13,311 research outputs found

    Non-positive curvature and the Ptolemy inequality

    Full text link
    We provide examples of non-locally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolemy.Comment: 11 pages, 2 figure

    Nonpositive curvature and the Ptolemy inequality

    Get PDF
    We provide examples of nonlocally, compact, geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally, compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolem

    Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    Full text link
    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.Comment: 8 pages, 3 figures, 1 tabl

    Time--Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem

    Full text link
    We study chaotic orbits of conservative low--dimensional maps and present numerical results showing that the probability density functions (pdfs) of the sum of NN iterates in the large NN limit exhibit very interesting time-evolving statistics. In some cases where the chaotic layers are thin and the (positive) maximal Lyapunov exponent is small, long--lasting quasi--stationary states (QSS) are found, whose pdfs appear to converge to qq--Gaussians associated with nonextensive statistical mechanics. More generally, however, as NN increases, the pdfs describe a sequence of QSS that pass from a qq--Gaussian to an exponential shape and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains and the phase space dynamics becomes more uniformly ergodic.Comment: 15 pages, 14 figures, accepted for publication as a Regular Paper in the International Journal of Bifurcation and Chaos, on Jun 21, 201

    Enhancing proton acceleration by using composite targets

    Full text link
    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.Comment: 16 pages, 9 figure

    Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

    Full text link
    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.Comment: 17 pages, 6 figure

    On the design of experiments to study extreme field limits

    Full text link
    We propose experiments on the collision of high intensity electromagnetic pulses with electron bunches and on the collision of multiple electromagnetic pulses for studying extreme field limits in the nonlinear interaction of electromagnetic waves. The effects of nonlinear QED will be revealed in these laser plasma experiments.Comment: 7 pages, 3 figures, 1 table; 15th Advanced Accelerator Concepts Workshop (AAC 2012), Austin, Texas, 10-15 June, 201
    • …
    corecore