STEP STEP STEP
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mt+1
STEP

XX ‘ \\ht x

0 1 2 3 4 m-1 m mtl
FREUDENSTEIN-ROTH STEP

Figure 2-2. VARIATION OF ROOTS Xn WITH FREUDENSTEIN-ROTH STEP
2.4 COMPONENT SELECTION

The roots obtained by the numerical techniques previously described correspond
to the values of circuit components necessary to build the circuit with the desired
transfer function. However, it is usually impossible to obtain standard circuit
components with the values which exactly match the roots found by the numerical
techniques. A circuit built with components which only approximate the exact
roots will only approximate the transfer function. To evaluate the change in

the transfer function, it is first necessary to establish certain guidelines

concerning the actual values obtainable in standard circuit components.

From an engineering standpoint the approximate components should be built
up from standard components which are readily available. Parts A and B of

Table 2-2 present standard decade tables for resistors and capacitors and their
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1.0

1.1

1.21

1.33

1.47

1.0

1.2

1.5

1.8

2.0

1.0

1.2

1.5

1.8

TABLE 2-2
COMPONENT SELECTION VALUES

A. RESISTOR DECADE TABLES ()

1.62 2.61
1.78 2.87
1.96 3.16
2.15 3.48
2.37 3.83

B. CAPACITOR DECADE TABLES

“(10 - 2500 upf)

2.2 3.6
2.5 3.9
2.7 4.7
3.0 5.0
3.3 5.1

Over 2500 upf

2.2
2.7
3.3

3.9

2-24

4,7

5.6

6.8

8.2

4,22

4.64

5.11

5.62

6.19

5.6

6.8

7.5

8.2
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6.81
7.50
8.25

9.09
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C. INDUCTOR TABLE

(Less than 50 h)

4
F
r Inductors of less than 50 henryg are matched to two significant figures
|

by variable inductors.

(Greater than 50 h)

50

)
=

0C 800 2000

i 100 400 1400

D. INDUCTIVE RESISTANCE TABLE

: (Variable Induetors - less than 50 h)

The resistance of the variable inductors is a multiple (Km) of the inductance.

| (Fixed Inductors greater than 50 h)

0.5 K@ @ 50h 4,0 K® @ 400h 8.0 K& @ 2000h

! 1.0 KQ @ 100h 8.0 K2 @ 800h
2.0 KQ @ 200h 4.0 KQ @ 1400h

E. TOLERANCE TABLE

] COMPONENT TOLERANCE
; Resistors + 1%
Capacitors + 5%
Inductors (> 50'h ) 2 significant figures
Inductors (< 50°h ) + 10%
Inductive Resistance Same as corresponding inductor
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available tolerances. These decade tables are based on references 12 and 13.
Inductors can be handled by assuming variable inductors under 50 henrys (ref. 14)
and fixed values over 50 henrys (ref. 15). This procedure is also shown in Table
2-2, Part C. Values for inductive resistance, based on reference 15, are presented

in Part D of Table 2-2. Tolerances for all components are found in Part E and

are based on a survey of references 12 through 15.

The selection process for resistors and capacitors involves selecting the
largest value from the decade table that is below the desired value and then
adding smaller values until the component is within tolerance limits or until
more than a specified number of values are used to form the component. For

Inductors over 50 henrys the selection scheme first matches the inductors to the

largest fixed inductor value smaller than the desired value. Smaller increments
are added with variable inductors. The selection of two values appears to be
all that is needed for an approximate component to be within tolerance range of

the desired component.

Application of the described scheme to each component yields a circuit with

approximate component values that are easily obtainable.
2.5 FREQUENCY RESPONSE

As the components available for the circuit are only approximate, it is
desirable to evaluate the effect of these approximations on the frequency res-

ponse of the circuit.

The approximate transfer function may be found by evaluating the equations
using the approximations to the components. The evaluation process results in

values of Fj which in turn can be converted into values of the coefficients

Nq and Dq in the numerator and denominator of the transfer function.
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Evaluation of the complex quantity N(jw)/D(jw), where N and D are the numerator
and denominator of the approximate transfer function, for the desired values of
frequency will yield the steady-state frequency-response curves for attenuation
and phase shift as functions of frequency as discussed in reference 16. These
steady~state frequency-response curves are the yardstick to use in the comparison

of an approximate circuit with an exact circuit,
2.6 DIGITAL COMPUTER CONSIDERATIONS

Because of the overall numerical complexity of the problem the use of a
digital computer is mandatory. The improved numerical techniques described in
subsection 2.4 represent refinements to the original digital computer program
described in reference 1. The component selection scheme is readily adaptable
to a digital computer. The frequency response calculation discussed in subsection
2.5 has been previously programmed by Northrop as described in reference 16.

Thus the most logical approach to the problem involves development of a master
computer program capable of solving the equations, approximately matching the
roots with standard circuit components, and calculating the resulting frequency

response,
2.7 APPLICATION OF NUMERICAL TECHNIQUES TO NONLINEAR DIFFERENTIAL EQUATIONS

Because of their complexity, nonlinear differential equations are usually
solved numerically. As a result, algebraic equations are generated. If a set
of nonlinear differential equations is involved, then a set of nonlinear algebraic
or transcental equations will generally result. Typical examples include:

® The equations of motion of a rocket flight (neglecting air resistance)

® The equations for supersonic flow around an axially symmetric body

(assuming compressible inviscid flow).
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The possibility exists that the sets of nonlinear algebraic equations
generated in solving nonlinear differential equations may be efficiently
solved by some combination of the techniques described in subsections 2.2 and
2.3. The primary considerations in establishing whether or not such a combination
would offer any advantage over techniques already in use are the complexity
and number of the nonlinear equations, and the accuracy to which the unknown

can be estimated in any numerical step.
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SECTION IiI

PROGRAM DESCRIPTION

Based on the analytical development presented in subsections 2.2, 2.3,
2.4, and 2.5, a master digital computer program has been written. This program
is designed to obtain the roots to the nonlinear algebraic equations, select
standard circuit components which approximate the values of the roots obtained,
and establish the frequency response of the circuit made up of the selected

components.

The subsections which follow present a description of the various operations
of the program throughout the rumning of a typical case, a description and
necessary definitions of the input and output, and the flow charts of the

program.
3.1 BASIC FEATURES

The program in its present form is designed to solve sets of nonlinear
algebraic equations of the type indicated by equation (2-2). A general program
flow chart is provided in Figure 3-1. A copy of the source program written in
FORTRAN IV is included in Appendix A. A description of the program's subroutines
1s included in Appendix B. The overlay feature of the program is described in
Appendix C. This program has been checked out for use on the IBM 7094 digital

computer.

The program utilizes the Freudenstein-Roth technique in conjunction with
Kizner's method. All partial derivatives needed for Kizner's method are calcu-
lated by analytical differentiation in contradistinction to finite-difference

methods. The Gaussian pivotal technique is used to obtain the solutions of the

linear algebraic equations that are necessary for the application of Kizner's method.
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OUTPUT

NQO

CALCULATE
¢(J) BASED ON
APPROX IMATE

X(1I)

Figure 3-1b. MAIN PROGRAM (CONTINUED)
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SUBROUTINE
PTMCH
NP=0

X(J)=X(J)/10

NP = NP + 1

X(J) =
X(J) x 10
NP = NP - 1
- K =1
-l}- ]
0 K=K+ 1

COMP =

TABLE (K)X 10N

X(J) = NP
TABIE (K)X 10

RETURN

3-1f£. SUBROUTINE PTMCH
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SUBROUTINE
SIMEQ

SE ARCH
JACOBIAN
FOR LARGEST
\ VALUE
(=A(IX,JX))

RETURN YES
IE=1

NO

SHIFT A(IX,JX) INTO A
i K,K POSITION

DIVIDE ROW K BY
A(K,K)

SUBTRACT COLUMN K
MULTIPLIED BY A(K,J)

FROM COLUMN J FOR
EACH COLUMN J # K

K=K+1

Figure 3-1h. SUBROUTINE SIMEQ
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\J v v v
KUTTA"—=1 KUT'I;A=2 KUTT%=3 KUTTAT—A
X1(I)=xX(1) X(1) = X1(I) X(I)=X1(1) DELX(TI)
X(1)=x(1) +DELX(1)/2 HDELX(I) = (X2(1)

+DELX(1)/2 X2(I)=x2(1) X2(1)=x2(1) DELX(I))/6
x2(1) +2 DELX(I) ' +2  DELX(I) KUTTA=1
= DELX(I) KUTTA=3 KUTTA=4
KUTTA=2
Figure 3-1i. SUBROUTINE RUNKA
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SUBROUTINE
PRTR

ADD INDUCTIVE
RES ISTANCE
X(I) = X(1)+
C(I)x X(I+NR)

I=1,NL
Y
I=1

Figure 3-1k.
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WRITE
BLANK
LINE

1J
I=1+1

I
o

SUBROUTINE PRTR
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After all the terms of the equations and the upper and lower limit for
each unknown have been read into the computer, values for the initial estimate

of each unknown are determined by the ESTIM subroutine.

The first attempt at solution (unless otherwise specified by the input
value of NA) is the constant approach. 1In this method, the initial estimates
are used to calculate constants that satisfy the equations. These constants are
then varied stepwise, according to equation (2-25), toward their true values and
the roots found at each intermediate step. When roots have been found for the
case where the varying constants are the true (input) constants, a solution has
been found. If at some step a singular matrix results or the attempt to find
intermediate roots is unsuccessful, the number of iterative steps, V, is doubled
to reduce the size of the incremental change in the constants and a solution is
again attempted. This process continues until a solution is found or until the

value of V exceeds some established limit, Vlimit'

After successfully obtaining a set of satisfactory roots, the program can
(by an input option) select approximate components and plot the frequency
response of the resulting transfer function. If a set of roots is outside the
physical limits specified in Table 2-1, or if no roots are found, the program
starts over, using the coefficient approach. The coefficient approach involves
finding a set of coefficients, Aj’ applied to the largest terms in each equation,
that will cause the equations to be satisfied. These coefficients are then varied
stepwise toward unity in accordance with equation (2-23). When unity is reached,
a solution has been found. If the coefficient approach using the largest terms
fails, the process is repeated with the coefficients applied to the first term

in each equation as originally read into the computer. If necessary
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the process can be performed repeatedly, applying the coefficients successively
to the second term, third term, etc. in each equation. In any case, the method
of approaching a solution is the same as the constant approach. The total
number of such attempts, excluding the constant approach, is equal to some value,
Qlimit’ which is equal to or less than the number of terms in the longest
equation plus one (Qj(max) + 1). 1In those equations where Qj > Qj(max)’

and the coefficient approach specified application of Aj to a term number which

is larger than Qj’ the coefficient Aj is applied to the last or thh term of

the equation,

For the case where satisfactory roots are obtained, the component selection
subroutine takes one root at a time, starting with capacitors and ending with
resistors, andAmatches components with the root in the same way a human might. :
It matches the root with values from a decade table of parts, picking the
component that most nearly matches the root but is less than the root. This i
value is subtracted from the root, leaving a residual to be matched. This
process continues until either the residual is less than the tolerance range
of the first component selected for the root, or until a specified number of
components for the root has been picked. In the latter case the last component is
picked to match most nearly the residual. If the root is an inductor, its
inductive resistance is calculated. If it is a resistor associated with an
inductor, the natural or inductive resistance is subtracted from the total
resistance prior to component matching. The natural resistance is added later
to the sum of the components selected. The latter sum represents the "surplus”
resistance as discussed in subsection 2.2. For inductance values of less than |
50 henrys, the desired component is a variable inductor. The program assumes that %

the inductance in this case can be matched to two significant figures.
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The program then forms the constant terms associated with the transfer
function from either the actual roots or the approximations described above.
From the specifications given on an input card, it matches the constant terms
with the correct powers of s in the numerator N(s) and denominator D(s) of the
transfer function. The program calculates the complex roots of N(s) and D(s)
and then computes the magnitude and phase angle of the complex quantity N(jw)/
D(jw) for the desired values of frequency. The results are printed out and

plotted on the SC-4020 plotter.

After the entire computational process has been successfully completed, the

program may, based on input option, start over in search of additional sets of

roots.

3.2 COMPUTER INPUTS AND OUTPUTS

All inputs are made through the familiar FORTRAN commands. The following
is a listing, in alphabetical order, of the input items and their definitions,
and a list of the format necessary for input of the items. The symbols in
brackets are the corresponding symbols from the technical discussion.
Example inputs and output for six equations with six unknowns are presented in
Appendix D. Similar examples are provided in Appendix E for thirteen equations

with thirteen unknowns.

3.2.1 Input Symbols

AMPMIN The minimum and maximum ordinate values for the amplitude versus
}
AMPMAX
frequency plot. If both are blank, the limits are taken as .00l
and 100, respectively.
c(M) The constant term associating resistor (M) with inductor (M). {Kmi
i
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DBMIN
DBMAX

F(J)

FRQMIN

FRQMAX}

FXORIG(J)

FXLIM(J)

ICPS

MAX(J)
1ZMAX
JMAX

KK

K(J,I,L)

IMAX(J)

MAXNOS

TR-292-6-078
September 1966

The minimum and maximum ordinate values for the amplitude in decibels
versus frequency plot. If both are blank, the limits are taken as

-60 and 140, respectively.

i

The constant term associated with equation J. [F;
J

The minimum and maximum limits of frequency, respectively, to be
plotted. If both are blank, the limits are taken as .00l cps to

25 cps.

The lower limits for the desired range on the variables X(J), where

X(J) corresponds to X in Section II.
The upper limits for the desired range on the variables X(J).

An indicator. If it is not zero, the plots are made versus

frequency in cps. If it is, the plots are made versus radians

per second.
The number of terms in equation J. {Qj]
The maximum number NA is allowed to attain.

The number of equations. [p]

The number of Runge-Kutta integrations allowed per Freudenstein-

Roth step.

Subscript for each factor of each term of each equation. [n(j,i,kx
L is varied most rapidly, J least rapidly. The subscripts for each

equation begin on a new card.
The number of factors per term for equation J. [?.j

The maximum number of steps allowed in the Freudenstein-Roth

technique. {VLimipi
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NA

NC

NL

NMAX

NOR

NOS

NTB

NTC

NR
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An indicator. If MR is zero, the program stops after obtaining one
set of roots.

A column counter. If NA is zero, the constant approach is used.

If NA is unity, the coefficient A (in the Freudenstein-Roth
technique) is applied to the largest term in each equation. If

NA is greater than unity, the coefficient A is applied to term
NA-1. After each attempt at solution is fully exhausted, NA is
increased by one. When NA equals IZMAX, the program stops.

The number of capacitors. [w]

The number of inductors. [v]

The number of derived equations in a circuit. Because in some cases
there are more unknowns than there are derived equations,
supplementary equations are made by assignation of values to
components. These supplementary equations must follow the

derived equations on input, and the number of derived equations
must be specified (even if the number of derived equations is

equal to the number of unknowns.

The number of increments between FXORIG and FXLIM for ESTIM, the
initial estimate subroutine.

The initial number of steps for the Freudenstein-Roth technique. [V]
An indicator. If NTB is zero, the program will plot the resulting
transfer function from the first set of roots obtained.

An indicator. If NTC is not zero the values of the roots are
used to form the transfer function for the frequency-response
subroutine. If it is zero approximate values found by CMPSEL
are used.

The number of resistors. ([u]
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PTOL(J)

SPEC(J)

TX

XCMAX
XCMIN

XLMAX
XIMIN!

XRMAX
XRMIN

3.2.2 Input

TR-292-6-078
September 1966
Number of points to be computed per decade of frequency in the

frequency response program.

Specifies the maximum number of components to use in approximating
X(J).

The desired tolerance for root X(J).

This specifies to the program to which power of s in N(s) or

D(s) of the transfer function that F(J) belongs. The input is

an 'N' or 'D! (Speqifying numerator or denominator) followed by

a number (specifying a power). Thus D2 NO specifies that F(1)

is the coefficient D2 of 52, and that F(2) is the coefficient NO
of s? The input is free form, with blanks allowed anywhere except
as part of a number (N 10 is allowed, but N 1 0 is not).

The desired fractional tolerance for the initial estimates from
ESTIM. When the estimates X(J) do not change more than TX x X(J)

in an attempt to further modify the estimates, then the set X(J)

is returned from ESTIM as the set of initial estimates.

The maximum and minimum practical values that are obtainable for
capacitors.
The maximum and minimum practical values that are obtainalbe for
inductors.
The maximum and minimum practical values that are obtainable for

resistors.

Units

XRMIN

XILMIN

XCMIN

XRMAX

XIMAX

XCMAX

Resistance (ohms)
Inductance (henrys)
Capacitance (farads)
Resistance (ohms)
Inductance (henrys)

Capacitance (farads)
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FXORIG For J - 1,NR Resistance (Ohms)
FXLIM '
For J - NR!L,NL Inductance (henrys)

For J = NRINLi1, JMAX Capacitance (farads)

3.2.3 Input List and Format

The list which follows gives, in sequential order, all of the data that
must be input into the computer for a run. The FORTRAN symbols defined in
the previous section are used for the data. The word "CARD' in the left
margin is used to designate that the Fortran symbols, corresponding to the input

items, to the right of the word "CARDY must begin sequentially on a new card.

CARD MAXNOS, NOX, KK, JMAX, IZMAX, NR, NL, NC, NOR, MR, NA, NTB
FORMAT 2014

CARD MMAX(J) J=1, JMAX
FORMAT 2014

CARD LMAX(J) J=1, JMAX
FORMAT 2014

CARD F(J) J=1, JMAX

FORMAT 6E12.5

CARD PTOL(J) J=1, JMAX
FORMAT 8E10.0

CARD XRMIN, XLMIN, XCMIN, XRMAX, XLMAX, XCMAX
FORMAT 8E10.0

CARD FXORIG(J) J=1, JMAX, FXLIM(J) J=1, JMAX
FORMAT 8R10.0

CARD c(M) M=1, NR

FORMAT 6E12.5
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CARD TX
FORMAT E10.0
CARD ku;LL) L1, IMAX(J), I=1, IMAX(J)
FORMAT 2014
Repeat above for J equals 1 to JMAX
CARD | NTC,N3(J) J=1, JMAX
FORMAT I1, 4X, 1511
CARD SPEC(J) J=1, JMAX

FORMAT 80Al

CARD NMAX
FORMAT 12
CARD ICPS, NSTPS, FRQMIN, FRQMAX, DBMIN, DBMAX, AMPMIN, AMPMAX

FORMAT 11, 4X, IS5, 6F10.5

3.2.4 Output Nomenclature

The printout consists of a listing of the equations, the initial data,
intermediate results, and, if roots are obtained, the roots and the results

from the component selection and frequency-response subroutines.

The equations are listed three terms per line, with a term number for
each term. The factors include a letter denoting resistance, capacitance, or
inductance, and the corresponding component subscript. The lines indicating

the division between the numerator and denominator terms are not printed.

The next portion of printout consists of certain input data. The "Maximum
No. of Steps" referred to is MAXNOS; the '"Number of Steps" is NOS; and the '"Times
through Runge-Kutta" is KK. The "Constants Terms" are F(J) arranged in order
of subscripts reading in order from left to right. Following these terms,

the range of interest for each variable is established by means of FXORIG(J)
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and FXLIM(J) which are arranged in the same order as F(J). The rest of the
initial data printout describes the number of equations and unknowns, the
number of resistances, capacitances, and inductances involved, and the maximum

and minimum allowable components for such components.

i

After the printout of input data, the program 1is designed to indicate
to the user the steps taken to obtain a solution. The terminology used is

the same as thet already provided for input with the following additions:

GRID The iterative step number in the Freudenstein-Roth technique
(1 < GRID £ NOS)

LX The counter used in the process of selecting initial estimates.

When LX-JMAX the selection is complete.

NA The counter used to determine the method of solution. If NA is
gero, the constant approach is tried. If NA is one, the coefficient
approach is applied to the largest term of each equation. And if
NA is greater than one, the coefficient approach is applied to term

NA-1 of each equation ( 0 < NA < IZMAX).

The final output depends upon conditions arising within the program.
Should a satisfactory set of roots be obtained (a set in which all elements are
within the specified physical limits), a statement indicating this fact is
printed out together with the roots appropriately denoted as resistances,
capacitances, and inductances. In the case where roots are found but are not
acceptable, a statement indicates this fact. A listing of the values of the
unacceptable roots follows. As already noted, the computer contains an option

that, in case a set of satisfactory roots is found, the process either stops
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or continues searching until NA=IZMAX. If a singular matrix is encountered in
SIMEQ, the words "Singular Matrix" are printed out, and the computer proceeds

as indicated in Figure 3-1.

Should a set of roots be found, the computer prints them out and then
tests an indicator (ITB). If ITB is not zero the program searches for another
set of roots. If ITB is zero the indicator ITC is tested. If this is non-zero
the program skips CMPSEL and goes directly to the frequency-response subroutine.

Otherwise, CMPSEL is used to approximate the roots by component selection.

The subroutine CMPSEL prints out, for each unknown, the various
values of components selected and their summation. It also calculates the

inductive resistances and prints them out.

Finally, the frequency-response subroutine is used. The printout from
this subroutine consists of the transfer function, its roots and poles, and the
calculated values of amplitude and phase shift over the specified frequency

range. These points are plotted automatically on the SC-4020 plotter.
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SECTION IV

DISCUSSION OF RESULTS

The goal of the present research effort has been to refine the computer program
developed in the initial study for solving nonlinear sets of simultaneous algebraic
equations,which occur in filter circuit analysis, and to extend the applications

of the program and the numerical techniques upon which it is based,

4.1 PROGRAM REFINEMENTS ACHIEVED

The computational refinements achieved were the incorporation of Kizner's.
method for the solution of intermediate Freudenstein-Roth steps and the addition
of a root prediction subroutine to provide better estimates of the roots of the
Freudenstein-Roth steps. These refinements both shorten computational time and
improve convergence of the computer program. In addition, certain subroutines
were added to make the program more useful to filter circuit designers. These

subroutines are designed to:

e Select standard, off-the-shelf components whose values most nearly match

the theoretical values determined by the roots of the equations.

e Obtain the attenuation and phase shift vs frequency plots for the resulting

filter circuit whose component values approximate a theoretical circuit.

4.2 APPLICATION TO ACTUAL PROBLEMS

The refined digital computer program was successfully used to solve sets of
equations in six unknowns and thirteen unknowns. The equations represent filter
circuits as described in reference 17 . 1In addition, attenuation and phase shift vs

frequency plots were obtained for filter circuits composed of standard value
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components which approximate the above theoretical circuits. A solution was
attempted for a set of equations in fifteen unknowns which represent the filter
circuit described in reference 18. Although only limited success was achieved
in obtaining a solution to this set of equations in fifteen unknowns, evidence
was gathered which strongly supports the hypothesis that this set of equations

is ill-conditioned.

4.2.1 Equations in Six Unknowns

The transfer function on page B-42 of reference 17 yielded six simultaneous
equations in the six unknown component values. The occurrence of exactly six
equations for six unknowns is not trivial, for transfer functions of other filter
circuits often yield either a lesser or a greater number of equations than un-

knowns. These cases are discussed in subsequent sections.

The equations and the filter circuit associated with the equations are
included in Appendix D. These equations were solved by the refined computer
program. 1In addition, the computer program selected the standard value components
which most nearly matched the values indicated by the roots of the equations and
plotted attenuation and phase shift vs frequency curves for the resulting approxi-
mate circuit. The two sets of roots obtained, along with the upper and lower
limits of each root used for the ESTIM subroutine, are presented in Appendix D.
Figures D-1, D-2, and D-3 of the appendix present, respectively, the amplitude,

phase shift and gain vs frequency plots for one of the circuits obtained.

