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We provide examples of nonlocally, compact, geodesic Ptolemy metric spaces which

are not uniquely geodesic. On the other hand, we show that locally, compact, geodesic

Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is

CAT(0) if and only if it is Busemann convex and Ptolemy.

1 Introduction

A metric space X is called a Ptolemy metric space, if the inequality

|xy||uv| ≤ |xu| |yv| + |xv| |yu| (1.1)

is satisfied for all x, y,u, v ∈ X.

Our interest in Ptolemy metric spaces originates from an analysis of boundaries

of CAT(−1)-spaces when endowed with a Bourdon or Hamenstädt metric. Such bound-

aries are indeed Ptolemy metric spaces (see Ref. [8]).

Various aspects of such spaces have occasionally been studied, for instance in

Refs [5], [11], [13] and [18]. A smooth Riemannian manifold is of nonpositive sectional
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curvature, if and only if it is locally Ptolemy, and a locally Ptolemy Finsler manifold is

necessarily Riemannian (see Refs [12] and [5]). Furthermore, CAT(0)-spaces are geodesic

Ptolemy metric spaces (compare Section 2).

On first consideration, these observations might suggest that for geodesic metric

spaces the Ptolemy condition is some kind of nonpositive curvature condition. We show

that without any further conditions this is completely incorrect.

THEOREM 1.1. Let X be an arbitrary Ptolemy space, then X can be isometrically embed-

ded into a complete geodesic Ptolemy space X̂. �

As an application, take the four point Ptolemy space X = {x, y,m1,m2}with |xy| =

2 and all other nontrivial distances equal to 1. By Theorem 1.1 X can be isometrically

embedded into a geodesic Ptolemy space X̂. Since m1 and m2 are midpoints of x and y,

there are in X̂ two different geodesics joining the points x and y. In particular, the space

is not uniquely geodesic and hence far away from “nonpositively curved”.

The space X̂ constructed in Theorem 1.1 fails to be proper. Indeed, for proper

geodesic Ptolemy spaces the situation is completely different:

THEOREM 1.2. A proper, geodesic, Ptolemy metric space is uniquely geodesic. �

The following open question arises naturally.

Question: Is a proper, geodesic Ptolemy metric space necessarily a CAT(0)-

space?

The proof of Theorem 1.2 also works if one replaces “properness” through the

assumption that there exists a geodesic bicombing which varies continuously with its

endpoints. This will help us to prove that the property of being Ptolemy precisely dis-

tinguishes between the two most common nonpositive curvature conditions for geodesic

metric spaces, namely the one due to Alexandrov and the one due to Busemann.

THEOREM 1.3. A metric space is CAT(0) if and only if it is Ptolemy and Busemann

convex. �

We finish the introduction with a few comments on the theorems above.

The space X̂ constructed in Theorem 1.1 has several remarkable properties. There

is a huge collection of convex functions on X̂, in particular, all distance functions to

points are convex. However, from the geometrical or topological point of view the space

appears rather odd. Starting with finite spaces, for instance with the four point space

X as above, one obtains a space X̂ on which the distance functions dx to the points

x ∈ X ⊂ X̂ are affine. This is to our knowledge, the first example of very strange affine
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functions on metric spaces. The space X̂ is far from being a product, in contrast to the

structural results obtained in Refs. [16] and [10]. Theorem 1.1 shows that the Ptolemy

condition is sufficient to ensure that a metric space can be isometrically embedded

into a geodesic Ptolemy metric space. This seems to be particularly interesting, as

the problem of synthetic descriptions of (nonconvex) subsets of CAT(0)-spaces is very

difficult (cf. [9]). The properness, assumed in addition in Theorem 1.2, forces the space

to be contractible; in fact an absolute neighborhood retract. Moreover, it can be shown

that the distance functions to points are never affine in this case, in fact they are strictly

convex (cf. Remark 4.1). The proof of Theorem 1.3 confirms the following idea. If a

Busemann convex space is not CAT(0), then it contains an infinitesimal portion of a non-

Euclidean Banach space. This observation may be of some interest in its own right.

Finally, we want to draw the reader’s attention to Ref. [2], a recent joint work

of Berg and Nikolaev. In Ref. [2] the authors consider another four point condition on

metric spaces, the so called quadrilateral condition, which one derives from the Ptolemy

inequality by replacing the products of distances through the sums of their squares.

Especially in the light of our Theorem 1.1, it seems remarkable to us, that such a variant

of the Ptolemy inequality indeed forces a geodesic space to be CAT(0).

After a preliminary section, we prove Theorem 1.1 in Section 3, Theorem 1.2 in

Section 4 and Theorem 1.3 in Section 5.