4.2.2 Equations in Thirteen Unknowns

The transfer function of the filter circuit on page B-93 of reference 17

yielded twelve equations in thirteen unknowns. To obtain a solvable set of
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equations, one of the unknowns (i.e., component values) was assigned a fixed

value. This value was chosen so that the resulting set of thirteen equations

in thirteen unknowns had a set of roots that were real, positive numbers. This

choise was made to insure that the component values of the filter were physically

realizable.

The resulting set of thirteen simultaneous equations is listed in Appendix
E. They were solved by the refined computer program. The set of roots obtained,
as well as the upper and lower values of the roots used in the ESTIM subroutine,
is included in Appendix E. This appendix also presents the standard component

values selected by the computer program to most nearly match those indicated

by the set of roots. Figures E-1, E-2, and E-2, respectively, present the

amplitude, phase shift and gain vs frequency plots of the resulting approximate

filter circuit.

4.2.3 Equations in Fifteen Unknowns

The transfer function of the filter circuit given on page 9 of reference
18 yielded the sixteen equations in fifteen unknowns shown in Appendix F. The
task of generating the equations from circuit analysis proved quite laborious.
This work involved expanding two determinants of eighth-order matrices, the elements
of which were algebraic expressions. The two resulting algebraic polynomials con-
tained over 800 terms which were grouped according to the exponent of the variable
s. The sixteen algebraic expressions developed by this grouping represented the

functions 1% discussed in subsection 2.2.

After deriving the expressions wj, the next step was establishing the values
for Fj' The original version of transfer functions given in reference 18 had
already been normalized by dividing the numerator and denominator by N0 and DO’

respectively. The gain factor for this original transfer function was also
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omitted. Northrop performed the necessary analysis to obtain the non-normalized
transfer functions. The Nq and Dq of this transfer function were then matched
with the corresponding algebraic expressions to form the sixteen equations of

the form of equation (2-2).

A preliminary examination of equations indicated that they would have to be

scaled to prevent computer overflow. For this reason, the circuit was scaled by

multiplying all resistor and conductors by 10—6 and capacitors by 106. The constant

terms, Fj’ were correspondingly scaled by multiplying by 10-42.

The circuit upon which the transfer function and the sixteen equations were
based, contained only fifteen elements. Thus the set of sixteen equations con-
tained only fifteen unknowns. As discussed in subsection 2.2, the existeﬁce
of more equations than unknowns immediately raised the question as to which, if

any, combination of the equations would form an'independent set.

Various methods were used in an attempt to establish the indepgndence or
dependence of any of the sixteen sets of fifteen equations taken from the sixteen
equations. Algebraic expansion of the determinant of the Jacobian matrix was not
practical because a fifteenth-order matrix was involved. Numerical evaluation of
this determinant for specific values of the unknowns proved inconclusive. For
some values of the unknowns the matrix was numerically singular. For other values
this was not the case. All numerical work of this nature was hampered by com-
puter truncation error coupled with the significant differences in order of magni-

tude of the unknowns.

Numerous runs were made with several different sets of fifteen equations.

In many cases the computer indicated a singular matrix had been encountered. 1In
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others rapid divergence occurred. These experiences indicated that the sets

of equations selected were either dependent or extremely ill-conditioned.

One of the last computer runs carried out involved running the 16 different
sets of 15 equations one after another, with the initial estimate of 14 of the 15
unknowns set equal to values of known roots taken from reference 18. The one
unknown, which was not set equal to a root, was given a value 12 percent greater
than the value of the corresponding root. For four of the sixteen cases, conver-
gence did occur rapidly. The sets of equations used in these four cases can
be most readily identified by specifying the coefficient Nq or Dq corresponding
to the equation omitted. These four coefficients were NO’ Nl’ D2, and D3. A
singular matrix was not encountered in any of the remaining cases, and for some
of these cases there was indication that comvergence was occurring although
not as rapidly as for the four cases already mentioned. Based on this last
computer run it would appear that all of the sets of fifteen equations are

independent but all are also ill-conditioned, some more so than others.

In carrying out this last computer run, the constant approach of the
Freudenstein-Roth technique was used exclusively. This action was taken
because of the fact that with the coefficient approach the Jacobian matrix
changes algebraically with each step in the Freudenstein-Roth process. Thus a
singular matrix might occur at some intermediate step in the process even though
the true set of equations was independent. In the constant approach the Jacobian
matrix remains constant algebraically through all steps. Thus the dependence or

independence of a set of equations is more clearly indicated by means of the

latter approach.
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The ill-conditioned feature of the equations appears to be the result of
the considerable differences in order of magnitude of the unknowns. An indication
of the ill-conditioned characteristic is that the determinants of the Jacobian
matrices corresponding to the 16 different sets of equations appear, in general,
to have relatively small numerical values in that region within which the roots
to the equations are most likely to occur. When computer truncation error is
considered in conjunction with this characteristic of the Jacobian, it can be
seen that accurate numerical calculations using either the Newton-Raphson method

or Kizner's method are difficult if not impossible under such conditions.

4.3 APPLICATION TO NONLINEAR DIFFERENTIAL EQUATIONS

As noted in subsection 2.7, there exist a number of engineering problems
in which sets of nonlinear differential equations are encountered. These
problems are inherently complex and the techniques which have been developed to
solve such problems tend to be somewhat specialized. The differential equations
associated with the two specific problems listed in subsection 2.7 have been
examined along with the appropriate boundary conditions. Because of time
limitations, no attempt was made to apply the numerical techniques developed to
the actual differential equations. It would appear that for situations in which
boundary conditions or initial conditions are not well defined, the technique

would prove useful for simultaneously satisfying finite-difference versions of

the differential equations.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

Based on the experience gained in the research effort, the Freudenstein-Roth
technique combined with Kizner's method appears to be a powerful tool in the
simultaneous solution of nonlinear algebraic equations. The digital computer
program, which contains this numerical technique combined with a circuit component

selection scheme and a frequency-response curve plotter, is capable of analyzing

complex filter circuits and represents a useful engineering tool.

The most significant feature of the program is its flexibility in handling
any set of algebraic equations of the general type encountered in filter circuit
analysis. The primary limitation of the program occurs when it is applied to

circuits for which the corresponding algebraic equations are ill-conditioned.

With very minor modification the program could be extended to handle any

set of algebraic equations. Extension of the program to sets of transcendental

'equations could also be accomplished with relatively small effort. The possibility

also exists that the basic numerical techniques employed may be useful in the

solution of sets of nonlinear differential equations and their associated boundary

conditions.

The recommendation is made that an investigation be conducted concerning
the extensions in application of the program and the associated numerical techniques
discussed in the preceding paragraph. In addition, consideration should be given
to the use of a digital computer to generate the algebraic equations characteristic
of a filter circuit. Northrop is presently developing computer techniques capable
of mathematical operations involving high-order polynomials with literal coeffi-
cients. The techniques_developed in the latter research effort would be useful

in writing a computer program capable of generating the desired equations.
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There is a very evident need for an investigation into the problems of
identifying independence/dependence in sets of nonlinear equations as well as
identifying ill-conditioned sets of equations. The possibility of transforming
an ill-conditioned set into a well-behaved set, by some numerical process, is
also worthy of study. Such a transformation appears to offer the most prom-
ising approach to the solution of ill-conditioned sets of nonlinear algebraic

equations.
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APPENDIX A

SOURCE LISTING OF COMPUTER PROGRAM

A source listing of the complete program is included in this appendix.

Individual segments of the program are located on the pages indicated below:

PROGRAM OR SUBROUTINE | PAGE
MAIN A-2

INTEGER FUNCTION K A-7

EQPRT A-8

READK A-11
CMPSEL A-12
PTMCH A-15
BLOCK DATA A-16
FCON . A-17
SIMEQ A-19
RUNKA A-20
ESTIM A-21
PRTR A-23
ROOTER A-24
ARDEN A-26
GETOUT A-32
QUKLG1 A-33

A-1
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DIMUNSTON lMAX(lS),F(15).X(15).C(15).FXURIG(15),X1(15),DELX(15)-
UFX(15)9DFX(15v15)9SU‘4(lb),PSUM(lf)’ls)'T(ZIf\)vP(215v15)vA(157215)1
l{(lb)uAﬂR[G(lS)ypH[(15)vplﬂL(15)pFL(15)1FC(15)1FX[(15)1FXLIM(15)v
MXGUES(LIS)LMAX(L5), NMU16), ITD(5902) 4X2(15)

DIMENSTEN PHIP(L15),DX(15)

COMMIN NM,ITD,LMAX, IMAX, JMAX

CUMMUN /PLUTER/RE(I())yRC(16)9\3NUM,NUEN,RQQT(80)1?%571(30)

10J FURMAT (//4H NA=,14/)

11D FYRYAT(/16H SINGULAR MATRIX/)

123 FARMAT (2014)

130 FURMAT (2XLO4INPUT DATA//21H MAXIMUM NO. @F STEPS,3X,I14/16H NUMBER
I OF STEPS+8X,14/726H TIMES THRIUGH RUNGE KUTTA,4X14/15H CONSTANT TE
2RMS/)

14) FORMAT (/32H CEMMENCING COEFFICIENT APPRDACH)

15) FORMAT (/3XS5HFXLIM/{S(3XEL6.B8)))

182 FURMAT (6H SRID=,14,3X%X,4HNDS=,14)

213 FuRiIFAT (5(4XE516.8))

230 FORNMAT (8E12.0)

24) FUKRMAT (5E12.5)

323 FJARMAT (/10H VARIABLES/)

33) FUREAT (//724 ALL RWITS IN THE FULLZWING SET LIE WITHIN THE PHYSIC
LAL LIMITS SP=CIFIED/Y)

340 FErrAT (49H JSING THIS SET @F ESTIMATES, N@ RJIITS WERE FAUND//)

35) FORMAT (/75H THE FILLWOANING SET @F RZCTS D@ NOT LIE WITHIN THE PHYS
FICAL LIMITS SPECIFIED/)

360 FYKMAT (/20H RANGE F3R VARTABLES/3XO6HFXLRIG/(H6(3X,EL5.8)))

370 FORMAT {/11H THERE ARE » I2915H EQUATIONS AND +12924H UNKNDWNS»CINS
FISTING 2F 412416H RESISTANCE(S)y +12519H INDUCTANZE(S) AND ,12,16H
K CAPACITANCELS).)

380 FURMAT (85H THE LR2WER BRUNDARIES F@ZR THE RESISTANCES, THE INDUCTAN
FCESy AND IHE CAPACITANCES ARE 42(E16.8y2Hs )/SH AND rEL6e8y1lH, 48H
d RESPECTIVELY, WHILE THEIR UPPER BBUNDARIES ARE 22(E16.8,2Hy ),4HA
RND /1XE15.8,14H RESPECTIVELY.)

EQUIVALENCE (JMAX,\MAX)

REAL (5,120) MAXNDSsN2S KKy JMAXy ITZMAXyNK9gNL 9y NCyNZR,M,NA,NTB

REAL (545120) (IMAX(J) 4J=1,JMAX)

REAL (5,120) (LMAX(J)Jd=1,JMAX)

REAL (5,243) (F(J)sd=1,IMAX)

REAU (54230) (PTALIN) yN=1,NMAX)

READ (54230) XRMINyXLMIN,XCMINyXRMAX »XLMAX, XCMAX

REAL (55230) (FXJIRIGIN))N=1,NMAX ), (FXLIM(N) yN=1,\NMAX)

REALLS5,240) (C(M)yv=1,NR)

REAU (54230) TX

CALL READK

NCC=NMAX -iC

CALL EQPRT{JMAX, IMAX,LMAX, NRyNLyNC)

NN@S=NZ2S

WRITE (649130) MAXNDIS, NBS KK

ARLTE (6,210) (F(J)yJd=1, JMAX)

ANRITE(5,360) (FXIRIG(I),1=1,JMAX)

WRITE(5,5,150) (FXLIM{I),I=1,4J4AX)

WRITE (643700 JMAX,NMAX,NR,yNL,NC

WRITE(S,350)XRMINy XLMINy XCMINy XRMAX ) XLMAX y XCMAX

CALL ESTIM (NMAX ) JMAX 9 NRgNL yNDRy TXy IMAX yLMAX 3 FoCoFXERIG,FXLIM,FX)

WRITE (6,4320)
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[ ]

291
205

51

59

47

>

12

14

NLE
NSLO1

ARETE (64212)

(FX{(N)yN=1,NMAX)

Ju 05 M=1,NMAX
[F{M=NR) 206,206,207

ciM)=0C.
NRM=NR+M

Jid I N=1,NMAX
IFX{MyN) =0,
IF(M=N)9,8,3
UFX{MyN)=1.

38 Tg 7
[FOR=-(NR+MI) T,
CONTINJE
X{M)=FX(M)~-C(M
D¢ 48 I=1,NMAX
XGUuLS(I)=x(1I)
IFCialE.L)GE

10,7

J#FX(NRM)

Ty 51
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CALL FCON (MAXNBS ) NDS KK g JMAXyNMAXy NRyLMAXy IMAX FoPTALy XsC o

FXy TERRyFXLIMyDFXyX24 PHIP,DX)

S T (112452)
wRITE (6,100)
NZS=NNDS

» [ERR
NA

DY S0 I=1,NMAX

XL1)=XGJeS(I)
X{I)y=X5utLstl)
IGRIL=1

LL=¢

ANYS=NIS
KSWICH=0
LSWICH=0

NS =0

WwRITE (6,180)
KUTTA=1

De 3 I=1,NMAX
DELX(I)=03.

[GIDyNES

SALLULATE PARTIALS

Dd a4 M=1,NMAX
[F{M=NR)545,5
Clm)=0.

NRM= R+ M
FXOM)=2 (M) X (
CANTINJE

Ng 11 J=1,JMA
SUMIJ)I==-F(J)
DY 12 N=1,\NMA
PSUM(JyNI=0.
[TIMux=1IMAX(J)
03 13 I=1,1J4
T{I1)=1.
LIMAX=LMAX(J)
Dé 14 L=1,LJM“
VK:K(JylyL)
T{I)=T([)=EX(

NRM)+X(M4)
X

X

AX

AX

NK)

D 15 N=1y,NMAX

P(['N)‘:Oo

D@ 16 L=1,LIVAX

GUES,
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NK=K{JyI,L0)
15 PUL,N)Y =PI NY+T(I)eDFXINKyN)/FXINK)
CALULULATE TaraL PARTIALS
L5 PSUM{JeNY=PSIM({UyN)+P(I4N)
13 SUM(J)=SUM(J)+T(I)
JDETURMINE LARGEST CTOEFFICIENT JF EACH EQUATION /
IF{NA-1)1T7,417,18
l.? I'X-'-'f'.
TdmMax=IMAX(J)
D¢ 19 I=1,1J4AX
IF(T(I)=TX)13,19,20
20 TX=T(1)
NX=1
12 CONTINJE
50 Yk 21
13 IF(IMAX(J)+1-NA)22,23,23
22 NX=IMAX(J)
S e 21
23 NX=iA-1
‘ 21 1F(KSWICAH=-1)24,25,25
- CALCULATE CUZFFICIENTS
2% AURIG(OI)=((-SUM(J))/T(NX))+l.
25 ITF{LSWICH-1)30,29,29
32 SRIu=IGRIU
[F (AZRIG(J)) 1,125,125
I A(JyNA)=-(AB5 (ABRIG(J ) =2 )% ({1.~GRID/ANLES))+2.
28 1¢ 293
1235 A{JyNA)=AZRIG(J)#%(1.-GRID/ANDS)
CALCULATE TJA2TAL PARTIALS (CORRECTED)
29 D4 28 N=1,NMAX
28 PSUM{JeN)I=PSIMIJIyNI+{A(IZyNA)-1.0) %P (NXsN)
? IF{KUTTA-1) 11+281,11
b 281 PHIP(J) == (SUMLI)+(A(INA) =1 )#T(NX))
‘ 11 PHI(GJ)I=PHIP(J)
KSwiCH=1
' LSwICH=1
CALL SIMEQ (2SUM,DELXsPHI,JMAX,1E)
[F(IE.EQ.1) 58 T4 32
CALL RUNKA(X,DELXyFXLIMyPTOL yX2, KUTTA,NMAX)
SB T (31,460,60,4,50)yKUTTA
31 CONTINJE
NS=:i5+1
DB 43 I=1,NMAX
If (ABS(DELX{I))-PTOL(I)=«ABS(X{I)))33,33,40
33 CUNTIIJE
DU 35 I=1,NMAX
35 AK(L)=X(I)+DE_X(1])
39 DB ol I=1,NMAX
NRI=NR+ ]
51 EX(L)=C(I)exX(NRI)+X(]I)
NS=
LSWICH=0
IGRIL=IGRID+]
IF(IGRID-NBS-1)35,52,452
35 DY 26 N=1,NMAX
DX{Is)=X{N)=X1(N)

[ %]

[}

(4]
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25

4)

32
43

44

45

33

21l

49
52

75

17

102

104

106

103

112

121
113
57
69

505
500

NLL
NSLIJ1

X1 =x{\)

X{N)=X{1) +DX{N)

ok T 54

LSWICH=LSWTICH+1

I (NS-KK)37443,43

JB 55 I=],NMAX
X(L)=X(I)+DELX(I)

o 1w 50

AR (6,110)
NES=2#(NSS+L-IGRID)
IF(US-MAXNDS ) 44,38,38

DY 45 I=1,NMAX
DXCL)=DX(1)=.5
X{I)=X1(1)+DX(T)

161D=1

o4 Vi &7

NAS=NNJS

WRITE (0y340)

NA=YNA+]

WRITE (64,14D)
IF{NA-1-1ZMAX)51,43,49
STuP

Dd 76 I=1,4NR

I[F (X{I)=-XRMIN)1214756,76
SUNTINJE

D9 17 I=1,NR

IF (X{I)-XRMAX) TT7,77,121
CONTINJE

NRPL=NR+1

NRPGL=NR+HNL

DB 102 T=NRPL,RPNL

IF (X(I)-XLMIN) 121,102,102
CONTINJE

29 104 @=1RP1,4NRPNL
ITF(A(I)~-XLMAX) 104,104,121
CUNIINJE

NCC=NR#NL+1

J& 1C6 I=nNCC,yNMAX
X(I)=1./x(1)

IF (X{I)-XCMIN) 121,106,106
CONTINJE

Dd 108 [=NCCyNMAX

IF (X(I)-XCMAX) 108,108,121
CUNTYINUE

WRITE (64330)

S5¢ Tw 113

WRIIE (6,4340)

o Te 211

WARITE (64353)

CALL PRTR({XyZsNRyNL,yIMAX)
IF{NTB)6B,63,69

CONTINJE

CALL CMPSEL(JIMAXyXyX1 ¢9X29yNRyNLyCyNTB)
2d 00 J=nNCC,yJIMAX
X{Jd)=1l./7%x(J)

DI 520 J=1,yJMAX

A~5
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510
52)

69
212

NL L
NSLO1

SuUMtylr=n.
[UMAX=IMAX(J)
LIMAX=LMAX(J)

DY 520 I=1,1JMAX
rery=1.

Ud 510 L=1,LJIMAX
NK=K{J,1,L)
TCI)=T(1)=X(\NK)
SUMEJ)=SUM{J)+T ()
CALL RZOTER (SUM,JMAX)
CALL ARDEN

NTB=1
IF(MR)211,212,211
STubP

END
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NL!
NSLUZ

INTUOER FUNCTION K(Jylsl)
DIMENSTUN NMU16),LMAX(15),ITD(5902)

CUMMUN NM, IT D, LMAX
Fd=(1-1)=LMAX(J)+L+NM{J)
K=livllJd)

RETURN

END

A7
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INTLGER
DIMENSTION A(50),8B(50)4C(3)4D(10),IMAX(L6)LMAX(LSE) E(3)
700 FUORMAT(LIHL S5IXIHEQUATIZN 12)
01 FORFATL//7)
302 FURMAT(35X6041)
303 FORMAT(L5X35{#wnunxnsns ERROAR DETECTED IN TERM
\ Fol3s13H 3F BEQUATIBN 513512H senswnnssnn)
0% FURMAT (36XI13,17X13,17XI[3)
905 FLRMAT(LHL)
705 FURMPAT(LHLLIOX63HTHE FALLOWING IS THE LIST @F EQUATIZNS SPECIFIED T
FZ Tiik PR2GRAM)
9307 FERMAT(1T7X344THE F2Z2RMAT ISeees EQUATIZN NUMBER)
Il FYRMAT(35X194ANUMBER 3F EACH TERM)
9303 FOURMAT(35X354TERMS BF EQUATIBNS (THREE PER LINE))
909 FORMATIIACL6X62HA CHECK IS MADE 4F THE UNITS @F EACH TERM. IF THE
XIUNITS DIFFER)
710 FEKNAT(17X404IN AN EQUATIPN, AN ERRZR MESSAGE RESULTS)
DATA BLANKsCoD/1H $1H4R,1HLyLHCy1H1 s 1H2y 1H3, 1H4,145,146,
DIH7 4 1HS, LHI, 1HO/
DATA PLUS/1H#+/
NRETE(S5,305)
NRITE(5,306)
WRITE(5,707)
WRITE(S5,908)
WRITE(S5,311)
NRETE(5,309)
WRITE(5,910)
NENT=0
D3 200 J=1,J4AX
WRITE(5,300) 4
NECHT=D
1CAr=0
LA=1]
KU=1
KL=1
L=LA
DB 16 I=1,62
A(L)=BLANK
13 3(I)=BLANK
A(lg)=PLJS
A{3u)=PLJS
LB=L+2
IF(L «5T. LMAX(4)) G2 T 200
IF((L+2) JLE. LMAX(J)) GB T¥ 20
A(38)=BLANK
LB=L+1
IFL(L+]1) JEQ. LMAX(J)) GOB T@ 20
All8)=BLANK
LB=L
2) TONTINJE
[J=1MAX({J)
D 150 L=LA,.B
IND=0
DB 100 I=1,14

Nt



%12

.

30

5)

7)

133

14D

| 150

160

203

NLt
NSLJ3

NCo-K({Jy,L,1)

TF(HC2 «5T. (NR+NL)) G2 Tg 50
IC=1

IF(NCD.LELNR) GU T3 410
[C=2

IND-IND+1

NCio=NCI-NR

CUNTINUE

A(KU)=C(IC)

IFINCS GFe 2) LS TR 30
A(KU+]1)=D(NC3)

KU=nU+3

oW T 103

A(KU+1)=D(1)

NCO=NC2~-10

ALKL+2)=D(10)

TF(NCE JNE. Q) A(KJ+2)=D(NCA)
KU=KU+4

S5d Ty 100

BIKL)=C(3)

IND=-IND=-1

NCO=NCJI-NR-NL
IF{NCZ.GT.9) G@ T3 72
BOKL+1)=D(NC2)

KL=KL+3

se T 10D

S3(KL)=D(1)

NCU=NC2-10

o{KL+2)=0(1D)

FFANCE «NEa D) BIKL+#1)=D(NCH)
KL=nlL+%

CONTINJE

IF(ICAP .EQ. 0) ICAP=[ND
THOEND .eWl. ICAP) GB T2 400
WRITE (6,901)
ARTTELS,903) LyJ
NECHT=NECZHT+]

NENT=1

CUNTINJE

IF(LA+1-L) 150,140,130
KU=20

KL=20

od T4 150

KU=40

KL=40

CuNTINUE

LB=LB-LA+]

Dd 160 L=1,3

E(L)=L+LA-]

WRITE(5,901)
WRITE(5,302) A
ARITE(5,302) B
WRITE(6,304)(F(L)yL=1,LR)
LA=LA+3

[FINECNT LT, 5) G2 T¥ S
CUNTINJE
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NLt
NSLD3

ARITL(5,305)
FFINENToNELD) CALL EXIY
RETURN

END

A-10
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LJ

120
972

NLL
NSLD4

SUBRUT INE REZADK ‘
DIMINSEBN IMAX(15),LMAX(15),\M({16),1TD(5902)
CUMMON NM,ITD,LMAX, IMAX, JMAX

N=1

Dy 10 J=1,JIMAaX

MAX=IMAX{J)*#LMAX(J)+N-1

REAU(S5,120) (ITLD(M)yM=Ny,MAX)

NM{J+1)=MAX

N=MAX+]

NM(1)=D

RETURN

FERFAT(2D014)

FURMAT(12A6)

END

A-11
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(9]

)

1J
29
23
25
32
4)

53

50

[)

8)

383
33

102

209

213

220
221
222
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- NSLDJS

SUBRGUTINE TUPSELIJIMAX g X 9 X1 9X29yNRyNL yCyINTH)
JIMINSTON X(15),X1(15)9X2(15)4N3(15),X3(15),C(15)
CUMMUN /DATAY TABLE(69)
REAI(5,920)NTH,N3 7
TFCNTB) 510424510
WNRIIE(S5,500)

[=NR4+NL*+1

DI L J=1,JIMAK
X{Jd)=X{J)#l.JE+12

a9 10 J=1,JIMAX

X3{(J41=2.

J=JUMAX

[PMX=N3(J)
IF(1IPMX)23,23,25

IPMX=1
[F{J=-N=NL)2130,200,3)
TdlL=.05

D2 40 I=1,1PMUX
IF(X(J)-2500.)40,40,60
IF(X{J)~10.150,50,50
TABLE 2

NB=13

NT=31

S8 1 70

TABLE 1

NB=1

NT=12

NTB=NT-Np+1

d=X0J)

:ALL pTM:H(U' I,K,NB,\H,IPMX,CZWP)
X1D)=Cgmp

X(J)=u-CeMmpP
TFOX(J)-TuL=X1(1))85,85,80
CUNTINJE

S5¥ T 30

[PMX=]

X{J)=0.

UZ 100 I=1,I[PMX
X{J)=X1{1)+x(J)
I=J~-NR-NL

u=x{J)

WRITE(S5,901) I,IPMX
ARTTE(5,902) (X1(K)y<=1, IPMX)
ARITE(S5,303) I,U

G Ty 500

NPC=0

[F{J-NR) 400,400,210
ToL=.1

KKK=1

DG 240 I=1,1PMX
[F{X(J)=-50.) 2204230, 230
IF(X(J)=-10.)221,2224222
TF(X(4)-1.)223,224,224
X{Jd)=X{(J)/10.

NPC=NPC+1
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223

22%

225

225

230

24)

25)
255

26D

27)

40)

NLE
NSLOS

58 Ve 220

NPL=NPL—-1
X{J)=X{J)#10.

S8 1y 221
X(J)=x(J)#1D.
NTB-X{J)+.5

XLOL)=NTH

NPC=NPC-1
X{J)=X(Jd)#{1D.#=NPT)
XLED)=X1(I)»{10.##NPZ)
JNR=J=NR

TFLGCIINR) ) 226,226,225
X2{KKK)Y=X1(T)=C(JNR)
X{JINR)=X(INR) =X2(KKK)
KKK=KKK+1

CUNTINJE

58 16 252

FTABLES 3 AND 4

NB=32 ’

NT=-38

U=x(J)

CALL PTMIH{U» T oKy NByNTyIPMX,C2M4P)
NTR=NT-Np+]

NTB=NTB+K
X2({RKKK)=TABLZ{NTRB)
X1(1)=CgMp
XEJHRY=X(INR) -X2 (KLK)
X{J)=X[J)-CavpP
KKK=KKK+]
TF(X{J)~-TyoL#X1{1))250,250,240
CuNTINJUE

58 1y 255

IPMX=1

X{(J)=0.

D 260 I=1,1MX
X{Jd)=X(J)+x1l(1)
KKK=KKK~1

X3(JNR)=)D

Dw JT0 K=1,K<K
X3UUNR)=X3(JNR)+X2(K)
ARTITE(5,3064) JUNRKR,IPMX
ARITE(S5,302) (X1{K)y,K=1,IPMX)
J=X(J)

WRITE(59305) JNR U
J=X3{JNR)
ARTTE(S5,306) JUNRHU

G 12 500

TéL=.01

D& 4«10 I=1,12MX

\NB=46

NT=69

u=x(J)

CALL PTMCH(U, 14Ky NByNT, IPMX,C2MP)
X1{1)=C2mp
J=X(J)-ComMP

X{Jd)=U

A-13
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NLt September 1966
NSLJS s

TE(U-TJLeX1{1))420,420,410
413 CaNIPINJG
20 1 43)
420 IPMX=]
432 X(J)=x3(J)
DU 440 I=1,12MX
440 X{J)=X(J)eX1(])
ARTIE(5,3207) J,1PMX
ARTTE(5,302) (XL(K)y<=1,1PMX)
ARTTE(S5,9308)
[F(J-NL) 450,450,460
52 J=X3(J)
IFLU) 462,460,455
455 WRITE(5,303) U
wRITE(S,308)
360 U=xI(J)
NRITE(S54910) J,yU
903 J=4-1
IF{J)535,505,20
505 l=Nu+NL+1L
NE 06 J=1,yJvAX
505 X{J)=X(J)#l.=-12
910 WRITE(5,300)
00 FLRMAT(LHL)
01 ForbAT(//7/724X15HF3R CAPACITAR T, 1235H THE L1012,
FL7H CAMPZNENT(S) ARE/)
202 FURCAT(33X £16.38)
JO3 FLORrMAT(/24X14C,12,39H 1S THUS ,EL6.8,
FL7TH MIZRIMICRRFARADS)
304 FUORFAT(//7/724X14HFIR INDUCTIR LyaI1245H THE .12,
FL7TH COMPILENT(S) AREYZ)
205 FORMAT(/24X14L,1243H IS THUS 2E16.8,13H HENRIES, AND)
305 FARMAT(24X234THE INDJCTIVE PART JF Ry12,4H 1S 4E15.8,5H BHMS)
Q07 FOURMAT(//7/24X14HFAR RESISTBR Ry12,5H THE ,12,
FLTH CeMPENENT(S) ARE /)
303 FJORMAT(LH )
J0IF FIRVAT(24X314AWITH AN INDUCTIVE RESISTANLE 2F4F16.8,
FS5H . HMS)
L) FErR™AT(24X1IHR,12,9H IS THUS 4E16.895H DHMS)
920 FuR-AT(I1,4XL511)
RETURN
END
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100
110
20D

252

300
305

310

320
330
34D
35D
362

TR-292-6-078
NLt September 1966
NSLO®6 '

SULBKWUTINL PTMCH(U,T 9 KyNBe NIy IPMX,COMP)
CUMMEN /DATAY TABLE(H9)
NP=

IF(+.7)302,30),100
IF{U-10.)110,110,2020
IF(U~-1.)250,305, 305
U=us10.

NP=#P+1

S0 T4 10D

J=U#*l0.

NP=1P~1

>é4 ¢ 113

NT=-NT

Do 310 K=NHB,NT
IF{TABLE(K)=-J)310,310,320
CBNTINJE

K=NT

IF(rn-NB) 360,360,330
IF{I-1IPMX}353,340,34)
IF{TABLE(K)+TABLE(K-1)~-2.%U) 360,360,350
K=K=-1
CAMP=TABLE(K)2(]1D.%=NP)
J=Us (1), xxNP)

RETURN

END
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NSLO7

BLULK DATA

COMMEN/DATA/TABLE(59)

DATA TABLE/ 1.Dy le2y 1.5y 1.8, 2:.29 2.7y 3.3, 3.9, 479 5.6,

(0] 6e89 Be2y 120y le2y le5y 1.8, 2409 2.2y 2.5y 2.7, 3.0y 3.3

A )‘.b, 3.91 ‘907' 5.3. 5.11 5.6' 6.8’ 7-5' 8.2’ 53.1 100-’200.’

400ey» 80Jey 1403+ 2000+, 500.5 1000., 2000., 4000., 8000.,

A “002.y 80J04y» 1.0y lely 1e2ly 133, 147y 1a62y 1.78, 1.96,

b Cel5y 2437y 2.619 2.87y 3416y 3.48y 3483, 4.22, 4.64, 5.11,
Deb2y 613y 6.81y 7.50, 8.25, 9.09/

—

W o -

A-16



110
180
320

33

22

11

13

l4
12

28
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TR-292-6-078
NLE September 1966
NSLOB .

SUBROUTINE FCON(MAXNDS yNOS KKy JMAXgNMAX g NR g LMAXy IMAX,FoyPTILy Xy
M) CoXGUES»FXyIERRy FXLIMyDFX4X2,PHIP,DX)
DIMENSION IMAX(15)4F(15),FBRG(15),X(15)yDELX(15),C(15),SUM(L5),
UXl(lS)pFX(lS).UFX(15ylS).PSUM(15,15)7P(215:15)vT(215)yPHI(lS)v
[PTRLOL5),FFIL15)y XGUES(15) yLMAX(15)9X2(15) ,FXLIM(15)
IJIMENSTUN PHIP(15),DX(15)

FORMAT(/16H SINGULAR MATRIX/)

FURMAT (5H GRIDzy [4' 3X, 4HN@S=414)

FUORMAT (//29H COMMENCING CONSTANT APPRQACH//)
WRITE (6,320)

TERR=]

DY 1 I=1,NMAX

X{I)=X3UES(])

X1{1)Y=x(1)

[GKID=1

KSWICH=0

LSWICH=0

ANBS=NYS

NS=1{

NRIfE (6,180) IGRID,NYS

KUTTA=1

DY 2 I=1,NMAX

DELX(I)=D.

CALCULATE PARTIALS

D& 3 M=1,NMAX

IF{M=-NR)&,4,5

2{M)=0.

NRM=NR +M

FXAEM)=C(M) X {NRM)+X(M1)

CBNTINUE

DY 10 J=1,IMAaX

SuM(J)=0.

J¥ 11 N=1,NMAX

PSUM(J4N) =0,

FUMAX=IMAX(J)

DY 12 T=1,144AX

Ttlriy=1.

LIMAX=LMAX(J)

D& 13 L=1,LJIMvAX

NK=K(JyI,yL)

TOI)=T(l)=FX{NK)

DY 14 N=1,NMAX

P(I,N)=0.

D@ 15 L=1,LJMAX

\leK(J, I ,L)
POI,NY=PULI,N)+T(I)*DFX(NKyN)/FX{NK)
CALCULATE TaTAL PARTIALS
PSUM{JyN)I=PSIUM(JIyNI+P(I,N)
SUMUJ)=sumid)+T( D)

[F(KSWICH-1)28,29,29

CALCULATE CONSTANT TERM

FURG (J)=SuM(J)

IF(LSWICH=-1)4%0,41y41

GRID=IGRID

IF (FBRG (J)) 50,51,51
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NSLO#
50 FF(J)=F(J)**[GRID/ANBS)* (~(ABS(FORG(J))+2.%F(J)) 2w (1.~GRID/ANDS) )
L+2.2F(J)
33 12 41

51 FF(J)=F(J)»a(GRID/ANDS)*FURG(J)=#(1.-GRID/ANZS)

41 IF(KUTTA-1) 10,411,10

_ 41l PHIP(J)=-SUMIJ)+FF(J)

10 PHICJY)=PHIP())
KSWICH=1
LSWICH=1
SALL SIMEQ (2SUM,DELXyPHI,JMAX,IE)
IF(IE «EQ. 1) G Y2 17
CALL RINKA(XyDELXy FXLIM, PTOL,X2,KUTTA,NMAX)
o Tv(202,43,43,43),KUTTA

200 NS=nS+1

16 D¥ 18 I=1,NMAX
IF(ABSIDELX(TI))-PTALL 1)#ABS(X(1)))18,18,19

18 CZONIINUE
g 20 I=1,NMAX

20 X(I)=X(I)+DELX(I)

21 LU 34 I=1,NMAX
NRI=NR+[

34 FX(I)=C(1)eXINRI)+X(])
NS=1)
LSWICH=0
IGRID=IGRID+1
IfF (IGRID=-NZ3-1) 42,99,99

99 TERR=[ERR+]
RETURN

42 Did 30 I=1,NMAX
DXCLY=X(I)-xX1(1)
X1{I)=X(1)

| 30 X(I)=X(I)+DX(1I)

; B TE 22

3 19 LSWTCH=LSWTCH+1
TFLNHS-KK)24,25,25

24 DY 26 I=1,NMAX

26 X(UL)=X{(I)+DELX(I])
s TY 43

17 WRITE (6,110)

25 N@S=2=(NJS+1-IGRID)
IF(YS-MAXNDS)31423,23

31 Dy 32 I=1,NMAX
DX(T)=DX(I1)#,5

32 X{D)=x1{(I)+DX( 1)
IGRID=1
o TV 33

23 DY 35 N=1,NMAX

_ NRM=NR+N

35 FX(N)=C(N)=X{NRM)+X{N)

36 RETURN

END
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12
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14

15

15

NLt
NSLOw9

SUBRUUTINEG SIMEQ (A,X4ByNy IERR)
SOLUTIBN 4F STIMULTANEBUS LINEAR EQUATIVNS
DIMUNSTIOAN A(LS5415)4X(15),B8015),IND(15)
D8 1 I=1,4N

INuCE) =}

B3 1% K=1,N

SEAKCH ARRAY FOR LARGEST VALUE
[ X=¢

JX=K

DY 3 I=KsN

DB 3 J=K N
IFCABS{A{LJ) ) =ABS{A(IXsJX))) 3,3,2
IX=1

JX=4

CUONTINJE

[F (A(IXyJX)) 594,5
leRe=]

RETUKN

IF (IX-K) 8,846

EXCHANGE ROWS

D 7T J=K4N

TEMP=A(IX,J)
AlIXyd)=A1K,yJ)
A(KyJ)=TEMP

TempP=5{1IX)

BUIX)=8(K)

BIK)=TEMP

IF (JUX-K)} 11,11,93
EXCHANGE CdL JMNS

Do 10 I= 1oV
Temp=a(1,4X%)

Al yux)=4a(1,¢)
A{l,K)=TEMP

INUDEX=END(JIX)
INDOIX)Y=1TND(C)
IND(K)=INDEX

PIViT=A(1K,K)

DB 12 J=K,N

AlKy»yJ)=A(K, J)/PIVET
BIK)=B(K)/PIVET

D4 15 I=1,N

IF (I-X) 13,15,13
TEMP=A(],K)

Did 14 J=K N
A(lyJd)=A(19Jd)~A(KyJ)RTEMP
B{I)=B(I)-B{(<)=TEMP
CONTINJE

DO 16 I=1,N

INDEX=IND(I)
XEIHDEX)Y=8(1)

IERR=0

RETURN

END
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400
500

505

545

560

565

43

NLt
NSLLC

SUBXJUTINE RUNKA(X,DELXyX1,PT2Ly X2,

TR-292-6-078
September 1966

KUTTA,NMAX)

DIMENSIRN X(15),UELX(15)yX1(15),PTAL(15),X2(15)

G Tw (520+520,540,560)KUTTA

Ji 5085 I=1,NMAX
XLOb)=X(1])

XL =XLUI)+DELX(I)/2.
X2(1)=DELX(I)

KUTTA=2

Ga T¥ 43

VP 525 [=1,\NMAX
X{I)=X1{I)+DELX(I)/2.
X2{1)=X2([)+2.%DELX(])
KUTTA=3

Gb Tk 43

DY 945 T=1,IMAX
X{I)=X1{1)+DELX(])
X2{1)=x2(1)+2.#DELX(])
KUTTA=4

GO 1g 43

DB 565 [=1,IMAX
DELX{T)=(X2(I1)+DELX(I))/6.
X(Iy=x1(1)

KUT1A=1

RETURN

END
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SUBROUT INE ESTIM {NMA Xy JMAX NR ¢y NLyNERyTXy IMAX,LMAX ,F,C,FX@RIG,
S FXLIMyFX)
DIMUNSTON FXORIGELS) y FXLIMIL5) 4 X1(15),XP{15)4C(15),FX(15),SUM(15)},
DFCLS )3 TMAXCL3) 3 LMAXELS) y TU215) 4PHILLS) yCHXI1S)T2LI15)
110 FERMAT (/3X3HLX=,16)
NCC=NR+#NL+1
J& 09 L=NCCyNMAX
FXLIM{L)=1a/7FXLIM(L)
FXEIGIL )Y =14 FFXJIRIGI(L )
TEMP=FXJRIG(L)
FXutdG(L)=FXLIM(L)
29 FXLIM{L)=TEM?
IF (ABS(FXIRIGIL)-FXLIMUIL) ) LT.FXZRIG(L1)/10C0.) G2 T2 200
JJ=1
Lx=¢
20 IF (JJd-1) 16,15,16
15 D& 3 J=2,N\MAX
3 FX(J)=eXPUIALBGIFXLIM(J)#FXBRIG(J)))/2.0)
16 D& I JK=1,NMAX
DY 2 I=1,NER
AP=1-1
XNIS=NIR
FXCIK) =FXURIGUIK) #EXP (APRALAGIFXLIM(JK)/FXORIG(JIK) )/ (XNDS—=1.0})
Dw » M=1 y JMAX
SUMIM)==F (M)
IMMAX=TMAX (M)
DE 9 J=1, IMMAX
T{tJi=1.
LMMAX=LMAX (M)
09 10 N=1,LMMAX
NK=K (Mg J, N}
10 TUJ)=T(J)aFX(NK)
9 SUMIM)=SUMIM)+T(J)
8 PHI(M)==SUM(")
APHI=0.
U 11 N=1,JMAX
11 APHI=APHI+ABS(PHI(N))
IF (I-1) 22,12,22
22 IF (APHI-APHI1l) 12,12,13
12 APHI1=APH]
Vd 19 N=1,NMAX
19 X1{t)=FX(N)
2 CIONTINUE
Gy T2 26
13 VU@ 8 N=1,NMAX
28 FX(N)=X1(N)
25 IF (JJ-1) 18,17,18
18 CHX{JK)=ABS{ALYGIXP(IKI/X1(JIK)))
TOL(JIK) =T XeALYGIFXLIMIJK)/EXZRIGIJK) ) /Z{XNZS-14.)
IF(CHX(JK)=-TOL(JK)) 21,21,23
21 LX=LX+1
IF (LX-NMAX) 30,24,24
23 LX=(
30 ARITE (6,4110) LX
17 D& 14 N=1,NMAX
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25

200
201

NLL
NSL11

XP{.)=FX{N)
CeNTINUE
Jd=JdJ+1

Gw 1 20

nRIVE (6,110) LX
Jd £ I=1,NMAX
EXCI)=XP(I)
RETURN

DY 201 I=14NMAX
FX{L)=FX3RIGLI)
RETURN

END
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30

40
50

60
70

80

30
100
901
902
303
934

NLL
NSL12

SUBRJUTING PRYIR(X,CyNRyNL,yJIMAX)

OIMENSTON X(1%),C(15)

NC= OMAX=-NR-NL

¢ 10 I=1,4,NR

NKM=NR+ ]

X{I)=X(1)+C(1)=#X(NRM)

e YU I=1,JMaX

1J=¢

WRklTeE(6,9064)

IF{I-NR) 30,30,40

WRITE(6,901) T,X(])

[J=1

FFL1-NL) $3,50,60

NRM=NR+ [

WRITE(6,902) 1,yX{NRM)

1J=1

IF{I-NC) 70,70,40

NRM=NR+NL+1

NRITE(699U3) Ty X{NRM)

[J=1

I+H(1J4) 90,100,930

CONTINJUE

RETURN
FURMAT{LH43X2HR{ 3 I292H)=4E16.8By2X4HLHMS)
FORMAT(IH437X2HL(, 129 2H)=9E16.8, 2XTHHENKIES)
FSREAT(LH+T3X2HC (4124 2H)=9EL6.892X6HFARADS)
FoORSATULR )

ENU
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NLE ) TR-292-6-078
. NSLLS September 1966

SUBRAUTE N ROUTIR (XyeaJdMAY)
CIMUNSTU Y AULOY N (8C) yRECLE) ZRCILE)CEF(4])
CIMUNSTON A avlie )
RUBLE PRECISTIEN CHEF,RYREA)ZyRTI(40),A(21)40(21)4,C(21),0(21),51(21
1)
COMML /P L2 TR/ RE G RGC G NANUMGNTEN,RZET(RT ) yRZZT1(812)
INTEOGER TwiNTY
INTLGER DLANY
INTEGHR UL D
CATR2 TWENTY i BET722002C0 N0l 1HE/
LATA RLANK/ZLIw /
RERT (Hys ) o,
REACEH,9 1Y HAX
NCEN=T
NNUM= .
O ) J:v".,l/.)
R Y-
1C RC(J)=",
K=90
i & d=1 g ANMAX
20 K=K+1
FF(KECLH0) S T2
IFIN{) o CJRUANK) G2 T3 20
KA=K
HA=7)
3 K=K+
TFAN(¥ Yo L3Nk ) GO 1Y 30
42 V(K )Y="(k)/1T5T41824
AA=10=NA+N(K)
K=K+ |
TFIN(K)Y LT £ T2 4€
ITFIN(YYal 1 aTweNTY)Y GO T 4
45 K=K-1
[EA(N(KA)Yerwatl.C) 0 TO S
REANA+T)=X( )
TEANALOTGNGUR) NNUM=NA
S N BRCA
RCINA+ LY =Y(J)
TFANALCET LT ) NUEN=RNA
63 CZNTINUF
ACC=1.0-17
i 70 I=1
C2er{IY=70(1)
"0 RE(T)Y=2.
FI=NNUM+ |
Le 7% =1,11
I27=11~1
75 RE(Tz+1Y=C0vv (1)
LS 07 I=1,10
77 CAEF(I)=00(1)
L2 ED 1=1,8"
RV T O U T
80 Red T1(1)= .
CALL DTP LY NUMGUTOFF 34 yACCRTRZPTT LNV A1 CylyE)
S22 G I=1 iU

1921
]
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Iy

NLE
NSLLS

[K=1nl
REDTCEk=1)-208(1)
REDTCOIR)Y -1 b Ch)
U LN
GPtb Ly =2e(l)
e ) -

L1 =NLCTN¢L

S 1=i,11
1e=11-1
FCLTIz+1)=Cukt ()
b2 98 I=1,106
CoLrery=-0Cen)

TR-292-6-078
September 1966

CALL RTPILY (L LEN COULF 34C yACC,RTRZRTEHZCENVsA,L9CysDyE)

O 100 T=1,NION
[K=1=2
PRETIIK=-1)=2T2(1)
AT IOIRK)=xTI(])
PETUPT,

rORMAT(CE AL)
FORMAT (L &)

FND
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201

301
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NL*+ September 1966
NSL14

SUBRSQUT INE ARDEN

FREWUENCY RESPYWISE PRYSRAM

DIMENSTON X(150),Y1(150),Y2(150),Y3(150),XLAB{12)
JIMENST N FST4043)yGS{4Cy3) 4 FA(4042)+,028(40,21),

LR¥e1{8d), FM{40),FP(40),GM(40),06P(40),RAZTL(80),
¢BCDIRQUL12),BCDAMP(12) ,8CDPHZ(12) 4 XFREQ(L50),YAMP(150),YPHZ(150)
DIMENSTIN BEDMAG(L12), YMAG(150) 3 YIMAP(150),KRUSS(150) KRAS(150)
DIMINSION XTPS(150),8CDCPS({12)y F360(40), G360(40)

DIMUNSTZN SATF(40),SATG(40)
DIMENSICN RE(16),,RC(16)
COMMUN/PLETER/RESRCyNNyNDyRZEZT,RAUTL

REAL MSQ
DATA BCDFRQ(1)/72H FREQUENCY IN RADIANS/SECEN
r
XSAIA vCOAMP( L)/ 72H ’ AMPLITUDE IN DECIBELS
KUATA BCOPHZL)/T2H ’ PHASE ANGLE IN OEGREES
XUATA BCOMAG(L)/ 72H ’ AMPLITUDE=- GAIN
XDAIA BCOIPS(L)/72H ’ FREQUENCY IN CYCLES/SECR2N
X0 /

[F{"N=ND JEde 0) RETURN

REAU(Sy 1) TCPS,NSTPSy FROQMIN, FRQMAX, DBMIiN,
RDBMAX, AMPMI{, AMPMAX

FARASATIIL44%,1545F10,5)

IF((ERUMAX-FROMIN) .GT .. 0001)G3 Ty 1061

FRUMAX=25.