2 Preliminaries

We start by recalling some easy examples. The real line R is a Ptolemy space. To show

this, consider points x, y, z,w in this order on the line. A completely trivial computation

shows that |xz||yw| = |xy||zw|+|yz||wx|, which implies that R is Ptolemy. Since the Ptolemy

condition on four points is Möbius invariant (see below), the equality above holds for

points x, y, z,w, which lie in this order on a circle in the plane R
2. This is the classical

Theorem of Ptolemy for cyclic quadrilaterals.

To show that the Euclidean space R
n is Ptolemy, consider again four points

x, y, z,w. Applying a suitable Möbius transformation we can assume that z is a midpoint

of y and w, that is |yz| = |zw| =
1
2 |yw|. For this configuration the Ptolemy inequality

is equivalent to |xz| ≤ 1
2 (|xy| + |xw|), which is just the convexity of the distance to the

point x.

Every CAT(0)-space is Ptolemy, since every four point configuration in a CAT(0)-

space admits a subembedding into the Euclidean plane ([4], p. 164).
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Möbius invariance: Let d,d ′ be two metrics on the same set X. The metrics are

called Möbius equivalent, if for all quadruples x, y, z,w of points

d(x, y)d(z,w)
d(x, z)d(y,w)

=
d ′(x, y)d ′(z,w)
d ′(x, z)d ′(y,w)

.

If d and d ′ are Möbius equivalent, then (X,d) is Ptolemy, if and only if (X,d ′) is

Ptolemy.

Indeed, the Ptolemy inequality says that for all quadruples of points the three

numbers of the triple

A = (d(x, y)d(z,w),d(x, z)d(y,w),d(x,w)d(y, z))

satisfy the triangle inequality. By dividing all three numbers by d(x,w)d(y, z), we see

that these numbers satisfy the triangle inequality if and only if the three numbers of the

triple

B =

(
d(x, y)d(z,w)
d(x,w)d(y, z)

,
d(x, z)d(y,w)
d(x,w)d(y, z)

, 1

)

satisfy the triangle inequality. In this expression we can replace d by d ′, and hence we

obtain the claim.

Basic properties of Ptolemy spaces: Here we can view a couple of basic proper-

ties of Ptolemy spaces which will be frequently used in the remainder of this article.

(P1) Every subset Y ⊂ X of a Ptolemy metric space X, endowed with the metric

inherited from X, is Ptolemy.

(P2) A metric space X is Ptolemy if and only if for every λ > 0 the scaled space λX

is Ptolemy.

Some of our arguments below will use the notions of ultrafilters and ultralimits;

a generalization of pointed Gromov–Hausdorff convergence. We refer the reader, not

familiar with these methods, to Refs. [4] and [15]. The symbol limω(Xn, xn) will denote

such an ultralimit (w.r.t. a nonprincipal ultrafilter ω).

As every metric property, the Ptolemy condition is invariant w.r.t. ultraconver-

gence.

(P3) For every sequence {(Xi, xi)}i of pointed Ptolemy spaces and every nonprin-

ciple ultrafilter ω, the ultralimit limω(Xi, xi) is a Ptolemy space.

Furthermore, we recall another important observation, which is due to Schoenberg (see

Ref. [19]). This property lies in the heart of Theorem 1.3.
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(P4) A normed vector space is an inner product space if and only if it is Ptolemy.

A subset of a normed vector space is called linearly convex, if with any two points

it contains the straight line segment connecting these points. A metric space is called

linearly convex, if it is isometric to a linearly convex subset of a normed vector space

and called flat, if it is isometric to a convex subset of an inner product space.

With this notation the properties above immediately yield the following

corollary.

COROLLARY 2.1. Let X be a Ptolemy space, then every linearly convex subset C ⊂ X of X

is flat. �

Let X be a metric space and x, y ∈ X. Then a point m ∈ X is called a midpoint

of x and y if |xm| =
1
2 |xy| = |my|. We say that X has the midpoint property, if for all

x, y ∈ X there exists a midpoint of x and y in X. The space X is called geodesic, if any

two points x, y ∈ X can be joined by a geodesic path, that is, to any two points x, y ∈ X

there exists an isometric embedding γ of the interval [0, |xy|] of the Euclidean line into X

such that γ(0) = x and γ(|xy|) = y. In this article we will always assume that geodesics

are parameterized affinely, that is, proportionally to arclength. A complete space with

the midpoint property is geodesic. Note that a Ptolemy metric space X which has the

midpoint property satisfies

|mz| ≤ 1
2

[|xz| + |yz|] (2.1)

for all x, y, z,m ∈ X such that m is a midpoint of x and y (cf. [7] for a discussion of such

spaces).