FRIMIN=.DUL

ni=t RUMIN=6.2832

nF=t RQUMAX®6,2832

[F{{UBMAX-DBYMIN).GT..0001)Gg Ty 201

DBMIN=-60.

DbMAX=40,

[IFC(AMPMAX-AMPMIN).GT..0001)G2 To 301

AMPMIN=,0ul

AMPMAX=100.

ICAI-=0

[FE.STPS.EQ.0)INSTPS=25,

NSTEPS=ALEGLO({FRIMAX/FRQMIN)

NSTEPS=NSTEPS«NSTPS

KDU:» =0

KdLiz1=D2

KgLi2=

100 LINtS$S=50

KTR=40

D 200 I1=1,40
FS(I,1)=0.
65(1,1)=0.
FS(1,2)=0.
GS(142)=0.
FS(1,3)=1.

200 GS(i,3)=1.

[PBINT=0
WRITE(5,1540)
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KPLLT=1
I (ILAM) 0,y3,6
3 1CAM=TCAMEKP LT
fEieaM) Hy6,9
5 CALL CAMRAV(935)
6 CUNIINJL
260 N=N%
wRITE(S5,270) NN
270 rURMAT(/33X,26HTHE NUMERATZR IS OF DRDER 412,
L42H. THE PLLYNOMIAL IN DESCENDING BRDER BELBW//)
FACTF=RE(])
L=NN+1
WRITE(6,280) (RE(I)yI=1,L1)
280 FURMAT(34X,4E16.8)
ARTITE(5,310)
310 FURMAT(/33X,14HTHE R3IBTS ARE-)
ARITE(bE,320)
320 FURMAT(34X,9HREAL PART,8X,10HIMAG. PART,10X,9HREAL PART,8X,
110HIMAG. PART)
N=Niy#*2
WNRITE(59340)(RS2T(I)s I=1,4N)
360 FORMAT(33X9E12.5)5X9E12.59y8X9EL12.595X,E12.5)
370 I=1
375 J=1+1]
F36u{l)=2.
K=d+d-3
IF(.-J+1) 901,400,380
380 IF(kguT(K+1)) 382,381,382
381 FS(143)=ROCTIK)*RIZT(K+2)
FS(142)==RAJITIK)-RZBT(K+2)
30 G& Ty 383
382 FS(1,3)=REATIK)#RZIT(K)+RAIT(K+L)#RIZT(K+]1)
FOUI432)==2.#REIT(K)
383 FS(I,1l)=1.
[=1+1
Ge T 375
400 FS{I,1)=0.
FStl,2)=1.
FS({143)=-RBATI(K)
00 CUNTINJE
910 N=Nu©
WRITE(6,920) NO
320 FURMAT(/33X,28HTHE DENDMINATZR [S @F JRDER ,12,
142H. THE PYLYNZMIAL IN DESCENDING URDER BELIW//)
FACTG=RC(1)
L=Ni+1
WRITEL6,280) (RC(I),1I=1,L)
WRIIE(E,310)
WRITE(6y320)
N=iil:®2
v 935 I=1,yN
335 RYLTII)=R2TLI (1)
WRITE(6,340)(RIJT(I),y I=1,N)
9370 I=1
380 J=1+1
G36C(l)=0.
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o

990
391

180
392

233

1000

1200
1201

3202
3203

3204
3205

3206
3207

3208
3209

3210
3213

3214

3222
3223

3224
3225

3226
3227

3228
3229

3230
3233

Lo
NSL 1«

K=J+Jd-3

[F{=J+1) 1200'1000,990
TE(EeT (K+1)) 992,991,992
GSUI1,3)=R JdT(K)liﬂ&T(K+2)
CSU192)=-RIYT(K)-REZLT (K+2)
Go T 993

bS(l,3)-%0&((K)*Q?JT(K)+RJGT(K+1)*RUUT(K+1)

GS(142)==-2.8902T(K)
GSli,1)=1.

[=1+1]

G Ty 980

GS(l,1)=0.

G6S5(i,2)=1.
GS(193)==-ROITLK)
ARITE(O6,1201)

FurRrFAT(1X)

PHALE CHECKER L22P 3200 THRU
DY 3234 [1=1,CTR

I (FSCI,1)) 3202,3205,3202
IF (FSUI,3)) 3210,3203,3208
FSE143)=a8BS(FS(I,43))
IF(ES(L,2)) 3213,3204,3207
FS{1,42)=aBS(FS(1,2))

G T 3207

[F(tS(I,3)) 3207,3206,3207
FSUI43)=a8S(FS({1,3))
SATF(I)=+1.D

F360(1)=0.0

Gd L 3214

[F(rS(I,2)) 3213,3209,3207
FSUI92)=a0S{rS(14+2))
SATE(TI)=~1.9

F3oull)=+¢1.0

GJd 1w 3214

[F (FS(I1,2)) 3213,3204,3207
SATHE(I)=#+1.0

F360{I)=+1.0

CONTINJE
[F(LS01,1))3222,3225, 3222
[F{GS(I,3))3230,3223,3228
GS{14+3)=aBS(GS([,3))
ITE(0S(1,2))3233,322443227
GS(1+2)=abSIGS(1,2))

Gy Tw 3227

IF(LSUE3)) 3227,322643227
GS(143)=aBS(GS(1,3))
SATOG(I)=+1.0

G36.(1)=0.0

G2 e 3234
IF{US(1,2))3233,3229, 3227
GS(1,2)=a0S(GS(1,2))
SATG(I)=-1.0

G360L(I)=+1.0

Gy Tu 3234 ,
IF(GS(1,4,2))3233,3224,4 3227
SATL(L)=+1.0

3234
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3234

1230
1240
1245
1250
1260

1270
1280
1290
1300
1310
1320

1321
1330

1335
1340

1350

1360
1500
1520
1530
1540

1550

1560

1570

1580

1590
1500
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G3o()=9¢1,0

Gl L

SEEES=NS T PY

TECaSTEeS) 1230,7000,1270

WRIIL({G,1240)

FORSALL/ /730X 2THNUMBER JF STEPS IS NEGATIVL)
SALL GETOUTULICAM)

ITFINSTEPS.NELL) GO T2 1300

W=wl
AS55IGN 120C T@ IFFY
GY ¢ 150u

It(w1) 1280,1280,1250

WRITE(6,129))

FORMFAT(///30K0444INITIAL OMEGA IS EQUAL T8 YR LESS THAN ZERZ.)
58 1Jd 1245

[F(nwt-WI) 1310,41310,41321

MR1ITE(6,132D)

FARPATL//730Xy42HFINAL UMEGA EQUAL TP 2R LESS THAN INITIAL.)
Gd 1¢ 1245

NUMPTS=STEPS+].

XX=ALWS (W)

YY=ALEG(WF)

ZZ=(YY-XK)/STEPS

Wl
ASSIGN 1340 T# [FFY
Gé Ty 1500

STEPS=STEPS-1.

IF(STEPS) 12304,1360,1350
XX=XX+2/7

W=t XP(XX)

Gd 1 1335

W=wi

ASSTLN 20uUD Tv IFFY
IF(LINZS=50) 1560,1520,1520
ASSIGN 1560 T JIFFY
WRITE(L,1540)

FURGAT(LIHL)

ARITE(6,41550)
FORMAT(/ 32X, 41HAMEGA-RAD/SEC F-CYCLES/SEC AMPLITUDE )

L24H 20L475 AMP PHASE-DEG/ /)

LINi 5=0

Gd T JIFFY,(1560,1720)

NSLU=WeA

ANST AG=FACTF/FACIG

ANSPHI=D W

J¥ 1650 [=1,<KTR
FUllsl)=FS(I,43)=FS{I,1)%WSQ
GUlIsL)=6GSTT,3)-GS{I,1)#WS5Q
FO(Lly2)=F5(1,2)nW
Gli42)=GS{1,2)nW

MSW=FEZ(T 1) *FALI,L)4FU(1,2)%F2(1,2)
[F{+SQ-1.) 1580,1590,1580
FMT)=SQRT(MSQ)

a9 TY 1600

FMUL)=MSQ

MSG=0GL2(T L) 2GB(I,1)+4GA(1,2)*G3(1,2)
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1610
1620
1630
1650
1660
1670

1680

1700

10

20

30

1710

1720
2300

2005
2018

2020
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[F{:SU-1.) 1610,1620,1610
GM{1)=SQRTIM5Q)

Gl Vo 163C

GM1)=MSQ
rP(l):SArF(I)-AIAN?(FM(I,Z),FUII,I))+F360(X)'6.2831553
GP(l):SAru(I)!ArANZ(GM(I,2),GZ(I,1))+G360(I)*6.2831853
ANSHAG=ANSMAG*FM(T)/GM(])
ANSPHZ=ANSPHL+FP(I)-GP(])
FUPS=W/6.2831853

[F(ANSMAG) 1560,1670,15670

ABS anNS=-ANSMAG

GO T4 168y

ABSANS=ANSMAG
EXPMAG=20.%ALJGLO{ABSANS)
ANSPHZ=5T7.2957T795#ANSPHZ
WRITE(S,1700) WyFCPSyANSMAG,EXPMAG,ANSPHZ
FURMAT(Z?X,5F14.5)
IPYUINT=1PLINT+]

KRISCIPIINT) =0

KNEwl=0

KNEw2=0

IF{ANSPHZ.LT.0D.) G2 T 20
ANSPHL=ANSPHI~360.

KNEwl=<KNEwl+l

ou te 10

[F{ANSPHE Gl o=-360.) G T2 30
ANSPHI=ANSPHZ +360.

KNEwZ=SNEw2+1

o Tk 20

TR OKNENL e NE« COLD 1o IR KNEW2 . NELKZLD2)IKRBS(IPRINT) =1
KeLi1=XiNEwWl

Kdli2=XNEnw?2

YPHZ (TP InT) =ANSPHLZ

XER: QUIPoINT) =W

XKCPS{IPSIRT)Y=FCPS

YAMPUIPOTNT) =EXPMAS

YMAGIIPCTIIT) =ABSANS

LENCS=LINLS+]

IF(LINES=-50) 1720,1710,1710
ASSIGN 1720 T¢ JIFFY

G Tw 1530

GY 16 IFFY,(1200,1342,2000)
TFIKPLYIT.cQa)) G4 TB 100
NPECINT=IPQINT

CONTINJE

[FCICPS.NLLO) G Te 2100
FRUMIN=WI

FRIFAX=WF

I=0

J=0

I=1+1]

IF(T.GT NPZINT) GO T2 2200
IF(XFREQII)CLTLFRQUMIN) G2 T2 2020
IF(XFREQ(I).GT.FRQMAX) G2 T 2200
J=Jd+1

X{J)=XFRLW(I])
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erOO

2120

2200

2210
2220

2230
2240

33993

NL &
NSL14

Yi(Jl=yPHZ(1])
YIMAP(J)-45.¢.252Y1(J)
KRISS(J)=KRYIS (1)

YZUJ)=YAMP(])

IF{Y2(J).LT.DBMIN) Y2(J)=DBMIN
[F(Yo(J).6T.DBMAX) Y2(J)=DBMAX
Y3(Jdi=yMagtl)
IF(Y3(J)LT.AMPMIN) Y3(J)=AMPMIN
ITF(Y3(J).GT.AMPMAX) Y3(J)=AMPMAX
G T¢ 2020

~
%

I
J
I

oHou

2
[+

IF(I. bf NPZINT) G2 T2 2200
[F(XCPSOI)CLT.FRQMIN) G¢ T2 2120
IF(XCPS(1).6T.FRUMAX) G¢ T@ 2200
J=J+1

X(J)=XCPS(I)

YLUJ)=YPHZ(1)
YIMAP(J)=45.+.25%Y1(J)
KRwSS{J)=KRIS (1)

Y2(J)=YAMP(I)

[F(Y2(J).LT.OBMIN) Y2(J)=DBMIN
IF{y2(J).6T.0BMAX) Y2(J)=DBMAX
Y3(J)=YMAGI(I])
IFOY3(J) LT AMPMIN) Y 3(J)=AMPMIN
IFLY3(J).0GTAMPMAX) Y3(J)=AMPMAX
Gu 1w 2120

NPHRTS=J

IFCICPS.NELD) G T3 2220

DR 2210 1I=1,12

XLAoL(I)=bC0DFRQ(T)

ol Vs 2240

O 2230 1=1,12

XLALT)I=8CDCPS(T)

CALL QJKLGI(=-1,FROQMINyFRAMAX3-360.90.9429XLAByBCDOPHZ ,NPNTSyXyY1,
X KRLSS’l,lyOyl-llOo)
CALL QJUKLGLI(-1,FRQMIN,FRQMAX,DBMINyDBMAX 1423 XLAB sBCOAMP yNPNTS,X,yY2

"\KﬁSS]O,lyO’lc’lD.)

CALL GQUKLGLI(~-1yFRQMINyFRQMAX3AMPMIN, AMPMAX,42,XLA3,8CDMAG,NPNTS, X,
X Y3yKRQSSvO'171,1.,1-)

CALL CLEAN
RETURN
ENU
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SUBRuUTINE GZTOUT(ICAM)
FFOICAMONELD) CTALL CLEAN
CaLt EXIY

Rt TURN

ENUD
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20

120
110

140

162
144

I 146
150

10
11
13
12

230
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SUBHKEUTINE QIKLGLIL,XL,yXR s YBy YTy ISYMyBCODXy5CDY 9 NP 9 Xy Yy NOLINE,
X [TO8REAC,MX, MY, DX DY)

PLUT L26G-LUG BR SEMI-LYG

DIMENSTEN X(300),Y(500),B8CDX(12),8C0Y(12),NOLINE(500)
FF(L)22,200,100

Li=1

Ge g 110

Ll=

NCX=T72

NCy=72

JCX=10.

DCY=10.

INCRY==14

CALL MARGIN(L,ICY)

[X=%264-4%iCX

Ly=ICY+/7=CY

G e (14241%4,146),L

[Yl=y ¢

6¥ 1w 193

IYI=]CY¥-253

GU Tw 15D

[Yl=1C¥y-169

NX =9

NY=9

CALL SMXYV{MX,MY)

DC=10.

NYY=4

H—(*Y)ll.lO,ll

CALL DXDYV(2,YB,yYTDY yMyJyNYY,DC,ERR)
IF {(MX) 1lzs13,12

CALL DXDYVI{lyXLyXRyDXyNy I4NXXyDCyIERR)
CALL GRIDIVILY XLy XRoYByYTyDXyDY yNyMyI,yJdyNXyNY)
CAaLL PRINTV(NCX,8CDX, IX,1IY1)

CatL APRNTV(O,INCRYNCY,BCDY, 0, 1Y)

e +70 K=1,4NP

NXL=NXVIX(K))

NYL=-NYVIY(K))

IF(KetbUel)G2 T3 22D

IF(TOREAX.EQ.O)GY TP 210
[FOLGLINE(K)NELD)IGY T2 215

CALL LINEVINXONYO,NX1l,uY1)

CALL PLITVINX1,NY1,ISYM)

CeNIINJE

NX=NX1

NYO=iNY1

CONTINUE

Rt TURN

END
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APPENDIX B
SUBROUTINES

A description of the operation of the MAIN program is provided in
subsection 3.1. The discussion which follows in part B-1 provides a brief
description of each of the subroutines used in conjunction with the MAIN
program. For convenience, these descriptions are arranged in alphabetical
order as opposed to sequential order of use. In part B-2, a discussion of

internal routines is provided.

B-1. DESGCRIPTION OF SUBROUTINES

ARDEN

This subroutine uses the complex roots obtained by ROOTER to compute
the magnitude and phase angle of the complex quantity N(jw)/D{(jw) for the

values of the frequency specified to it.

BLOCK DATA

The block data routine contains the necessary decade tables for CMPSEL

and PTMCH.

CMPSEL

This subroutine utilizes the technique presented in subsection 2.4 to
select the approximate components corresponding to each root. The relation-
ship between inductance resistance and inductance is taken into consideration.
External input to the routine consists of a control digit, specifying whether
or not to select components and plot the transfer function, and a maximum

number of components allowed for each variable.

B-1
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EQPRT (Equation Printer)

This subroutine prints out the set of equations specified to the program
In terms of resistance, inductance, and capacitance. It compares the units
of each term in a particular equation to the units of the first term of the
equation, and gives an error message if the units do not agree. 1If more than
five error messages occur, the subroutine prints the following equations, and
then stops execution. A term number is printed out under each term for easy

reference.

ESTIM (Selection of Initial Estimates)

This subroutine is a technique for obtaining a set of initial estimates
for the variables. The range of interest and the number of increments to be
taken for each variable are inputs to the subroutine. The variables are
first given the value of the logarithmic mean of their respective ranges.
Each variable is then varied in turn over its range, according to its number
of increments. The variable is then given the value which causes the equations
to be most nearly satisfied, and the next variable processed. The process
is repeated until an increment or decrement in any variable will cause the
equations to be less nearly satisfied. The set of variables is then returned

as the initial set of estimates.

FCON (Constant Approach)

This subroutine applies the Freudenstein-Roth Method in conjunction with
Kizner's method to the set of equations and unknowns. It differs from the

main program in that it increments (or decrements) the constant term associated

B-2
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with each equation, rather than a coefficient of one of the terms. Experience

has shown this method to be superior to the coefficient approach.

GETOUT

If a severe error results in ARDEN, this subroutine is called to turn off
the cameras (turned on for plotting in ARDEN)and to stop execution of

the remainder of the program.

INTEGER FUNCTION K

The method used of storing equations involves storing the subscripts
of the unknowns in positions that are a function of equation number, term
number, and factor number. The rather standard method of storing the unknown's
subscripts is by storing them in a variable with three dimensions. However,
unless the equations all have the same number of terms and factors per term,
this practice can lead to much unused (and needed) storage. A method was
found to store these subscripts sequentially, using the previously used
dimension variables to define a single subscript in the sequential storage.
The function K is used to determine this subscript, and thus the desired
unknown. In the case of the 15 equations and unknowns presented in this
report, it reduced required storage for the equations from 24,000 to 6,000

words.

PRTR

This subroutine prints the roots obtained by the main program and FCON.

This print routine was made into a subroutine that could be "overlaid" for

additional storage.
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PTMCH

This subroutine does the actual component matching for CMPSEL.

QUKLQL

This subroutine plots the results from ARDEN using the SC4020 plotter on
both microfilm and paper. The various options available allow the specification
of the frequency range and the upper and lower limits of the amplitude plots.
Upon exit from this program, control returns to the main program for further

attempts at obtaining solutions to the set of equations and unknowns.

READK

This subroutine reads in the subscripts of the unknowns for each term of

each equation. ;

ROOTER

As the equations may be input in any order, a method is necessary to

specify to which powers of s in N(s) or D(s) (the numerator and denominator poly-
nomials of the transfer function) the various constant terms belong, in order
that the root plotting subroutine may have the correct transfer function.

ROOTER does this, reading in the specifications off one card. ROOTER also

obtains the complex roots of Nfs) and D(s) necessary for the root plotting

subroutine.

RUNKA

The Runge-Kutta integration necessary for Kizner's method is performed

in RUNKA. The subroutine is called four times for each integration.
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SIMEQ (Simultaneous Equation Solver)

This routine employs the Gauss-Jordan technique of reducing a matrix by
the pivotal method. The matrix is the Jacobian matrix of the set of equations
to be solved. The values of the unknowns used correspond to the current
estimates. The largest element of the matrix is sought and, should this

largest element be trivial, an error message is returned and printed out.

B~-2 INTERNAL ROUTINES

The program makes use of several subroutines available on the 7094 library
tape. These decks include POLRT, LOGB2, and the SC 4020 plot routines.

These subroutines are included in the overlay structure of the program.
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APPENDIX C

OVERLAY FEATURE

The complete deck, dimensioned to be able to handle a set of fifteen
equations and fifteen unknowns, uses approximately 41,000 words. The IBM
7094 at the MSFC facility can store only 33,000 words. This obstacle was
overcome by use of the overlay system, which stores the subroutines on a
systems tape. The subroutines are then loaded into memory only when needed,
and thus several subroutines can share the same storage locations. The major
restriction to this system is that one subroutine cannot call another sub-
routine that would cause the first to be overlaid. The system is used by
specifying with a $ORIGIN card the mnemonic or absolute storage location
that the first command of the following subroutine is to take. All following
subroutines and internal storage areas, such as input/output buffers, are
loaded sequentially until the next $ORIGIN card. A schematic of the overlay
system used for this deck is shown on Figure C-1. The two mnemonics used

are ALPHA and BETA.

It is suggested that the user make no attempt to rearrange the sequence

of the deck, to avoid the accidental overlaying of a portion of some subroutine.
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FILTER CIRCUIT WITH SIX UNKNOWNS

D-1 Circuit Diagram

Yi = R1 YA = L1
Y, =Ry ¥ =L,
Y, = R3

D-3 Transfer Function

6

R
2
) R3
L2
Y6 = l/C1
4 2

1.2 x 10s +1.6 x 10's

T =

3.4 x 107

6

+ 8.4 x 10% + 1.64 x 10°s2 + 8.0 x 10%s

52 3
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D-4 Example Inputs and Outputs

Two input samples and the outputs which resulted from them for the set of
6 equations M 6 unknowns are presented on the pages which follow. The plots
from the frequency-response subroutine are included only with the first case.
The range of interest of the unknowns in Case #1 is identical to that presented

on page 35 in reference 1.

Case #2 presents an identical run, except that the range of interest of
the unknowns was set equal to the maximum and minimum allowable values for
components, as presented in Table 2-1. This was done to demonstrate the
strength of convergence of the program. For brevity, the input items are
listed without FORTRAN symbols, and the plots resulting from the roots obtained

have been omitted.
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EXAMPLE INPUT AND OUTPUT

FOR SIX EQUATIONS AND SIX UNKNOWNS

Case #1

D-3
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‘45 FALLAWING IS THE LIST OF LQUATIBNS SPECIFIED T¢ THE PRUGRAM
4z FORMAT [S.... EJUATIUN NUMBER
TERMS ¢F EWUATIANS (THREE PEK LINE)
' NUMBER LF EACH TERM

A THECK IS MADE ¢F THF UNITS OF EACH TEIM. IF THE UNITS DIFFER
IN AN EQUATIYN, AN ERRUR MESSAGE RESULTS

EQUATION 1

Ll L2
[ 1
r
EQUATIEN 2
R2 L1 + 23 L1 + R1 L2
1 2 3
}
|
3 L2
, 4
EQUATIZN 3
L2 + R1 R2 + R1 R3
cl1
1 2 3
R2 R3
4
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EQUATIAN 5

R3 L2

EQUATI 4N 6

R2 R3



IRPLT CATA

) MAXINLNM N W 2F STRES 170
NUMEZR 2F STERS oE
TINES THRILCE RUNGH KLTTA 2
) Co2hSTANT TERNMS
. TeBLIIECL T TLMEATOITUE Ce L BA3TGT LE W1
) RANCE KPR VAR [ARLTS
FXzes
£o100.07 o7 3 meltene s, o3 ol 0nCurrE (3 VS
FXLIN )
FolCr. rire ¢ T [ JIFCCCANCE Cé el
THERE ARE & EGUATIENS ANC & UNKNCWNS,CENSISTING 2F 3 RESISTAN
THE LZWER BPUNCARIES FZR THE RESISTANCES, THE INCUCTANCES, AND T
AND T ,107CT7rrE~]r, RESFECTIVELY, wHILE THEIR UPPER BEULNCARIES
- )015 ”’ § f' E to RT_SP‘?LTIVFLY. e — e
Lx= 1
Lx= 2
Lx=s =
LX= 4
Lx= =
LX= ¢
VARIARLES : :
~LIrTr e 2 S T et “eGSGSSSSLE L4
C2VMNENCING CRNSTANT AEPRYACH -
GRIC= 1 N2S= :3
GriC= 2  NgS= :<
GRIC= 2 fngS= 3%
GRIC= 4 hgS= z¢
GRIC= &  Ag<= ;s
GRIC= €  ANCS= .=
GRIN= 7 AgS= 25
GRIC= B  ANgS= 23
GRIC= S  ANgS= :€
GRAIC= 1%  NzS= 2%
GRIC= 11 ANgS= ;s
GRIC= 1z Ni¢S= :°
G21C= 13  NgS=  Z¢
GRIC= 14  “iS= z=
GRIC= 15  NiS= 23
GRIC= 1# ApS&= 7=
GRIC= 17 17S= o= o _ o )
GRIC= 18 ANif= :t
GRIC= 1S  ANys€= 3=
GrRIC= 2o Ng<=z  z®
GRIC= 21  AgS= 3%
GRIC= 22 AN2S= ;5§
. GRIC= 22 ngs= z¢ 2. oo
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VIPSUNTNE G2 Seli0

0.0CCE-Q4

LCCLEIE U5 Le120C700 JE-C1

E(S)yANC 1 CAPACITANCE(S).

2e24TCCCGRE U2,
LBy we3500000LE 33,

U.50000CCOE-C4,
ANC

. «$S599998E 03

D-9?’ 12”’

-dd

“

X



GRill= 74 Net= o=
GRIil= 25 AN

ALL Re7TS IN 0ES FOLLZWING SET LIS wWITHIN THE PRYSICAL LIMITS SP

RL 2= «cS25€L.28 T4 PFNMS LU 1)= [ J2BU8€E2ZE U2z HEN
R{ ¢)= e 213624757 T4 ZFNS LU )= Le2B4B33LZ2E L2  HEN
RE{ 3= "26LT32628 03 ZENMS

O—0-)
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FORCCAFACITYR € 1 THF 2 CUNMPANUNT(S)
TLERCTEe

< ~o . .
| AP AR AR A OF BT

ARFE

LIRS A MICREZMICREFARACS

~
A C

FOR INCLCTS™ L 0 THE L CEMPUNENT(S) ARE
N L Ceg8OLOCCEE N2

L 2 IS ThLsS SCECTLUTUE 2 HENRIES, ANC

' THE INCUCTIVF FART LF R 2 IS e 28T TIUETE L2
|

i

U . S
FER INCLCTY= L1 THE 1 CZVPONENTIS) ARE

‘ CL7ETLCOINNE 0

LY IS TRLS uzgerrotee oo I
LTFE INCUCTIVE PART ¢F % 1 IS CZETTNLTRE t 2

F2R RESISTLN o 2 T} CAMPONENT(S) ARE
| PR B Bt I

TGLELTE T T
rﬁ‘ﬁhrh”#rLﬁ' CLFE796555E 7 gRMS

FER RESTST2= 2 ° THD 2 CEMPINENT(S) ARE
e - fTeiSETTN0 TR T4
LaTITENNE T

WITE AN INPULCTIVT RESISTANCE

- ’ -~ ‘,\"‘ P g
“F uoafp."\.x._r..',t

R 2 IS THUS CZ12E0S R M4 PEMS

|
t

FER RESISTOR B 1 Th- 2 CZMPANENT(S)
TeFETILLCCT L g4
L1370 E 8

ARE

WITE AN

INCUCTIVE FESISTANC, oF .28 07r¢
RO1 IS THLS U .082107°0e ~y 0pvs

YEMS

AHMS
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Tel 6072371

| THD Re°TS apr-
AEAL PaPrT
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Cedrariincs:

THT KESTS A%F-
REAL PART
P TN

=Ltk

tab )

o -‘4

)
|
|
|

r~

r

>4
o

THE CENYMINATER IS

2

116l 495E C7

IMAGS FART
Tl E-28

Dol { kE=2¢

REAL PART

Cel(ri f=3¢

CF JRCER 3. THE PZLYNEMIAL IN

“elElELZ4TE €

IMAC, FART
Tl T E-24

CW(lLILE~-28

NeB83€624ET74C "7

REAL PART
~2412162E

L
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CTHE NUNTRATER 1S OF CRCER 24 THE PELYNZMIAL IN CESCENUING gRLEK of

_INAG. PART

t 0“‘.03\ t.".-:f_‘
CESCENCINC CRCER

1345175488 (&
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CNECA-RAF/SEC F=CYCLES/SEC AMPLITURE  soLge ave PHASE-CEG

~ecHRLY 17 et 216G -=23.53676 ~57.0423C
5-55C19 le75648 t1efJ1E8T ~74,48554 =55.76¢22

Tel a7 1.2.2217 Uel17€6 ~25..€6258 -tZ2e42€ET
| | :
Eeult (‘7 . . IQEL&ZC L Q-Clilfz_ - -2Se€€ 8&l =€2 QCL367_

Q,rH15¢C leb4t44 1471821 -36.3.117 =67.52C¢%5
QeCm2r eSH4G ., 1e0 1416 ~3€495777 ~-£5.54386
17.61x6¢ le73780 YeT1212 =37.£63555 ~T12.2832¢4

11.67225 1.5 54¢ Geflz12 ~26.23342 ~74.54123
113.1/74& JELTEN HeC1116€ ~35.L4HTS -76.72227
CL4e23268 2425781, c.€lU2E. . =3G,77754 __ =78.8331

15,78 208 2451185 V.CCS42 -47,52144 —8L.88212
17.2 527 2.7542: 4eCTEED -41.27715 -8z.8788"
18.6749¢ . 155¢ (.CCT52 ~42.06354 ~84.82374

AN SRR 3.3113: UaT0u123 ~42.820G¢ -9¢.75¢828
2leu17S2 b2 TG O.Cneen “42 L ENT R ~FRR G FELTT
25.7139¢ 2eGRLIRE . LbefCGEL2 | ~44,47358 . -S51,5€4.5
cTet2716 44,3677 e (549 45,2887 -3Z.,46668
2T LLT70F 4e78A3] LeUETT ~qbhelg220 ~94.,35458
L 2745745 C s "45'9 teCiigsE -44.E64818 =GE,35023
25415677 Celhtg] J.CC413 -—47.€683¢3 =Gt e34867
23447 te2 G55 L eIN2TS ~48403094 =l l.4 2258
L 42,46901 oo 6918200 N ,T0326 m45429120 0 -licl.B20€7
47 efkr 262 T58E76 v.233f7 =Sl e2670 ¢ -1 4.712¢67
Dlef1 7 2 4176 3.5?277 =2le195%4 -1 ¢.588E74
ETeZ Z4® GelTi | {245 =Lde 7130 =179,2816¢
PeE2etzz! ) R 224 ~HRLTUN4GE -l1l.80z32

| CEMMENCING CPERELICIENT AEEREACK O

GRIC= 1 NvS= ¢+
GRIC= by Ny S= 8
| GRIC= 2o NL=s e S e
GIL= 4 Ny <= P
GRIl= 5 NP S= NN
GRrIC= & V= 5
GRIC= 7 Ni&= ok
GRIC= £ NifS= -3
GRILC= 5 Nis=  of - e
GRIC= 1" NeS=
I GRIC= 1] Ngs= 3
GRILC= 17 Ke=
GrRIC= 12 NPS= -
 GRIC= 14 NesSs= o
CRIE=_ 1% NECS= o - e
GRIC= 1+ Pe= 0w
O S .

]
x
pu—t
[ww]
"
r—t
~
d
~
it
.
il AT

GRIC= 1# NES= ‘
GRIC= 16 Nes= o
GRIC= Z Nize= 7=

Z P
GRIL= 21 NGS= i o -
GrIC= 372 NeS= 75
GRIC= 722 Npss 8
GRIC= 24 NyS= s
GRIC= 25 NgS= 2z



ALL U?V}gm

i — o ot 2+t e

IN THE FALLZWING

SET LIE WITHIN THE PFYSICAL L

IMITS SPE

Y 1)z ".2E3€14K7 T4 PENS LU 1)= . J287BE€B3SE 2  HENF
G D)= WZlTELST i 4 7ENS LU 2)=  “o284873GSF o> HENE
R(_ )= €173 7.7 03 pENS

COMNENCING CLEFFICIANT

AFFRZACH

<
<
g
<
. GRIC= 15 AZS= o
GRIC= 1& NiS= ¢
GRIC= 17 AS= ¢
GRIC= 18  NpS=  ©
GrIC=_ 1S  ANES= ¢
Gairc= 27 NfS=
Gx1C= 21 ¢s=
G:I0= Zz  A7S= [*
G2IC= 23 Ags= ;=
GRIn= Z4 N S= P
G2IC= 25 ANgS= ==

GRIC= 1 NgS= ¢¢F
GRIC= Z NgS= 22
GRIC= 3 \NPS= (F
GelIC= 4 hiS= 25
Gril= 5 hgs= [
GRIC= ¢ NgS= ZE
Gr1iC= 1 NeS= 23
GRIC= € NoS= ;5
GRIC= S NPS= D
GRIC= 17 NES- ZC
GrIC= 11 NEL= ¢f
GRIC= 12 NvsS= 1=
GrIC= 13 NZS=  Z5
GRIC= 14 28= U=

[

THE F2LLZnINGC SET LIE WITFIN THE PRYSICAL LIMITS SPE

R{ 1)= T ecE25€1C1 ENMS Lt 1)= (e2828€541F €Z HENK
R{ Z)= T e 13€72045 Z+N~S t{ 2)= T e284822G4F 07 HEANR
R{ 2)= T eate17270 51 ZrNS
C2MMENCING Ce*FFICIENT FFPPACH |
GRI[= ] NPS= <=
GRIr= z Ny i= e
GRI[= 2 AP S= . 8
Grllf= 4 A <
_ Q? It= £ MNP C= & e ) e .
p-1Y = [
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)
GRIL= ¢ NS ZE
GkIC= 7 N7S=  z®
GRIP= & Nys= g8
‘ GPIL= S AgpSs e
GUif= 17 NpS= (s
LS Do § W VS CS )
Gelf= 12 NgS= .8
G21C0= 13 NeS= o 23
GRIC= 14 NgS= =
GRIC= 15 NYS= 258
GRIC= 1¢ NgS= 5
_.GRIC= 17 NgS= Zs ﬁ
GRIC= 18 NgS= 25
GRIC= 1% NeS= 26§
GRIC= 2¢ NES= 25
GrIC= 21 AT
GeIC= 2z2 N2S= - ;s
' GRIC= 22 ApS= o3
| GRIC= 24 NgsS=  Z:=
GrIC= 25 NES= 3

ALL REPTS IN THE FELLZWING

SET LIF WITFIN THE PHRYSICAL LIMITS SF

R{ )= T,2825€141S %4 QNS L 1)=  Ue280E6S59F $Z HEN
RU Z)= ©,213€25325 C4 ZFNS { 2)= T.2843337¢E £z HEN
RU 2)= 7,3€173117F 02 prw¥§ . S
CZMMENCING CZEFFICIENT AFERZACK
ND= ¢
GRIC= 1 NgS= s
GRIC= z NgS=  Z3
GRIC= 3 N2S= 38
GRIC= 4 Ngs= [
_. GRIC= _ = Ngg<= CE
GRIC= € NeS= 25
GRIC= 7 NgsS= 23
GRIC= & NES=E oS
G2IC= 5 AES= 7%
1 S GRIC= 1n NgS= ;5§
G=IC= 11  AgsS= ;s
GRIC= 17 NgS= o Zs
GRIC= 13 NES= .5
| GRIC= 14 N2S=  z=®
| ____GRIC= 1= NpS= 78 .
GRIC= 1 N2S= 2E
GrIL= 17 NesS= C3
GRIC= 1=# NES=s o Z%
GRIC= g NgS= 25
GrlC= 27 NZS= 25
—_G2IC= 21 N2S=  z€
G2If= ;2 NeS= 25
GRIC= 2 Nps= (s
GRIC= 324 AT X
GRIC= 23 M g8

pP-15 -;)
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ALL R2ZTS IN THE FULLPWING SET LIE WITFIN THF PFYSICAL LIMITS <p

FLO1)= L27256154C T4 2pNS LU 3)=  L.ZPTEES4BE Gz HEN
YU Z)=  TLZ13EIB4TE f4 0 7RNS L Z)= [.2B4823E7FE CZ HEN
R( 2)= TG i€)T2.6%E T3 ppNS -

CZMNVENCING COCEFFICICENT AFEREACKH

NA= 2

GRIC= 1 N@S= gk o
GRIC= 2  AgS= 2%
GrRIC= 2 NpS= S
GRIC= 4 NgS= Z5
GxIC= 5 N¢gS= i
GRPIC= € NgS= 5
GRIC=_ 7 ngS= ;5 e _
GRIC= &  APS= 2%
GRIC= S AZS= z%
GRIf= 17 oS os
GRIC= 11 NPS=  z:
GRIC= 17 NgS= 3
GRIC= 12 ApS= ;%
GRAIC= 14 NgS= 7S
GRIC= 13 NgS= s
GRIC= 16  AfS= 2%
GRIC= 17 ANgS= 2%
GRIC= 1f A2S= :t
GRIC= 16  A¢S= ¢
GRIC= 2° N
GRIC= 21 A2S= 753
GRIC= 22 N{S= ;=
GRIC= 23  ANgS= 2%
GRIC= 24 AN2S= ;2
GRIC= - 285  AgS=  z=

ALL RZETS IN THE FLLLZWINC SET LIS wITHIN THE PHYSICAL LIMITS SP

R{ )= ",2525€354E% T4 72HNMS L 1)= Ce28CEE548E CZ2. HEN
R 2= Tacl3628402 €4 2+WMS LU 2z)= ©T.28483267E (2 HEN
RE 2)= T,2€172063= 03 2+¥S

CZMMENCING CZEFFICIENT AFPRZACH
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Figure D-1.

FREQUENCY IN CYCLES/SECOND

AMPLITUDE VERSUS FREQUENCY
SIX EQUATIONS, SIX UNKNOWNS, CASE #1
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FREQUENCY IN CYCLES/SECOND

GAIN VERSUS FREQUENCY
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EXAMPIE INPUT AND OUTPUT

FOR SIX EQUATIONS AND SIX UNKNOWNS

Case #2

D-20



<
~

: AN
: t— ~
;

; o =
H i >
) — =
] o
i .
i s
] !
| ;
{ i
t

}

i

i

i

ot

—

(RN

!
i
i

¢ e A

1640

4L +07

(AR

o~
(5]
+

V(S

L JEV e

E.
L

]

01

Ul

)
un

{0«

\
-

Jdal

N
K JUENSOIVEoN

cCh.

[ RS W)

o lh

d
(@

o~

(N

iy R ¥ R L AT

RN

Q)

e

.
H

< v‘ , N

= o)

AN

o

NSUNOITE'

U N (Y ¢

-




TR-292-6-078
September 1966
4
RS O O Y O B O O B O e
PO TB90L24454 7890
i _
1240E+0U5
i
PalL+(a 2ZelL+06. . _ - _
1,, } _ e . e
- —
| _ e T
- R . L S e e




A CHECK

THe FOLLZWING
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MALE
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IS THO LIST 2F FQUATIPNS SFECIFIEC T@ THE FRZGRAMN
thEWtLﬂﬁAI_lﬁJJJJ“WESLﬁIiZANALMELB“AW_

ToRks CF EQLATIVKS‘(¥p§wapt§‘LIN%fm
NUMBECR ¢F ZACE TERM

PEOTHE ULNTTS UF EACH TCRM. IF TFE LNITS CIFFER
AV ERRTG MESSACE RESULTS

[

PQUATTIEN 1
f Ll Lz
i
i )
, ECUATIEN 2
[ —— ——— e r— ———— - I o mmt———s o o e e — ——— - - T
Rz L1 + R2 ) + R1 L2
) 1 g 3
93 L7
FA
\
i
CQUATIEN 3

+ R1 RZ + R1 R3
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FRUATIEN 4
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C1
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ECUATIEN S
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e 1 e e
Lx= 2
LX= 3
KT i et e N
Lx= 5
Lx= 6
VAXKIABLES S R ' )
G+48792400% 25 0.10821357¢ 03 0.10821357¢ 03

INPUT vATA

MAXIMUM NCo 3F STE3S 10D
NUMBER @UF STEPS 25
TTMES THR.LUGH RUNGE KUTTA 20
CENSTANT TERMS
0.800002002E 23 0.1540000CE 06 0.84000000F (¢7
RANGE FUR VARIABLES
FX2RIG , '
J.24U50000E 09 D.24000000F 20 C.24000000E 20 0.5C
FXLI~
9-220.0000E 08  0,22000000t 08 0.22000000E 08 0,35

THEREZ ARE 6 EQUATIENS AND & UNKNZANS yC2NSISTING 2F 3 RESISTANC

THc LOAER HPJUNDARIES FZR THE RESISTANCES, THE INDUCTANZES, AND TH

AND 3.1000203CE-10, RESPECTIVELY, WHILE THELR UPPER B3QGUNDARIES
J«15000C0O0E 20 RZSPECTIVELY. , '

N
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POOCE 28 J.16000000E 05 0.12000000€ 07
E-04 0.50000000E-04 0.1CC00000E~-10
t 03 0.35000000E 03 0.15000000E 00 -

2 INDUCTANCE(S),AND 1 CAPACITANCE(S ).
CITANCES ARE  0.24000000E 00,  0.50000000E-04,
).22000000E 08,  0.35000000€ 03, AND

0.18296528E 01 U.16441414E 05

D-24 - 2 |




SeMMcNTING CONSTANT APPRZACH

SrRlv= ] NES= 25
S 5KI0= 2 N3S= 25
5¢10D= 3 NBS= 25
5klus= 4 NES= 25
5RIU= 5 N@S5= 25
3RILD= b NgS= 25
3/1D= 7 N2S5= 25
3R1D= 8 N2S= 25
3rio= 3 N2S= 25

3RID=1C N@S= 25
srID= 11 N3S= 25
k1= 12 NIS= 25
3:Iv= 13 N2S= 25
SkIv= 14 N2S= 25
SID= 15 NE3= 25
GRID= 16 N@S= 25
5I0= 17 N3s= 25
5310= 18 Ngs= 25
SRID= 19  NgsS= 25
5RID= 20 NES= 25
GrRiD= 21 NBS= 25

SRIV= 22  N@S= 25

5RID= 1  \gS= 8

3R0D= 2 N@s= 8

GRID= 3 Nes= g .
GRID= &  4pS= g

GRID= 5  Nps= g8

GRID= 6  KyS= 8

GRID= 7  Nis= 8

GRIL= 8 ness 8.

ALL R22TS 14 THE FILLEWING SET LIE WITHIN THE PHYSICAL LIMITS SPE!

R{ 11= 0el9999719E D4 . ZHMS LU 1)= Ulal19999894F 22 HEMLR
RU 2)= G.3NCD0LSTE 04  2HMS LU 2)= .4)3000212€ 32 HENFE
RO 3)=  ©.39999788E 03 ZHMS ' .
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CAPACTITOR € 1 THF

0. 100U0M0V0DE
IS THUS

Ve 1DD0J0V0E 99

FOR INDUCTIR L 2 TH-

0.403000000E

1 CIMPENCNTA(S)
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AREC
09

MICRUMICRCFARADS

L COMPUONENTI(S) ARFE

02

L 2 IS THUS Je400D0V0E 02 HENRIES, AND
THE INDUCTIVF PART .F X 2 IS 0.40300000C D72 @HMS
FAR INDUCTUR L 1 THL 1 C2MPINENT(S) ARE
0.13000J00E 02
1 IS THUS Ce 1900000E D2 HENRIES, AND
THE INDUCTIVE PART JF ® 1 IS 04199000008 3. EZHMS

FUR RESISTUR R 3 TH.
0e38300000E
Oe1620u:0000E

'R 3 IS THUS 0e 39929008 23

FOR RESISTIR R 2 THL . CiéMPY

0.287009%00E
092530000

WITH AN INDUCTIVE R:SISTANCE

R 2 IS THUS Fe29325000E 04

FOR RESISTZR R 1 TH.
De 13600 00F
0.19602000E

WITH AN INBDUCTIVE R-SI5STANCE

R 1 IS THUS 0al99%60,00 )4

CuMPCNENT(S)

CUMPONENTI(S) ARE

03
02

PHMS

NENT(S) ARC
04
02
nF

Ue40J0VOCCVE 02 ¢HMS

LHMS

ARE
04
02
oF

0« 190UIC00DE 02 UHMS

ZHMS
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THE NUMOKATIR IS UF ERUIK 2. THE PCLYNAMIAL 1% DESCENDING £ROER RELZW
D.15968.005 05 0.11946060E 0T - <00900090E-38
CTHE Qg P TS ARE-
REAL DART [MAG. PART REAL PART [MAG. PART
=0 TLEL2E 2 0.000U0F =58 0.00200C0-38 0.u0U0IE~-38
THE DENZMINATIR 15 oF ZROCK 3. THE POLYNEMIAL IN U"SCENDING SROER BRELMW
0.76000:00c 03 0.16039430E 06 183732574 07 233916999 )8

THE RUCTS ARE-

RCAL PART [MAG. PART REAL PART IMAG., PART
=deTIHBBGE 0P J.000HuC~-35 -0.12702E 03 Qe UGN IE=-38
F=0.441638 U} 0.0000k-38



CMEGA-2AD/ZS:

e X320
Hel0Y3y
TebHh407
Be?BET
Y.N0199
YedHH20
19,9189
11.97239
13.12746
14.3939¢
15.TR/68
17.30537
18.,9749¢
20.20563
22.81292
25.21306

27.42716

30.07328
32.97469
36.15603
39.64430
43.46911
47.66293
$52.26137
57T.30345
62.83200

COMMENC ING

NA = 1
GRIU=
GRID=
GRID=
GRID=
GRID=
GRID=
GRIU=
GRID=
GRID=
GRID=
GRIyu=
GRIDL=
GRlU=
GRID=
GRID=
GRID=
GRIVL=
GR1D=

USING THIS

WN -~ LN T DN -

-~

S

O
7
121
1

¢ F=CYCLES/SIC

JEPRSIVEVIVIY)
109648
Le2072
1.31826
1ot a4y
L9490
1la73780
190546
2.908930
2.29087
2.51189
275423
3.21996
3.31132
3.63079
3.98108
4,36517
4,78631
5.24809
2e7544]
6.30959
6.91832
7923579
831765
1.12013
10.00002