Inequality equation (2.1) implies a further notable property of geodesic Ptolemy

metric spaces, namely

(P5) In a geodesic Ptolemy metric space distance functions to points are convex.

Nonpositive curvature conditions and often convex spaces: The most common

nonpositive curvature conditions are due to Alexandrov and Busemann (cf. [1] and [6]).

We suppose that the reader interested in this article’s subject is familiar with

the notion of CAT(0)-spaces. Roughly speaking, a geodesic space X is called a CAT(0)-

space if all geodesic triangles in X are not thicker than their comparison triangles in the

Euclidean plane E
2 (for a precise definition we refer the reader, to Section II.1 in Ref. [4]).

The geodesic space X is said to be Busemann convex, if for any two (affinely

parameterized) geodesics α,β : I −→ X, the map t �→ |α(t)β(t)| is convex.
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REMARK 2.2. Every CAT(0)-space is Busemann convex and every Busemann convex space

is uniquely geodesic. However, there are Busemann convex spaces which are not CAT(0)-

spaces, as for instance all non-Euclidean normed vector spaces with strictly convex unit

norm balls.

The notion of Busemann convexity is not stable under limit operations. For

instance, a sequence of strictly convex norms on R
n may converge to a nonstrictly convex

norm. To overcome such a phenomenon, Bruce Kleiner introduced a weaker notion of

Busemann convexity in Ref. [14], which is stable with respect to limit operations. A

metric space X is called often convex, if there exists a convex geodesic bicombing, that

is, a map γ : X × X × [0, 1] → X, (x, y, t) �→ γx,y(t), such that t �→ γx,y(t) is a geodesic

with γx,y(0) = x, γx,y(1) = y, and for all x, y, x ′, y ′ and all (not necessarily surjective)

affine maps ϕ : I → [0, 1], ψ : I → [0, 1] defined on the same interval I the map s �→
|γx,y(ϕ(s))γx ′,y ′(ψ(s))| is convex. This convexity implies in particular, that γ is continuous

and that for points x ′, y ′ ∈ γx,y([0, 1]) the geodesic γx ′,y ′ is contained in γx,y. In particular,

γ defines a continuous midpoint map m(x, y) := γx,y(1/2).

We state the following properties of often convex spaces, that are direct conse-

quences of the definitions (cf. [14]).

(OC1) For every sequence {(Xi, xi)}i of often convex spaces and every nonprinciple

ultrafilter ω, the ultralimit limω(Xi, xi) is an often convex space.

(OC2) A metric space X is often convex if and only if for every λ > 0 the scaled

space λX is often convex.

(OC3) Let X be often convex. Then X is Busemann convex if and only if X is

uniquely geodesic.

3 Proof of Theorem 1.1

We explicitly construct the complete geodesic Ptolemy metric space X̂. First, we subse-

quently add midpoints to X in order to obtain a Ptolemy metric space M(X) which has

the midpoint property. Then we pass to an ultraproduct of M(X).

Let Σ denote the set of unordered tuples in X. Formally, Σ = {{x1, x2} ⊂ X |x1, x2 ∈
X}, that is Σ consists of all subsets of X with one or two elements.

On Σ we define a metric via

|{x1, x2}{y1, y2}| :=

{
1
4 [|x1y1| + |x1y2| + |x2y1| + |x2y2|] if {x1, y1} �= {y1, y2}

0 if {x1, x2} = {y1, y2}

}
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for all {x1, x2}, {y1, y2} ∈ Σ. This indeed defines a metric on Σ. In order to verify this, one

has to prove the triangle inequality

|{x1, x2}{y1, y2}| ≤ |{x1, x2}{z1, z2}| + |{z1, z2}{y1, y2}|

for all {x1, x2}, {y1, y2}, {z1, z2} ∈ Σ. If two of the tuples coincide, the validity of the

inequality above is evident, and otherwise it just follows by applying the triangle

inequality in X three times.

Moreover, the space M(X) := (Σ, | · |) is Ptolemy, that is, it satisfies

|{x1, x2}{y1, y2}| · |{z1, z2}{u1,u2}| ≤ |{x1, x2}{z1, z2}| · |{y1, y2}{u1,u2}|

+ |{x1, x2}{u1,u2}| · |{y1, y2}{z1, z2}|

for all {x1, x2}, {y1, y2}, {z1, z2}, {u1,u2} ∈ Σ. Once again, the validity of this inequality is

evident, if two of the tuples coincide, and otherwise it follows by applying the Ptolemy

inequality in X sixteen times.