AMPLITUDE

Ue12U2 %
0.018E97
JeULTTH
UeU1065Y
DetllH3n
O.01425
Ve 01317
000121)
Je01ll1llw9
Ued102%
0.0094¢4
CeLIBEE
Jeuilays
000725
OD.CL6S ¢
0.00604
Ve DUBS ]

i3} e s
e vy .o

Oa004&57
Je D041 0
Jeu3T?
GeU(36 7
J.0C339
Ue 1282
0e00257
DeU22T

LYEFFICIENT APPRZACH

N
N
N
N
Ni
N
N
N
N
l\‘[.s
Ne
Ni
N
Ny
N
N
NiL
Ny

S>EY

5= 25
"S= 25
S= 25
S= 25
s= 25
S= 25
= 25
5= 25
S= 25
5= 34
5= 34
S= 34
S= 34
S= 34
S= 34
5= 34
S= 34
5= H4

YF ESTIMATES,

2OLLG AMP

=33.587695
=-34.4.981
=35.,01335
~3he620L21
~ 36,6289
~-36.92388
~37.60573
-38.30014
~3G.:52299
-39.75440
~40.49871
=41.25454
-42.02073
-42.79641}
-43,55095
-44 ,3739%
~45,17539
~45.93532
=464,80420
-4T.03274
~48,47195%
~49.,32314
~-50.18797
-0la0839
=51.906667
-52.88534

NEZ ROBTS WERE F2UND

D-28
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PHASE-DES

-5 7.44433
-60.13132
‘6207“003
~LY.29106
-67.744831
-fu.1189)
=72.40289
~T4.60390
-T76.72416
-78.77322
=8J.75456
=02.68978
-84,577463
-Bb6.43283
-58.26782
-90.019466
~-91.92385
-93.7740>
-95,65187
-C7.57173
=33.545673
=101.5%489
~173.639374
-105.,598935
=Lliigel®)30
-110.57508



CeMmMENCING CELFFRICTENT

NAz 2

GRID= 1  N&S= 25
GRIU= 2  N@S= 25
GRID= 3 NEg$S= 25
GRID=_ & NES= 25
GRID= 5  Nis= 25
GRID= 6  N@s= 25
GRID= 7  NgS= 25
GRIU= B NiS= 25
GRID= 9  NuS= 25

SRIL= 10 = NEd= 25
GRID= 11 HeS= 25
GRID= 12 NES= 25
GRID= 13 Ned= 25
GRID= 14 Nind= 25
GRID= 15 N¢S= 25
GRIL=_ 16 = huS= 25
GRID= 17 NEsS= 25
GRID= 18  NES= 25
GRID= 19 Ne b= 25
GRID= 20 NLS= 25
GRID= 21 NS= 25

GRID= 22 . NeS= 25

GRID= 23 NES= 25
GRID= 24 NES= 25
GRID= 25 Ned= 25

ALL RAETS N Tht FR2LLZWING

R{ 1)= a2 2 0D004E
R{ 2)= UCeac99999G2E
R{U 3)= GCa@0100D11E

CEMMENCING CPEFFICIENT

NA= 3
GRID= 1 Niis= 25
GRID= 2 N£s= 25
GRID= 3 HisS= 25
GRID= 4 NES= 25
GRID= 5 NES= 25
LRID= 6 NES=E 25
GRID= 4 NES= 25
_ GRIC= s H¥S= 25
GRIDL= 1 NeS= o 36
GRID= 2 NES= 36
GR1ID= 1 NLS= 70
GRID= 2 NeS= 70

USIHNG THIS SET #F ESTIMATES, NO ROOATS WERE FZUND

APPRZACH

34 JHMS
04  JHMS
33 ZHMS
APPROACH

SET LIE WITHIN THE PHYSICAL LIMITS

L( 1)= 0.20J00005E 02
L{ 2)= 0.39999989L J2

D'?_q'I

H
H



c(

1)

0.799799987E-04

FARADS
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LemMENCING LVYLYFILLIENT

MNA = 4

LRID= 1 e 5=
L= 7 NZS=
GRIL= 4 T
Hielo= 4 Ny S=
GRIL= 5 Nie S=
GR L= 8 e S=
LRIU= ! e S=
GRIL= ty e =

LRID= 9 Ng 5=
GRID= 10 NES=
GRIL= 11 HeS=
GRIL= 12 NeS=
GRID= 13 NZS=
GR1Iu= 14 NZS=
GRIU= 1% NEs=
GRID= 16 N§ S=
GRID= 17 NgS=
GRID=  1¥ e S=
GRID= 19 N s=
GRID= 20 Ne §=
GRID= 21 NES=
GRID= 22 NES=
GRID= 23 Ne 5=
GRID= 24 Ne $=
5RID= 25 NES=

ALL RPZTS IN THE F2LLZWING

RO 1)=  (ain356151F
RE 2)= Lo21362544¢E
RU 3)= (e.n6173084E

CEMMENCING CYEFEICIENT

NA= 5
GRID= 1 “is=
GRID= 2 yes=
GRID= 3 yzs=
GRID= &  Ngs§=
GRIC= . 1. wsps=
GRID= 2 KNgs=
GRIu= 3 ness
GRID= 1  Ags=
GRID= 2 qyss
GRIC= 3 yus=
CGRIDE 4wy
GRIL= 5 4yss=
GRID= &6  wps=
GRIL= 7 Nis=
GRID= 8  Niys=
GRID= 9  KNgs=
CGRIL= LD Nebs

25
25
25
25

25

25
25
25
25
25
25
25
25
25
25
25
25

25.

25
25
25
25
25
25

Z5
25
25
25

44

44

44

84
B4
B4
24
34
34
4
B4
CIA
94

APPRPACH

J4 . IHMS
04 @GHMS
93 JHMS
APPRJIACH

L
L

1)=

2)=

SET LIE WITHIN THE PHYSICAL LIMITS S

ve2BUBA542E D2 HE

Ja28483392E 02

USING THIS STT CF ESTIMATES, NE RBATS WERE FEUND

CEMPENCING CEOFFICIENT APPROACH

D ";’CD -U/

HE
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APPENDIX E

FILTER CIRCUIT WITH THIRTEEN UNKNOWNS

E-1 Circuit Diagram

—_ CZ ~—~C4
E-2 Identity of Unknowns

Yy =Ry Yo =1y Y0 = 1/¢;

Y, =R, Y, =1L Y, = 1/¢

Y3 = Ry Yg =13 Yo = 1/Cy

Y, =R, Y9 =L, Y3 = 1/6,

Ys = R5

E-3 Transfer Function

T= (1.2 x 10115 + 5.8 x 1010 2 +6.78 x 10°&>

+1.5 x 108* + 9.0 x 10°%)/(9.0 x 10'2

+7.225 x 10125 + 1.8186 x 101252

+1.77245 x 101163 +5.5399 x 10°s%

+5.965 x 107> + 2.22 x 10°s)

E-1
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E-4  BExample Input and Output

A sample input for the set of thirteen equations in thirteen unknowns
and the output which resulted from it are presented in this portion of the
appendix. For the sake of brevity, the input items are listed without FORTRAN
symbols. The plots from the frequency-response subroutine for this sample
input are included in this appendix as Figures E-1, E-2, and E-3. The range
of interest of the unknowns is identical to that presented on page 37 of

reference 1.
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1€ FCLLOWING IS THE LIST GF EQUATIENS SPECIFIEC T¢ THE PREGRAVWV
TERMS TF CUUATIZNS (THKEE FER LINE)

NUMULR JF ACH TERM

CHECK IS MALE £1 ITHL ULNITS ©F EACK TERNM. IF THE UNITS CIFFER
AN CQUAT TSN, AN CRRUR MESSAGE RESULTS

EQUATIEN 1

La L1 L2 + L4 L1 L2 + L4 L2 L3

) 2
ECUATIEN 2

L2 + R4 L1 L3 + R4 L2 L3
2 3

L2 + RS L1 L3 + RS L2 L3
5 6

L4 + R3 L1 L4 + RS L1 L4
8 9

L4 + R3 L2 L4 + R5 L2 L4
11 12

L4 + R4 L3 L4

L4

E-4




L1 L2

RZ R4 L1

1€

R w5 L3

13

Ra RS L1

1€

R4 RS {2

15

R1 R4 L3

22

Rl R3 L4

25

R2 RS L4

28

ECUATIEZN

Ca

+ L2 L4
Ct

+ R2 K5

1l

+ R3 <4

14

+ R3 K4

L7

+ R1 Rb5

23

+ R1 RS

26

3

Ll

L1

L2

L2

L3

L4

L2 L3
Ca

Ll L4
ce

L3 L4
Cl
9
R2 R4
12
R3 RS
15
R3 R5
18
R1 RS
21
R1 R2
24
RZ2 R3
27

L3

L

L2

L2

L4

L4

TR-292-6-078’
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RZ L1
Ca

R1L L2
' C4

R1 L3

R5 L1
C2
16

R1 L4
C2
1s

R4 L2

22

RS L3
C1
25

JRS'LQ
Cl
28

ECUATIEN

Ca

Ca

+ R4
c3

+ R2
C3

+ R4
Cc2

+ R2
c2

+ RS
cl

+ R2
Cl

+ R1

L1

L2

L3

L2

11

L4

lg

L3

17

L4

20

L2

23

Lé

26

4

2 R4

29

RS L1
C4

R5 L2
Ca

R4 L1
C3

RS L2
c3
12

R4 L1
C2
15

RS L3
2
18

RS L4
C2
21

R4 L3
Cl
24

R3 L4
Cl
27

R1 R3

30

R4

TR-292-6-078
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i
|
i

R2 R3 k4

+ Rl R2 RS
31 32
R2 R3 5
34
"~ EQUATIZN S
L + L2
C3 C4 C3 C4
1 2
L2 + L3
Cl C4 Cl C4
4 5
R1 R2 + R1 R3
Ca Cé
7 8
"R1 R4 + R1 RS
c2 c2
10 11
" R1 RS + R2 R3
C3 Cs4
13 14
TR2 R4 + R2 R5
C1 C1
16 17
 R2 RS + R3 R4
C3 c1
15 20
" R3 R4 4+ R3 RS
C2 c2
22 23

+ R1 R3 RS

33

TM-292-6-078
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C2 C4

C2 C4

Ca

+ R1 R4
€3
12

Ry Rs
Ca
15

+ R2 R4
3
18

e k3 RS
Cl
21

E-7



R1
C3 C4

R2
Cl C4

R4
C2 ¢3

~J

RS
C3 C4
1C

RS
Cl C4
13

EQUATIEN 6

+ R1
C2 C4

C2 C4

Cl C3
14

EQUATIECN 7

+
C2 C3 C4 Cl C3 C4
1 2

CCUATIEN 8

R5 L2 L4

1

R4
C1 C2

RS
2 C3
12

R5
Cl C2
15

TR-292-6-078
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Cl C2 Ca

3



EQUATIEN 9

R2 RS L4 + R4 KS L2
1 2
EGUATIZN 10
R5 L4 + RS L2
C2 C4
1 2
EQUATIEZN 11
R2 RS + R& RS
C4 c2
1 2
ECUATIEN 12
RS
€2 C4
1
ECUATIEN 13
RS
1

E-9
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+ R2 R4 RS

3



INPUT CAlA
MAXIMUM N, pF STEPS 120
NUMGES £F STEPS 30
FIMDS ThRryULLH RUNGE KUTTA 15
CalisTanT TLRMS
e22.L0CUOLL OB QeH5965CLCLLE C&
UeYLLLLOCUE 13 G 5000CCCHE Ch
Ce5CLLCOCU: 03
RANGE FER VARTAELES
FXURIG
0.1950C00CE 04 Ge3940CCCOE 04
0.60000L000E 02 Ce400000COE 02
0.10CCCCO0E=-04
FXLIM :
D.10000C6N0F 05 0.100000C0t 05
0.100L0CCO0E 03 ¢.l10000CCCE 03

Ue.50CLCLOCE~-04

Le5536SCCOE
L.15CCCCCUE

Ca
02

C.4G66C00CCE
G«3CL0C00CCE

C.1CCCGCCCE O5

CellULULLCE U3

THZRE ARt 13 CWUATIZNS AND 13 UNKNPWNS,C20.SISTING 3F 5

THE L2WER bfUADARICS FZR THe RESISTANCES,
0.1CC0000CE-V4,

AU
0.1500CCCCCE

Lk= 1
Lx= 2
LXx= 3
LX= 4
LX= 5
L= 6
Lx= 7
Lx= B
LX= G
Lx= C
Lx= 1
Lx= 2
LX= 3
LXx= 4
L = S
Lk= &

RESPECTIVELY,
Ve ReSPoCTivoLTYe

wH1LE

Tre INDUCTANCES
THEIR UPPER u2UNDARIES

10
G9

’

|
Ca 29
c.lq

RieSTSTANCG
ANC TH




: _
Lx= 7
L&A= 8
LX= 9
LX= 10
LX= 11
Y S v _

. Lx= 13

VARIABLES
0.195CC000E 04
0.60060000F 02 =
0.34199519E 05

0.394CCOCOE C4
0.,4000CC00E G2 .

CUMMENCING CENSTANT APPRGACH .

e ORIB= L N2S= 30
GRID= 2 NZS= 30

- GRIC=_ 3 = NgS= 30
GRID= 1 NEgS= 56

- GRID= 1 NgS= 112 -
GRID= 2 NZS= 112

— o BRID=__ 3  NZS= 112

CeMMENCING CIEFFICIENT APPREACH

i

NA= mi.u

- GRID= 1. NgsS= 30
GRID= 2 NZS= 30
GRID= 3 NZS= 30
GRrR10= 4 NES= 30
— . GRID=__1 _N2S= 54 _ o e
GRID= 2 NZS= 54
. GRID= 3 NgS= 54
i GRIC= 1 N2S= 104
f _ GRID= 2 NEZS= 104
GRIC= 3 NZS= 104
. GRID=_ 4 N2S=_104 . -
‘ GRID= 5 N£S= 104
' GRIC= 6 NES= 104
1 GRI1G= 7 NES= 104
GRID= 8 NZS= 104
GR10= 9 NZS= 104
L. GRIC= 10~ N£$S= 104 . B

USING THIS SET gF ESTIMATES, N@ RBZTS WERE FOUND

Ce496CGCOCOE C&.
Ce300CCCCOE 02

T eea e L L i S T RS L

£-1 - )w |
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£l 1180000 13 Ce722500GCr 13
s OO CLCCCE 11 C.12C0000CE 12
0.5 0000000 03 C.5000CCCOE 02
CL10TUR 00 E-04 C.10CCCOCCE-N4
C_acrannnne 03 0.10CCCCCCE 03
0,333:0000E~04 C.667CCCCCE-04
C05),ANC 4 CAPACITANCE(S).
; 0.2400C00CE 0O, C.5CC0000CE-04,
o oua, 0.35CC00CCE C3, AND




| TR-292-6-078

September 1966

0.50000000E 063  ©.5000000CE c2
0.120048C2E C5 = C.149925C4E CS - -

P ——

R e

E-11

TR T AT TR L VT

s v ot ¢ ot oo

S T TR AT e R A TR AT AT R 1

A



LID=
L1C=

Vo=
ib=
(ID=
RID=
}Iu=
RID=
RID=
RID=
RID=
RID=
RIL=
RID=
RIU=
RID=
:KID'—'
RIOC=
E&ID=
IRID=
'RID-'-
RID=
IRID=
yRID=
tRID=
RID=
pRID=
ERID=
bRI0=

11
12
13
14
15
16
17
18
19
240
21
22
23
24

2S

27
28
29
30
31
32
33
34
35
36
37
38
34
44
41
42
43
44
45
46
47
44
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

NES= 104

NAS= 104
NS= 104
HESd= 104
NES= 104
NPS= 104
NZ>= 104
NgS= 104
NgS= 104
NEZS= 104
NES= 104
fNgs= 104
NES= 104
NaS= 104
M2S= 104
NES= 104
NJS= 104
MZS= 104
NES= 104
NES= 1U4
NZS= 104
N¢S= 104
MES= 104
H¢S= 104
NES= 104
NZdsS= 104
5= 104
Neo= LD4
NEeS= 1U4
NES= 104
5= 104
iN28= 104
NZ5= 104
NZS= 104
NEZS= 104
NZ2S= 104
NS S 104
NES= 104
125= 104
Negs>= 104
NES= 104
iS= 1064
NES= 104
MES= 104
NZS= 104
NZS= 104
NES= 104
NES= 104
N¢¥S= 104
N S= 104
NES= 104
NES= 104
NZS= 104
NZS= 104

TR-292-6-078
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GRID= 65  NZS= 104
GRID= 66  NZS5= 104
Sl D= 67 NZS= 104
Grll= 68  N2S= 104
GrID= 69 N2S= 104
GrID= 70 NgS= 104
GRID= 71 N2S= 104
GRID= 72  NZS= 104
GRID= 73  NgS= 104
GRID= T4  N2S= 104
GRID= 75  N2S= 104
GRID= 76 NgS= 104

GRID= 77 N2&= 104

GRID= 78  NZS= 104 .
GRID= 79  N2S= 104

GRID= 80 NZS= 104

GRIC= 81  NES= 104

GRID= 82 NgS= 104 e

GRID= 83 NgS= 104
GRID= 84 NZS= 104
GRID= g4 NZS= 104
GRID= 86 NgS= 104
GRID= 87 NZ2S= 104
CGRID= 88 = NegS= 104
GRID= 89 NZS= 104
GRID= 9C NZS= 104
GRID= 91 NZS= 104
GRID=_ 92  NZS= 104
GRID= 93 N2S= 104
GRID= G4  NZS= 104
GRID= 95 NZS= 104
GRID= 96 NZS= 104
GRIC= 97 NZS= 104
GRID= 98 NZS= 104
GRID= 939 NZS= 104
GRID= 100 . NES= 104 . o e
GRID= 101 NZS= 104

GRID= 102 NZ25S= 104 A . S B .

GRID= 103 N2S= 104 _ |
GRID= 104  nZS= 104

ALL RZETS IN THE FOLLOWING SET LIE WITHIN THE PHYSICAL LIMITS SPECIFIED

R{ 1)= 0.19999993E 04 ¢HMS L{_1)= Ce4999S9G4E 02 HENRIES
R{ 2)= 0.39999999F C4& ZHMS Lt 2)= C.6000CC02E 02 KENRIES
R{.3)=_.0.50000002€ 04 @gHmMsS __  L{ 3)= C.400CCCC6E 02 FENRIES
R{ 4)= 0.3CC00000C C4 ZHMS L 4)= GCe2999S9S9E ©2 FENRIES

RY 5)= C.50CCOH000E C3 LHMS

| E y 3’ ‘./ )
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FARACS

. 0.99999958E~04 _FARACS .
0.99999958E~04 FARALS

0.93G5999958E~04

FARALS
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v

E
BR CAPACITAR C 4 [HE 1 COMPENENT(S) ARE
0.4€G559S939E 08

4 IS TFUS 0.469999539E 08 MICRZMICREFARADS

AR CAPACITZR C 3 THE 2 COMPENENTI(S) ARE
: 0.56CCCCCCE 08
0.1CCCOCCCE 08

3 IS THUS C+€600CCCOE 0B MICRZMICREZFARADS

;

"R CAPACIICR L ¢ THE 2 CEMPBNENT
C.6¥CCCCOCE 08
C.180C0C00E oO8

{51 ARE

t 2 IS TrUS C.8300CCCCOE €8 MICRUMICREFARADS

|
f
FOR CAPACITPR C 1 THE 2 CEMPONENT(S) ARE
} 0.68CCCCCCE 08
' C.33CC0C0OCE 08

!
C 1 IS THUS C.101CCCCOE 09 MICREMICREZFARADS

WFAR INDUCTUR L 4 THE 1 C@MPENENT(S) ARE
0.3CCCOCOCE 02

'L 4 IS TrUS C.300CCCCOE G2 HENRIES, ANC
‘THE INDUCTIVE PART F kK 4 IS Ue30CCOCOCE 02 BHNS

" FDR INCUCTER L 3 THE 1 COMPENENTI(S) ARE
0.4CCLCO0OCE 02

'L 3 IS TFUS  C.400CCCCCE 02 HENRIES, ANC
' THE INDUCTIVE PART @F R 3 IS  0.4COCCCOCE 02 BHNS

P FOR INCUCTZR L 2 THE 2 CEMPENENT(S) ARE
L 0.5CCCOCO0E 02
‘ 0.1CCCOCCCE €2

L 2 IS TrusS C.6000CCCCE 02 HENRIES, ANC
. THE INDUCTIVE PART ¥F R 2 IS 0.510C0C0CE 03 ZHFMS

E-14
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'FBR INDUCTER L L Thi 1 COMPENENTI(S) ARE
0.5C0c0CccE 02

V0SS THUS CebCOUCULCE G2 HENRIELS, ANL
THE INDUCTIVE PART €1 R L 1S 0.5C0C0C0OCE 02 Prms

FUR RESISTER R 5 THE 2 COMPEZNENT(S) ARE
U.464(0CO0L 03
Ue 3480060008 02

R 5 IS Trus C.4S88CCCCE 03 2HMS

FOR RESISTUR K 4 THE . COMPUNENTI(S) ARE
C.2¢TCCCCCE 04
0.9C3C0C00E 02
WITH AN INCUCTIVE RESISTANCE @F C.3COCOCOOE 02 EHMS

R 4 [S THUS Ce2G9CSCCOE Ca ZHMS

FAR RESISTIR R 3 THE ¢ COMPPNENT(S) ARE
Ca422CCCCCE C4
Ve237C0C0O0E 03
WITH AN INCUCTIVE RESISTANCE @F C.4COCOCOQOE 02 ZHMS

R 3 1S TrUS C.4497CCCCE C4 JHMS

FOR RESISTZR R 2 ThHEt 2 CZMPEZNENTI(S) ARE
0e«383CCCCCE C4
GelC2CCCCUE 03
WITH AN INCUCTIVL RESISTANCE @F C<%10COCOOE 03 @CHMS

R 2 IS TRUS C.a45G2C0C0E 04 @RMS

FOAR RESISTIR R 1 THL ¢ COMPENENT(S) ARE
0.178CCCCCE 04
Cel€2CCCCCE 03
WITH AN INDBUCTIVE RESISTANCE @F C.5C0COCO0E 02 EHMS

R 1 IS TrUS C.1992CCCCE C4 EZHMS



"

| =C.27791E C1

THE NUNMERATER IS aF ORDER S

Celb687958E C9
C.COOCUGCOE-38

D.85783658L (6
0.1278B64€5¢8 12

THE RCOTS ARE-~
REAL PAK]
=Ce 72254t C2

[FAG. FPART
CeCCONCL-38
C.CCOOCL-38

C.00C0CE~34 U.0C00CL~38

THE DENZMINATER IS £F JRCER €.
0.22200CCCL C6 C(C.H8627SSTE C8B
0.18877G81t 13 C.762322013k 13

THE ReOTS ARE-

REAL PART [MAG. FART

-C.106%1E (23 -C.45353¢c C2

C.CC00CE-38
C.7C123c CoO

~Ce355¢7E C2
=C.61914F C1

THE PYLYNEZMIAL

Ce75334129E 10

REAL FART
-0.91G87E (2
-0.7711C0E C1

Ce551146C2E 10
Ca96138811F 13

REAL FarTY
-0.1C6G1E 03
-0.61514F 01
-0.232548 01
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C.657528G6G¢E 11

IMAG. PART
0.00C0CE-38
0.0000CE-38

IN DESCENDING ZRCER

O0«l17911432E 12

MA D
'

INAC. PART
D.45393E G2
-0.7TCLl23E CC
0.0C00CE-38

THE PBLYNEZVMIAL IN DESCENDING ZRCER BELZW

BELdw
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SRAL/SEC F-CYCLLS/SFC  AMPLITUDE 20L2G AMP PHASE-CEG
e 2¢ C.CC1CO C.C050C -46,02858 -0.C0367
0695 C.COL11 C.C0500 -4€.02858 -0.00406
07669 C.00122 C.CU500 -46,02858 -0.0044S
cesl C.CC135 C.C050C -4€.02857 -0.C04S7
€542 C.CC15C C.C050C -4€,02857 -0.00550
1G4 3 C.CC1l6¢E C.C0500 -46.02856 -0.00609
11154 0.0C184 C.CO0500 -46,02856 -0.C0674
1277 €C.(C203 C.C050C -4€.,02855 ~-0.C0746
11412 C.CC225 C.C05CC -46,02854 -0.00825
J15673 C.CC24S C. C0500 -46.02852 -0.00913
)17 3C C.C0275 C.C050C -46.02851 -0.,01C1C
115 14 C.0C2C5 C.CO50C ~4¢€,02849 -0.C1118
)Z11¢ C.CC337 C.C0500 -4€.02846 -0.01237
12344 0.CC273 C.C05CC -46,02843 -0.01369
12554 CeCC413 C.CU5C0 -4¢,02839 -0.01515
128 7C 0.C0457 Ce COSUU ~4€.02835 -0.01677
)31 7¢ C.CCS05 C.C0O5CC -46.02829 -0.0185¢
13514 C.CC559 C.COS0C -46.02822 -0.£2055
DIRES C.CCELS CeCO500 -46,02814 -0.02274
043C2 C.CCEBS €.C0500C -4€.,02804 -0.02518
04762 C.CC758 C.C0500 -4€6.,02791 -0.02787
05265 C.00F 39 C.C0500 ~46.02776 -0.03C86
D5831 C.0CS28 Co C0O500 -4€,02757 -0.03417
Doas52 C.C1C27 C.CO5CC -4€.02734 -0.03785
0714cC C.Cl136 C.C0500 -46.,02706 -0.04153
7901 C.C1257 CeC0O500 -46,02671 -0.04€647
€743 C.C1291 C.CO500 -4€,02629 -0.05150
3674 CeC154C C.CO0500 -46,02578 -0.0571C
107C5 C.Cl704 C.C0500 -46,02515 -0.063135
1184¢€ C.Cl€85 C.C0500 -4€.02437 -0,07031
13109 C.02C86 Ce.CU500 ~46.,02342 -0.078C9
145C¢ C.C22CY C.CO50C -4€.,02227 -0.08681
16052 Ce 2555 CeC0500 -46.,02C85 -0.09656
17762 C.02827 C.C0500 -4€.01912 -0.107€0
115655 C.C3128 C.CO0500 -4€,01700 -0.12CC4
121750 CeC 3462 C.C05C0 -4€,01441 -0.13414
24068 C.C3831 C.C0501 -46.01124 -0.15021
266133 C.C42359 C.C0501 -4€.00738 -0.16862
29471 0.04€93C C.C0501 -46.00266 -0.18684
132612 C.C519C C.C0501 -45,95690 -0.21445
136088 Ce05T44 C.C0502 -45,98589 -0.24322
139933 C. 06256 C.C0502 -45.98135 -0.27711
44189 Co(7C33 C.C0503 -45,97096 -0.31737
l4g858 Co(7782 C.C0504 -45,95835 -0.365¢4
15411¢C C.CREL2 C.C0504 -45,94308 -0.424C0
568 7¢ CeCS®3C C.C0506 -45.92461 -0.49519
166257 GCe 10545 C.C0507 -45,90235 -0.58271
V7331¢ C.11€66 €.C0508 -45.87560 -0.69115
»81132 Ce12513 C.C0510 -45.84360 -0.82638
,89778 C.14285 C.C0O513 ~45.80551 -0.99590
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BEGA—RAE/SEC F-CYCLES/SEC, AMPLITUDE 20L2G AMP PHASE-CEG
C.5934¢6 Colb011 C.C0U515 -45,76044 -1.2062%
1.056 34 Col17496 C.CU518 -45,70750 -1.47854

L21645 C.16361 C.C0522 -~45,64587 -1.81857
1.34614 Ce21424 C.C0526 -45.57488 -2.24757
1.4896C Ce23708 C.C0531 -45.,49416 -2.78739
1. 64835 Co26234 C.C0537 -45.40376 -3.463¢1

1.824C1 0.29C3C C.C0543 ~45.3044) -4 4,3C533

2.0184C Ce32124 C.C0550 -~45,19769 -5 434467
2.2335C 0e35547 C.C0557 -45,08624 -6.61551
2.47153 C.351336 C.C0564 -44,97396 -8.15186

 2.73492 C.43528 C.C0571 ~44,86608 -9.58558
31.02€36 C.48166 C.C0577 ~44,76923 -12.14369
3.3486G1 0.533CC C.C0583 -44,69122 ~-14.64553
3.70581 Ce5RGHC C.C0586 ~44.64079 -17.5CC12
4.10C T4 Ce65265 C.C0587 -44,62719 ~20.70410
4e5370 11 Gelc¢i2l GeCUDBY 44, 05759 24 24062
5.021 36 C. 76617 C.CO057S -44.74648 -28.075¢€2
5.55645 C.88434 C.C0569 -44,89512 -32.17928
6.148¢¢ C.97859 €.C0555 -45.11104 -36.48898
€.803623 1.08288 C.C0537 -45.,39773 -40.95298
7.525073 1.16€28 C.C0515 -45,75663 -45,514¢€1
Be33141 1.32556 C.C0491 -46.18717 -50.,12C15
94216 3¢ l.4673C CoeCO463 —4€.68720 -54,722C6

JC.20181 1.62267 C.C0434 -47.25335 -59.281C2

11.286C 2 1.79€671 CoC0404 -47.88155 -63,76680

}2.49212 lesRglR C.C0373 -48.56748 -68.15757
' 3.82342 2.2CCC7 C.C0342 -45,30693 ~-72.44C85
5.2966C 2.43453 C.C0313 -5C.09602 -76 60782
| 6.926 78 2.691398 C.C0284 -5C.93140 -80.65547
8. 730 ¢t 2.98108 CeC0257 -51.81019 -84 .58277
CoT2684 3.2G878 C.C0231 -52.72999 -88.,38958
2.93572 3,65C33 C.C0207 -53,68869 -92.07549
5.380C1 4.03535 C.CO184 =54 ,68429 -95,6393C
PR.UB4G TS 4,46G83 C.COl64 -55.71472 -99,07S11
1.07782 4,94€16 C.COL4S -5¢.77766 -102.39256
4,.38G82 Se4723] C.(0128 ~-57.87044 -105.58C17
8.0548C £.05€61 C.COL12 -58,95003 -108.6428S
2.11034 6.102C7 C.C0098 -6C.13314 ~111.58784
€.5941C T.41€32 C.C0086 -61.29654 ~114.427174
1.56412 8.20E068 C.CLOT5 -62.47734 -117.1816¢
7.056 37 5.C8128 C.C0066 -63.67353 -119.87€12
3.14C2¢€ 1C.C4508 C.C0057 -64.88435 -122.54027
9.86916 11.,12C03 C. 0049 ~66.11065 -125.20576
7.31524 12.3051¢C C. COV43 -67.35501 -127.9C095
5¢554 87 13.61647 C.CO037 -68.62156 -130.64671
4.67251 15.C676C C.C0032 -65.91551 -133.,452C3
4.76187 16.67237 C.C0027 -71.24236 ~-136.31196
5926417 18.45C27 C.C0023 -72.60707 -139.20741
8.28C5C 2C. 41654 C.C002C -74.01321 -142.10784
1.951 96 22.5923¢ C.C0017 ~75.46248 -144,97586
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VOA-RAL/SEC F-CYCLFS/SEC  AMPLITUDE 20LEG AMP PHASE-CEG
/.08CCC 25.G0C0€ C.CO01l4 ~T€.95457 =-147.7727C
|
|
\
|
|
[
|
)
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APPENDIX F

FILTER CIRCUIT WITH FIFTEEN UNKNOWNS

The circuit and its transfer function, from which the set of 16 equations
was derived, is shown in Figure F-1. The transfer function is shown in a
normalized form in equation (F-1). In order to obtain the true constants for
the equations, it was necessary to find the true values of No and D7. The
remaining coefficients in the polynomial could then be found. After establish-
. . . I T R ,
ment of the coefficients, the circuit was scaled by a facitor of 10 , changing

-42
the constant terms by a factor of 10 , in order to prevent overflow on the

IBM 7094. The resulting transfer function is shown in equation (F-2).

The values of the circuit elements,as given in reference 18, are provided
in Table F-1 below. The equations themselves, derived during the course of the

study, are presented on the pages following Figure F-1.

Table F-1.

COMPONENT VALUES FOR THE FIFTEEN-ELEMENT CIRCUILT

Resistors Inductors Capacitors
R(1) 4580 Q L(1) 1400 h C(l) 14 uf
R(2) 5700 @ L(2) 1200 h C(2) 14 uf
R(3) 8610 @ L(3) 900 h G(3) .6 uf
R(4) 12000 @ c(4) .7 uf
R(5) 220 K Q C(5) 10 uf
R(6) 2000 Q C(6) 10 uf

F-1
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EQUATION 1 (Ny)
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Fj (normalized) = 1.0

F. (scaled) = .243 x 1070

Ré
Cl C2 C3 C4 C5 Cé6

EQUATION 2 (Nl)

F (normalized) = .345
j

Fj (scaled) = .839 x 10~/

Ré6é R3 + R2 Ré6 + R6 R4
Cs4 C5 C2 C6 C3 C5 C1 C6 C3 Q4 Cl C6 C2 C4 C5
R6 R4

C2 C3 C5 C1 C6

EQUATION 3 (N2)

Fj(normalized) = ,144 x 10“1
F, (scaled) = .372 x 10-8
R6 L2 R3 + L3 R6 + R6 R1
C2 €3 C5 C6 Cl Cl C4 C5 C6 Cl C2 C2 C5 Céb
R6 R2 R4 + R6 R3 R4 + R6 R3 R4
C2 C4 C5 C6 C3 €5 C6 C3 C5 C6 Cl1 C&
R6 R2 R4 + R6 R2 R&
C6 C1 T4 C5 C2 €3 C5 C6



EQUATION &4 (Nj)
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F. (normalized) = .385 x 1072
J
F] (scaled) = .938 x 10~Y
R6 R4 R2 + R2 L2 R4 R4 + L3 R6 L3
C2 C5 C6 C2 C5 C6 C3 C6 C2 C4 (5
R6 R2 + R4 R3 R6 + L1 R4 Ré6 R4
Cl C4 C5 C1 Cé6 C2 C5 C6 (€3 CS C6 C5
R6 R1 L2 + R6 R2 R3 Ré6 + R3 R3 R4 R6
3 €6 C3 C1 ¢6 C4é4 C5 (1 C5 C6 C4
L2 R4 R6 R4 + R6 R1 L3
C6 C3 C5 Cl C2 C5 C6

EQUATION 5 (N4)

Fy (normalized) = .465 x 107%

Fj (scaled) = ,118 x 10-10

R6 L2 R4 R2 R4 + L2 R6 L3 R4 + L3 R3 R6 L3
b C6 C5 C4 C6 C5 C5 Cl1 C6

R4 R3 R6 + R6 L1 R4 R3 + R2 R6 L2 R4
‘ Cl c6 C5 ¢2 C2 C6 C5 C5 C3 Cé6

R4 R1 R6 L2 + R6 L1 R4 R1 + Rl R6 L3 R2

C6 C5 C2 C6 C5 C1 C4 C6 C5

R4 R2 R6 R3

C5 C3 Cé6

EQUATION 6 (N)
-5
S Fj (normalized) = .473 x 10
-11
F (scaled) = .115 x 10
R6 L3 R3 Rl + R4 R6 R4 R2 + L1 R2 R6 L2 R4
. . €6 C5 C2 C6 C5 C3 c6 C5
L2 R3 R4 R6 L3 + R4 L2 R4 R6 + L1 L3 L1 R1 R6

cé6 C5 c4 C6 C5 c5 C6

R6 R4 L2 L3
. Cl_C5 C6
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EQUATION 7 (N6)
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r (normalized) = .251 x 10-7
]

F (scaled) = .639 x 10'14
j
R6 L2 R4 R3 L2 + R1 L3 R6 L1 R4 + R4 R2 L3 R6 L1
c6 C5 c6 C5 C5 C6
EQUATION 8 (N7)
8

Eé(normalized2>=).149 x 10

P, (scaled) - .363 x 10712

R6 R4 L1 L2 L3

C5 €6
EQUATION 9 (D7)
-7

F} (normalized) = .610 x 10

Fj (scaled) = .179 x 10-!!
R4 L1 L3 R6 L2 + RS L2 R4 L1 L3 + L1 L3 R6 L2 Rs4
C3 C3 Cl ¢C5 C6 C2
L2 R4 L1 L3 RS + L3 R6 L2 R4 L1 + R4 L1 L3 RS L2
Cl C6 C5 C2 Cl ¢5
R6 L2 R4 LY L3 + R4 L1 L3 RS L2 + R6 L2 R4 L1 L3
C3 C2 C3 ¢C5 Cl Cé
Ll L3 R5 L2 R4 + L2 R4 L1 L3 R6 + L3 R5 L2 R4 L]
C6 C3 Cl ¢5 C5 C2
R4 L1 L3 R6 L2 + RS L2 R4 L1 L3 + R4 L1 L3 R6 L2
.Cl Ccé C3 C2 ¢S5 ¢5

R5 L2 R4 L1 L3
C2 Cé6

F-5



EQUATION 10 (D6)

R5
C2

L3
Cl

R4

C3

L2
C3

R4
C2

Ll
c2

R1
cl

R6
c2

L3
Cl

R6
Cc5

L2
Ccl

R3
cz

Ll
c2

R2
Cl

R4

c2

L3
Cce

R4

c4

Ll
<5

R2
Ca

Ll
c3

L3
Cl

R4
cé

LZ
R4
c5

L1
c5

R3
Cl

R4
C3

L3
Cc3

R4
cé

L2
cé6

R4
C3

L1
cé6

R2
Ccl

R4

cs

L2
R4
s
R5
R1
c3

R6

L3

RS

Cé6

RS

R4

Cc5

R6

L3

R5

L1

R6

c3

R6

R4

cé

RS

L1

RS

L1

R4

L2

L2

L2

L2

R6

L1

R3

L1

L3

Ll

Ll

Ll

L3

L3

L2

R1

L2

L3

R4

L3

L3

L3
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Fj' (normalized) = .17 x 10-5
Fj (scaled) = .511 x 1019

+ L1 L2 L3 L3 R3 L2 L3 Rl R4
Cl C5 C3 C1 Cé

+ R3 R4 R5 L1~ R4 R4 R5 L2 L2
Cl C4 C5 c2 ¢5

+ R6 L1 L2 L1 L3 Ll L2 L3 L2 R3
C2 C5 c2 ¢5

+ L3 R2 R4 R6 R3 R4 R6 L1
Cl C5 C5 Cl C4 C6

+ R4 L1 R6 L1 L3 R5 L1 L2 L1 L3
C3 C3 c2 C5

+ L2 L3 R2 R4 L3 R3 R4 RS
C4 Cl C3 Cl C5 C5

+ R2 R4 R5 L1 L3 R5 R4 RS L1 L3
c2 Cé6 CS C3

+ L1 L2 L1 L3 R] L2 L3 L3 R2 R4
C2 C6 Cl C3

+ R1 R4 R6 L2 R2 R4 R6 L1 L3
Cl C5 C3 c2 C6

+ R5 L1 R6 L2 L2 Ll L2 L1 L3 R2
C2 ¢5 C2 C6

+ L3 Rl R4 RS R2 R4 R5 L1
Cl Cl ¢s Cl ¢5 ¢3

+ R4 R4 RS L2 L2 R6 L1 R5 L1 L3
c6 C5 c2 Cé6

+ L2 L3 L2 R3 R4 L3 R1 R4 R6
Cl C3 C2 C1 cé6

+ R3 R4 R6 L1 L3 R4 R4 R6 L2 L2
C2 C4 cée C5

+ L1 L2 L1 L3 R3 L2 L3 L2 Rl R4
C2 C6 Cl C3

+ R3 R4 RS L1 Rl R4 R5 L2 L2
Cl C3 C3 C3 ¢6

+ R5 L1 R5 L1 L3 Ll L2 L2 L2 R3
C2 Cé ce C6

F-6



EQUATION 10 TR-292-6-078

(D6) (Concluded)
September 1966

L2
C1

R1
c3

L1
C2

R1

c1

R4
C3

L3
c2

R&
Cé

L3
C5

R4
c5

L2
Cc6

R4
C4

L3

R6

L2

R5

C3

R5

K&

Cé

R6

R1

L2

L2

L2

L2

R6

Ll

R4 L3 R2 R4 R6 R3 R4 R6 L1
C2 C1 Ceo Cl C4 C3

L2 R4 R4 R6 L1 L3 Ré L1 R6 L1
c5 C5 Cc2 Cé6

R1 L2 L3 L3 R2 R4 L3 R3 R4 R5
Cl C5 C2 C1 Cé6
R2 R4 R5 L1 L3 R4 R4 RS5 L1
C3 C6 C¢5 ¢5

L2 Ll L2 L1 L3 R1 L2 L3 L3 R2
c2 C5 Cl ¢5
Rl R4 R6 L2 RZ2 R4 R6 L1
Cl C5 C5 C3 Cé

L3 R4 L1 R6 L2 L2
C3 Cé6

L3

L3

R4

L3



EQUATION 11 (Ds)

R2
C3

L3
Cc5

Ll
Cé

L1
Ca

L2
c3

RS
C4

L1
C1

R&
C3

L3
c5

L1
Cé6

L2
C4

L3
Cc3

R&
Cs

L2
c2

R3
c3

L2
cé6

L1
cé

TR-292-6-078 ;
September 1966
Fy. (normalized) = ,125 x 10”3
F, (scaled) - .369 x 10-8

L2 R3 L2 + R4 R4 R1 L3 + L1 R4 RS R2

Cc5 C1 C5 €2 C2 C4 C3 C1

Ré6 L2 R4 R3 + L2 R4 R6 RS + L3 R6 L3 L1 R1

C3 : Cl C1 C5 C3 C3

Rl L2 R6 + R3 L2 R3 L2 + R4 R4 R1 L3

C2 C2 C3 C5 (1 C5 €2 C2

R3 R6 R3 + LZ2 R4 L2 R4 R3 + L1 R2 R5 R6

Cc3 C1 C5 C3 Cl C1 ¢C5

R4 L2 L1 R4 + L1 R2 L2 RS + R4 L3 R3 L2

Cc3 C6 Cl C2 C3 ¢5 (1

R4 R1 L3 + L1 R4 RS R3 + L3 RS L1 R4 R1

C2 C2 C4 C3 C1 C5 C3

R1 R&6 RS + L2 R4 L2 L2 R4 + L2 R2 L3 R6

Cl ¢C5 C3 C5 Cé6 C1 C2

L3 R3 L2 + R6 R4 R2 L3 + L1l R4 RS R3

Cc5 C1 C4 C2 C2 C4 C3 C1

R6 L1 R4 R1 + L1 R3 R5 R6 + L2 R4 L1 L2 RZ

C3 Cl Cl1 ¢5 C3 ¢5

R1 L3 R4 + Rl L2 R2 L1 + R4 R4 R2 L3

Cl C2 C3 ¢6 C1 C4 C2 C2

R2 R5 R3 + L3 R4 L3 R4 R2 + L1 R4 R6 RS

C3 C1 c6 C5 Cl C1 Cs

R5 L1 L1 R2 + L1 Rl L3 RS + R2 L2 R2 L1

C5 Cc6 C1 C2 C3 C6 (1

R4 R1 L3 + L1 Rl Ré6 R2 + L3 R4 L3 R4 R2

c2 C2 C4 C5 C1 cs ¢C5

R4 RS R6 + L3 R6 L3 L1 R2 + L1 R1 L3 R6

Cl Cé C3 ¢C5 C6 C1 C2

L2 R3 L1 + R4 R4 R1 L3 + L1 R3 RS R2

cé C1 C4 C2 C2 C4 C5 (1

R4 L2 R4 R3 + L1l R2 R6 RS + L2 R4 L3 L1 R3

() C2 C1 Cs6 C3 ¢5

Rl L2 R4 + R4 L3 R3 L1 + RS R4 Rl L2

cl1 C2 C4 C6 C1 C5 C2 C2




L1
C4

L2
C3

R6
C5

Ll
c2

R1
C4

L3
c5

Ll
Cé

Ll
Ca4

L3
¢5

R4
c5

L1
c3

R4

C4

L3
Cc5

L2
cé6

Ll
Ca

L2
Cc5

R4
cé

Ll
C3

R4
c5

R4
C¢5

R4
ce2

R3
Cl

L2
cé

R4
c5

R1
Cl

R1
c5

R6
cé

R4
c3

R2
Cl

L3
c5

RS
Cc5

R1
Cl

R4
cé

R4
cé6

R&
o

R4
Ce2

R6
1

L2
R1
c2

R6
cé

R3
c1

L1
L3
c3

R5
C1

Ll
R1
C2

RS
Cé6

R3
Cl

L2
L2
c3

R6
C1

L2
R1
c2

R6
Cé

R3

L1

L2

R5

L1

R4

R5

R3

L1

L3

R6

L2

R4

R6

R3

L1

L3

R5

EQUATION 11

R3

R1

R1

R3

R1

L3
cé

L2
cé

Ll
C4

L2
3

R4
5

Ll
Cc2

R2
C4

L3
c5

L1
Cé

L1
C4

L2
c5

R5
cé

Ll
3

R4
ca4

L3
<5

Ll
cé

L2
c5

L3
C5

(DS) (Continued)

R5 L2 R4 R3

-

R2
C1

R4
<5

R&
Cé

Ré&
C3

R4
C1

L2
)

R4
c5

R1
Cl

R3
Cé

R&
cé

R4
C3

R1
Cl

L3
¢S5

R6
c5

R2
C1

R2
cé

R5
C3

L2
C2

RS
C1

L2
R2
C2

RS
cé

R2
C1

L3
L3
C3

R6
Cl

L3
R1
C2

R6
(o)

R3
C1

L2
L2
C3

R5
Cl

L2

F-9

RS

R3

L2 R3

L2

R6

L2

R4 R2

R6

R2

Ll R4

L3

R5

L2

R4 R3

R4

R3

L2 L1

TR-292-6-078
September .1966

L1
C2

R4
Cé4

L3
cé

L1
cé

L2
C4

L3
C3

R&
C5

L2
Cc3

R3
C4

L2
cs

L1
cs

L1
Ca4

L2
<5

R6

L1

C3

R1
C4

L3
Ccé

Ll
cé

R1
Cl

L3
cée

R6&
<5

R2
Cl

R2
C5

R5
Cé

R4
C3

R4
cl

L2
C5

R4
C5

R1
Cl

R4
Cé6

R&
cé

R4
C3

R3
C1

L2
<5

R4
C5

R2
Cl

RS
cé

R3
Cl

L1
L3
2

R6
Cl

L1

R2

C2

R6
C6

R2
Cl

L3

L3

C3

R5
Ccl

L3

R1

2

R5
cé

R3
C1

Ll

L3
C3

R6

Ll

R4

R6

R3

L2

L3

RS

L2

R4

R5

R2

L1

L3

R6

L2

R4

L2

R1

R1

R2

R4

R1



. EQUATION 11 (Dg) (Concluded) TR-292-6-078

| September 1966
R2 L2 R3 L3 + R4 R4 R2 + L1 Rl R6 R3
C4 C5 C1 C6 C4 C2 C1 C5 C6 C2
L3 R4 L1 R4 Rl + L2 R4 R5 R6 + L3 R6 L1 L2 L1
Cc6 C3 C2 C2 C4 C5 C3
L1 Rl L3 L2 + R3 L2 R2 L3 + R4 R4 R2
c6 Cl C5 C4 C6 C1 C6 C4 €2 C1
L1 R3 R5 R3 + L2 R4 L3 R4 R4 + L1 R2 R6 R5
Cc5 C6 C2 c6 C3 Cc2 C2 C6
L2 R4 L1 L1 L1 + L1 R1 L3 L2 + R1 L3 Re L3
C5 C3 c6 C2 C5 C3 C6 C1
e Ke R1 + L2 R4 R6 R2 + L3 R5 L3 R4 R4
C4 C4 C3 Q1 c5 C5 C2 Cé6 C4
L1 R1 RS Ré6 + L2 R4 L3 L1 L1 + L2 R1 L3 L2
c2 C2 C5 c5 C3 C6 C2 C5
R4 L3 R3 L3 + RS R4 R1 + L2 R4 RS R2
C3 C6 C1 C4 C4 C3 C1 <5 C5 C2
L3 R6 L2 R4 R2 + L1 R2 R6 RS + L2 R3 L3 L1 L1
C6 Ca C2 €2 Cé6 C5 C3
R4 R1 L3 L2 + R4 R5 R3 L3 + R6 L1 R4 R1
C6 C2 C5 C3 C6 C1 C4 C3 C1
L2 R2 R6 R3 + L3 R4 L2 R4 R2 + L1 R2 RS R6
cl ¢5 C2 Cc3 C5 c2 C2 C6
L3 R3 L2 L1 L1 + R& R2 L3 L2 + R4 R6 R3 L3
C5 (C3 C6 C2 C5 C3 ¢C6 C1
RS L1 R4 R1 + L1 Rl R5 R3 + L3 R4 L1 R4 R3
C4 C3 C1 Cl C5 C3 C3 C4
L2 Rl R6 RS + L3 R2 L2 L1 L1 + R4 R2 L2 L2
Cc2 C2 C5 c3 C5 C5 C2 C5
R4 R5 R3 L3 + R6 L3 R4 R2 + Ll R3 R6 RS
C3 C6 C1 C4 C3 C1 Cl C5 (C3
L3 R4 L1 L1 R3 + L1 R1 L3 R6 + L2 R2 L1 L1

. C3 ¢C5 C2 C2 Co6 C3 C5 Cl

R4 R1 L2 L2 + R4 R6 R2 L3 + R5 L3 R4 R2
C5 C2 C2 C4 C3 C1 C5 C3 C1
L2 R4 R5 R6 + L3 RS L3 L1 Rl + L1 R1 L3 RS
Cl C5 C4 €3 C5 C2 C2 Cé




EQUATION 12 (Da)

R&
C5

R&
C2

R5
C5

L3
Ca

L1
Ca4

Ll
Cé

R4
c3

R4
C3

R4
Cce

RS
cé6

L2
C4

L2
c4

L1
C4

R4
C3

R&
Cc3

R4
Cc2

R4
ce

L2
cé

RS
c5

R2
c3

R3
5

R&
c3

R6
c2

R2
ce

L1
cé

R6
c5

R1
Cl

R1
Cc5

R4
C5

R5
Cc2

R1
C2

L3
cé

R4
cs

R2
cl

R3
c2

R3
C1

Ll
C5

L1
C2

L2
C1

R1
C4

L2
cé

R2
c2

R2
Cl1

L1
c5

L3
C2

L3
C1

R3
C4

L2
cé6

R3
Cc2

RS
C1

L2
c5

L3

c5

Cl

R4

RS

L1

L3

C3

Cl

R4

R1

Cl

Ll

L3

c3

c1

TR=292-6-078
September 1966
F. (nommalized) = .163 x 10”2
F, (scaled) = .455 x 107
Ll R6 R2 + L3 R3 L2 R4
C6 C2 €3 C1 C4 C4 C3
RS R1 L3 L1 + L1 R4 L2 R2
€3 C2 C6 C4 C3 Cl
R4 L2 R3 L3 + L2 R5 R2
€5 C6 C2 C6 C2 C4 Cl
R4 R6 RS + R6 R1 L3 L1
C2 €5 C1 C3 C3 C2 C6
R6 R2 L1 + R& L2 R3 L3
C5 C3 €5 C1 C5 C6 C2
L3 R1 L1 R3 + R3 R5 R6
C4 C5 C2 €2 C5 Cl1 C3
L2 R3 L2 R6 + R4 R1 L1
C5 C3 C1 C6 C1 C5 C1
L2 R5 R1 + L3 Rl L3 R3
C4 C2 C4 C1 C4 C5 C2
RS R2 L2 Ll + L2 R4 L3 R3
C3 C2 Cé C5 C5 Cl
R4 L1 R2 L2 + Ll R6 R3
C3 C6 C2 C4 C2 C4 Cl
R& R5 Rl + R6 R2 L2 L2
Cl C5 C1 C3 C3 C2 C6
R6 R1 L2 + R4 L1 R3 L3
C6 C1 C5 C1 C3 C6 C2
L3 R2 L2 R4 + R3 R6 R3
C4 C5 C2 Cl €5 C1 C3
Ll R2 L2 RS + R4 R1 L1
C4 C5 C1 C6 C1 C5 C1
L1 R6 R1 + L2 R2 L2 R2
C4 C2 C4 Cl C4 C6 C2
RS R1 L3 LI + L1 R3 L2 RS
C3 C2 C5 C4 C5 Cl
R4 L2 R3 L3 + L1 R5 R1
C3 C6 C2 C4 C2 C4 C1

F-11




L3
Cs4

L1
Ch

L1
ca4

R4
ca4

R&
C3

R3
c3

R4
cé

L2
Ca

L2
C5

L2
-

R6

C4

R1
C4

L3
cé

R4
Cé

R5
C4

L1
c3

R4
c5

R6
Cl

R2
cé

R&
Cc5

R6
ce

R1
C2

L2
o

RS
cé

R1
Cl

R1
cé

R4
cé

R5
c2

R2
c2

L1
Cc5

R3
Cl

R2
C1

R2
Cc5

R3
cé

R6
c3

R1
c2

Ll
C2

L2

Ccl

R2
Ca

L1
c5

R2
c2

R1
Cl

L2
C5

L3
C2

L2
C1

R1
C4

L3
cé

R3
c3

R6
Cc5

Ll
c3

L1
c2

L3
c2

R2
C4

L3
Cé6

R3

Ré6

Cl

Ll

L3

c3

Ccl
R3

R5

Cl

L1

L3

Ré

C1

R4

R3

C1

L1

EQUATION 12

C2

cé

ca4

c5

C4

Ca

Ca4

ce

Ccé6

Ca

c5

c5

Cc1

C4

cé

cé

+ R6

Ca4

C3

(0,)

R4
Cé

R2
C1

> R1

Ccé6

R4
c5

RS
C2

R2
C2

L1
c6

R6
Cé

R1
C1

R1
Cs5

R4

cé

R6
c2

R1
C2

L3
(%

R4
Cl

R2
Cl

R2
Cs

R4
Cé

(Continued)

R6
Cl

L1
c5

L1
Cc2

L3
Cl

R2
C4

L1
C5

R2
c2

R3
Cl

L2
c5

L2
C2

L2
C2

R1
C4

L3
cé

R3
C3

R5
c5

L1
c3

L1
c2

L3
C2

C3

Cl

R3

Ré

Cl

L2

L3

c5

C1

R4

R6

Cl

L1

L3

R2

Cl

R4

R1

F-12

. TR-292-6-078
September 1966

R6
C3

R4
C3

R2
C3

R6
cé

L3
C4

L2
C5

L1
Cc5

R5
C4

R4
Ca4

R&
C2

R6
cé

R4
C4

Ll
C3

R4
C5

RS
Cl

R1
C4

L3
C5

RS
cé

R1
C2

L2
Ccé

R4
cé

R1
Cl

R1
Cé

R3
C6

R6
ce

R2
C2

L1
Cé6

R5
cé

R1
Cl

R2
o)

R2
cé

R5
C2

R1
C2

L2
Cc5

R4
Cl

R1
C1

L2
C5

R3
C2

R2
Cl

L2
C5

L3
C2

L3
Cl

R2
Cs4

L1
cé

R3
C3

R5
C1

L2
C3

L2
c2

L2
Ce

R2
C4

L3
cé

R3
c3

R6
C5

R2
C3

L1

L3

c3

<1

R3

R1

Cl

L1

L3

5

C1

R4

R2

Cl

L1

L2

R4

C1



R1
c4

L2
c5

R6
Ccé

R4

- Ca

L2
Cc3

R4
o}

RS
Cl

R3
Cé4

L1
c5

R6
cé

R4
C4

L1
Cc3

R4
c6

R5
c2

R1
Ca

L3
cé

RS
cé

R4

c5

L2
C5

R2
Cl

R1
C1

R1
c5

R3
¢5

RS
c3

R2
C3

Ll
C5

R4
c1

R1
Ccl

R2
cé6

R2
c5

R6
c3

R1
Cc3

L2
cé

R4
C1l

R3
Cl1

R1
cé

R2
c3

R5
Cl

R2
Cc3

L3
Cc2

R3
C4

L2
c5

R4
C4

R6
C1

R2
c3

L3
L2
C2

R1
c5

L2
cé

R4
C4

RS
C2

R2
C5

L2

EQUATION 12

R3

R1

Ccl

R4 R6

R1

R4

Ll

R3

R4

Ccl

R2 RS

R1

R4

L1

R2

C1

R4 R6

R3
C5

R4
cl

R2
C4

L1
C5

R&
cé

RS
C4

L2
C3

R4
cé

R6
Ccl

R1
Ca

L3
c5

R4
cé

R5
C4

L1
c3

R4
cé6

R6
ce

R1
Ca

L2
cé

(®,)

RS
c3

R1
C3

L2
cs5

R3
Cl

R2
C1

R1
C5

R4
cs5

R5
C3

R2
c3

Ll
c5

R3
C1

R1
C1

R2
cé

R3
Cc5

R6
C4

R1
c3

L2
Cé6

R2
Cl

R3
C4

L1
C3

R3
c3

R6
Cl

R2
c3

L3
L2
c2

R3
C5

L2
Cc5

R2
Ca

R4
Cl

R2
C5

L2
L2
ce2

R2
c5

L3
C3

R4
C4

RS
C2

F-13

R4
L2
R3
v
1
R4
R1
R4
Ll

R3

Cl

R3
R1

R4

R1

(Continued)

RS

R6

R4
Co

L3
C3

R3
c5

R4
Cl

R3
C4

Ll
c5

RS
Cé

R6
Ca

L2
C3

R2
C6

R&4
R1
C4

L3
C5

R4
ce

R6
C5

Ll
C3

R3
cé

R4
c2

TR-292-6-078

September 1966

R1
C5

R&
<5

R5
c3

R2
C3

Ll
c5

R4
cl

R3
Cl

R1
Cé

R4
cs

R6
C3

R1
L3
Coé

R4
Cl

R2
Ccl

R2
C6

R4
cs

R6
Ca

R1
C3

L3
L3
Ce

R3
C4

Ll
c3

Ra
C3

RS
Cl

R2
C3

L2
L2
C2

R1
<5

L3
Cé

R3
Ca

R4
C1

R2
C5

L3
L3
Ce

R3
C5

L2
C3

R4

R1

R4

L2

R3

R3

Cl

R&

R1

R4

L1

R3

R6

C1

R4

R1

R4

L2

R5

Ré

R5



L3
c3

R3
cé6

Ra4
c2

R3
c3

L1
cé

RS
Cé

Ré6
c5

L2
c3

R2
cé

R4
c3

R1
C3

L3
cé

RS
cé

Ré
C2

Ll
cs

R3
c4

R4
c3

R2
c3

R4
C5

R5
Ca

R2
c3

L1
cé

R4
C1

R2
C2

R1
cé

R4
c5

R&
C4

R1
C3

L3
C4

R4
Cl

R1
c2

R2
Ccé6

R2
c5

RS
Cl1

R1
c5

L2
C4

L3
c2

R2
cs

L3
c5

R4
C4

R6
c2

R2
Cs5

L1
L3
cze

R3
cs

L1
C1

R4
C3

L2
Cc3

R2
C3

L3
L2
c2

rR2
C5

L2
Cl

R2
C3

R1

R4

L2

R3

R2

C1

R3

R1

R4

Cé

R3

Ré

Cl

Ll

R1

R4

Cé

R3

RS

Ré

EQUATION 12 (D4)
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EQUATION 12 (D,) (Concluded) TR-292-6-078
. September 1966

L1 R3 L3 R4 + R4 R1 L2
€3 C1 ¢5 C3 C5 C1 ¢C6



EQUATION 13 (D)
TR-292-6-078
September 1966

Fj (normalized) ~ .237 x 10-'l
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R4
cé
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Ca
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C3

R2
<3

R2
c2

R1
3
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R4
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R4
5
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c5

R2
C4
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R1
C1

R1
cé

R4
C3

R4
c6

R4
c5

R4
C3

R6
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R3
c2

R1
c2

R1
Cl

R4
o

R4
5

R4
C3

R3
c5

R3
ce

R1
Cc2

R2
Cl

L3
Cc1

R4
c5

L1
c3

R6
Ca

L3
C4

RS
c3

R3
C4

R4
Cl

L3
Cl

L1
Cé

L2
Ca

L2
c2

R6
C3

R3
C4

R4
Cl

L3
C1

L2
c6

RS
Ca4

Ll
Cc2

R4
Cc3

R1
C4

R6

R1

c2

c6

C5

c5
R5

R6

R3

Cl

c5

C5

c3

C4

R6

C1

Fj (scaled) = .676 x 10~°

R2 R2 L1 + R3 R3 R2
C2 Cl1 Ce6 C5 €3 C2 C1 C6
R1 R5 L1 R4 4+ R2 R3 L3
Cl C6 C4 C3 €2 C1 ¢5
R1 R5 L1 R4 + R2 R2 L1
C5 C5 C4 C2 Cl1 C6 C5
R5 R4 RS R2 + R1 R6 L2 R4
¢6 C3 C3 Cl C6 Ca4
R4 R3 R4 Rl R6 L2 RS
C4 C3 C4 C2 C5 C5 C4
R4 R2 R1 + R6 R3 R6 Rl
C3 C2 C1 C6 C6 C3 (3
R2 R1 L3 + R3 R3 R4
€3 C2 C1 ¢5 C4 C5 C4 Cl
R2 R2 L1 + R3 R3 R2
C3 C1 C6 C3 C5 €2 C1 C5
R1 R5 L1 RS + R2 R2 L1
Cl C4 C4 C4 C2 C1 C5
R1 RS L1 R&4 + R2 R2 L2
c6 C5 C2 C3 C1 C6 C3
R5 R4 R6 R2 R1 R6 L2 RS
C6 C3 C3 Cl C4 C4
R4 R5 R4 R1 R6 L2 RS
C5 C5 C4 Cl C6 C5 C2
R4 R4 R1 + R6 L1 R2 R3

€5 C2 C1 C5 C6 C3 C3
R2 R2 L2 + R3 RS R4
C4 C3 Cl1 C5 C5 C4 C4 C1
R2 R3 L2 R3 R4 R2
Cl Cl Cé6 C3 C2 €2 C1 ¢5
Rl L1 Ré6 + R2 Rl L3
Cl Cl C4 C& C4 C3 Cl1 C5
R1 R5 L2 R2 + R2 R4 L3
c6 C5 C2 Cl Cl1 C6 C3
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R2
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TR-292-6-078
EQUATION C
' QUATI 13 (D3) (Continued) September 1966
R1 R5 L1 R4 + R2 R1 L2 + R3 R4 R2
C6 C5 C2 Cl Cl Cc6 C5 C3 C2 C2 Co6
R4 L2 R4 R3 + R1 L3 R6 + RZ2 R1 L2
| C5 C4 C3 C2 C2 C5 C5 C4 C3 C1 Co6
R3 R2 R3 + R1 R6 L3 R4 + R2 R1 L1
C6 C4 C3 C1 C6 C5 Q2 Cl C1 C6 ¢C5
R4 R4 R4 + R5 L3 RS R2 + R2 L3 R3
- C3 C2_C2'C6 C5 C4 C3 _ C2 C2 C5 C4
R3 Rl L1 + R4 R3 R3 + R1 R5 L2 R4
C4 C3 Cl1 C5 C6 C4 C3 C1 C6 €5 C2
R2 R2 L2 + R4 R4 R4 + R6 L1 R6 L1
Cl C1 C6 C5 C3 €2 C2 Cs C5 C4 C3
R2 L3 L3 + R3 R2 4+ R4 R3 R4
C2 C3 C6 C4 C4 €4 C1 C5 C1 C6 C5 €3 C2
Rl R6 L1 RS + R2 R3 L1 + R3 R4 R1
C6 C5 C3 C1_C1_C6 C4 C3 €2 €2 ¢5
R4 L1 R3 L2 + Rl L2 L3 v + R3 R1
C5 C4 C3 C3 C3 Cs6 C4 C4 C4 C1 C5 Q1
R4 R5 R4 + R1 R5 L2 RS + R2 R4 L2
- C5 C5 €3 C2 c6 C5 C3 Cl C1 C6 C4
R4 R5 R3 + RS L1 R4 L1 + R1 L2 L3
C3 C2 C2 ¢5 C5 C4 C3 C3 C3 C6 C4
R3 R2 + R4 R5 R4 + R1 R6 L1 R6
C4 C4 C1 C5 C1 C5 C5 C3 C2 C6 C5 C3
R2 R4 {1 + R4 R6 R1 + R6 L1 R4 L2
Cl C1 c6 ¢5 C3 C2 C2 Cé6 ‘ C5 C4 C3
Rl L3 L3 + R2 R1 + R3 R6 R4
C3 C3 C6 C4 C4 C4 C1 C5 C1 C5 €5 €3 C2
R1 RS L2 Ré6 + R2 R1 L2 + R3 R4 R3
Cé6 C5 C3 Cl C1 C6 C5 C5 C2 C2 C6
R4 L2 R4 L1 + R2 L1 L2 + R3 RZ2
Cé6 C4 C3 C4 C3 C6 C4 C5 C4 C1 C5 (1
R4 R6 R1 + R1 R5 L1 R4 + RZ2 R1 L3
C6 C5 C3 C2 C6 C5 C4 Cl C1 Cé6 C5
R4 R4 R} + R5 L3 R3 L2 + R1 L2 L3
€5 C2 c2 c6 C6 C4 C3 C4 C3 C6 C4

F-18
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~ EQUATION 14 (D2)
TR-292-6-078
September 1966

F (normalized) = .137
3
5
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R1
R1
cé
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R2

Ca
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C1
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C3
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c2
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R4
cl

R1
Cé

R3
c1

R2
c3

R1
C2

R2
c2

R1
cé

R2
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L1
c2

R&
Ccl

RS
c3

R3
Cc5

Ré
c3

R3
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Cl
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C4

R3
cé
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Cc3
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C4
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c2

L3
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R3
cl

R6
s
Ca

R6
C4
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Cc5

RS
C3

R5
c3
c5
R3
5
cs

R&
Ca

L1
Ca

R3
C3

R3
5
e
R6
s
s

R6
Cq

Fj (scaled) = .395 x 10~
R2 R3 R1 R4 R4 L3
C5 Cl C3 C5 C6 Cl C3 C5 (6
R3 R3 Rl R4 RS
cé6 Cl C3 C4 C5 C1 C2 C4 C5 C3 (C3
Rl R2 R6 R3 RS Re
C5 Cl C2 ¢5 C6 Cl C3 C3 Cs
RZ2 L1 R1 R3
Cc5 Cl C? C4 C6 C1 C3 C4 C5 C1 C?
R1 R4 R4 Rl R2 R6
C3 c6 C1 C4 C5 C2 C2 C5 C6
R5 R6 L3 R1 L1
Cé Cl C3 C4 C5 Cl €2 C4 ¢5 (1
R1 R4 R6 R1 R2 R5
Cl C2 C4 C5 C3 C3 Cé6 Cl C4 C5
R4 R3 R6 R6 R1 L3
Cé6 Cl C3 C3 Cé6 Cl C4 C4 (5
R1 R3 R1 R4 R6
C5 C1 C3 C4 C6 Cl1 C2 C4 C6 C3 C3
Rl R2 R4 R2 R5 R3
C5 C2 €2 €5 (6 Cl €3 C3 (6
R1 L3 RZ2 R2
c5 C2 C2 C5 C5 Cl C3 C4 C6 C1 C2
R1 RZ2 R4 Rl R2 RS
C3 C6 Cl C4 C5 Ce C2 C5 (6
R4 R4 L2 R2 L2
Cé6 Cl C4 C4 (C6 C2 C2 ¢C5% €5 Q1
R1 R&4 RS R1 R2 RS
Cl C2 C4e C6 C3 (3 C6 C1 C4 C5
R4 R3 R1 R5 R4 L2
() Cl C3 C5 (6 Cl C4 C4 C6
R2 R3 R2 R4 R6
¢5 Cl C3 C3 C6 C1 C2 C4 C6 C3 Co
Rl R3 R4 R4 RS R3
Cc5 Cc2 C2 €5 Cé6 Cl C3 C5 (6

Fa20
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b o e e
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Ca4
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EQUATION 14 (Dz)

C2

c5

C3

C4

C2

C3

Ccé

Ccl

(<

Cc3

c3

cé

Cl

EQUATION 15 (Dl)

(Concluded)

Fj (normalized) = .565

=4
F. (scaled) = .166 x 10

~

+ R3
c5

+ R1
c3

+ R2
C4

+ R3
C2

+ R3
C5

+ RZ2
Cl

+ R5
Ca4

+ R5
cé

+ R2
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+ R1
c5

+ R5
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+ R1
Cl
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R4
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C3

Cé6

Cl

Cc5

Cé6

Cé.

C3

C3
C4
c1
C5
cé
C4
5
C3
C4

C2

Cé4

F-22

Cé

C2

¢S5

C3

C4

C2

c2

Cé

Cl

Cae

cé

Cl

R2
Cl

R2
C4

R3
C5

R2
C3

R1
<5

R3
C2

R4
C5

R3
Ccl

R6
C4

R6
cé

R1
c3

TR-292-6-078
September 1966

R2
<5

L2
C2

R1
Ca

R4
Cl

R&4
2

R&4
Cé

R2
Cc3

Ré
C5

R1
CZ

R1
Cé4

Cl

C3

c6

C1

c5

Cé

Ca

Cl

Cé

Cl

<5

Cé

C4

cs

C3

C4

Cl

C5

cé6

C4

5

C3

C4

c2

C3

Cé

(4

c5

C3

3

<l

Qe

Cl C6



. EQUATION 16 (D)
} TR-292-6-078
' . September 1966

b S Fju(normalized) = 1.0
Fj (scaled) = ,203 x 10-4
R1 + R5 + R2
| ... C5 €3 ClC6C4C2 ClC6CHC2C5C3  C2C5C3ClCé Ca
R6 + R3

€3 Cl1 Cé6 C4 C2 C5 C4 C2 C5 €3 C1 Cso
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