Note further that X isometrically embeds into M(X) via x �→ {x, x}. Thus we may

identify X with a subset of M(X).

Now we define M0(X) := X as well as Mk+1(X) := M(Mk(X)) and set M(X) :=
∞⋃

k=0
Mk(X). From the considerations above it follows that this space is a Ptolemy metric

space. Moreover, it has the midpoint property. Namely, each pair x, y ∈ M(X) is contained

in some Mk(X) and {x, y} ∈ Mk+1(X) is a midpoint of x and y. Passing to an ultraproduct

X̂ of M(X), that is, X̂ := limω{(M(X), x)}n, the ultralimit of the constant sequence

{(M(X), x)}n w.r.t. some ultrafilter ω, where x ∈ M(X), we obtain a complete Ptolemy

metric space which has the midpoint property and therefore, is geodesic.

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. For two points p−,p+ ∈ X we consider the set

C(p−,p+) :=

{
x ∈ X | |p−p+| = |p−x| + |xp+|

}
.

Since the distance functions dp± := d(p±, ·) : X → R
+

0 are convex, the set C(p−,p+) is

convex. The convexity of dp± implies that these functions are affine on the set C(p−,p+).

PROOF OF THEOREM 1.2. Let γ1, γ2 : [0, L := |p−p+|] → C be geodesics connecting p− to p+.

Set xs := γ1(s) as well as ys := γ2(s) and let ms denote a midpoint of xs and ys. Since the
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Fig. 1 This figure visualizes the notation used in the proof.

functions dp± : C(p−,p+) → R
+

0 are affine, we obtain |p−ms| = s and |p+ms| = L − s. (See

Figure 1.)

Let now 0 < s < t ≤ L be arbitrary, then the triangle inequality yields

|msxt| + |msyt| ≥ |xtyt|, (4.1)

the Ptolemy inequality yields

|p−mt| · |xsys| ≤ |mtxs| · |p−ys| + |mtys| · |p−xs|

and therefore

|mtxs| + |mtys| ≥
t
s
· |xsys| = |xsys| + (t − s)

|xsys|

s
. (4.2)

On the other hand the Ptolemy property for the points ms, xt,mt, xs and ms, yt,mt, ys

yields

|msxt| · |mtxs| + |msyt| · |mtys| ≤
1
2

|xsys| · |xtyt| + 2(t − s) · |msmt|. (4.3)

Now, fix any 0 < s < L, set l := |xsys| ≥ 0, and choose a sequence sn → s with sn > s.

Let msn denote midpoints of xsn and ysn . By compactness, we can pass to a subsequence

msn → m, where m = ms is a midpoint of xs and ys. Now, we set

ϕn := |msnm|, εn := sn − s, a+
n := |msnxs|, b+

n := |msnys|

a−
n := |m, xsn |, b−

n := |mysn |, ln := |xsn ysn | and Q :=
l
s ≥ 0.

We have by Equations (4.1), (4.2) and (4.3):

a−
n + b−

n ≥ ln, a+
n + b+

n ≥ l + εn · Q, b+
n · b−

n + a+
n · a−

n ≤ 1
2

l · ln + 2εnϕn. (4.4)
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By triangle inequalities, we see |ln − l| ≤ 2εn, |a±
n −

1
2 l| ≤ 2εn, |b±

n −
1
2 l| ≤ 2εn,

hence passing to a subsequence, we find A+,A−,B+,B−,C ∈ [−2, 2] such that a±
n =

1
2 l + A±εn + o(εn), b±

n =
1
2 l + B±εn + o(εn) and ln = l + Cεn + o(εn). Since 2εnϕn = o(εn),

we derive from (4.4) that

B−
+ A− ≥ C, B+

+ A+ ≥ Q ≥ 0, (B+
+ B−) + (A+

+ A−) ≤ C.

Thus Q = 0, which implies γ1(s) = γ2(s). Since s ∈ (0, L) was arbitrary, we have γ1 = γ2. �

REMARK 4.1. It is not difficult to prove that in Theorem 1.2 one can replace “properness”

by the slightly weaker assumption of “local compactness”. A more involved argument

shows that a locally compact geodesic Ptolemy metric space is even strictly distance

convex, that is, that the inequality equation (2.1) is strict, whenever |xy| > ||xz| − |zy||.

The proof of this claim will be given elsewhere.

We finish this section with an important observation. In the proof of Theorem 1.2

we use the properness of X only to show that msn → m. Clearly, the existence of a

continuous midpoint map m : X×X → X also implies this convergence. As a consequence

we have the following:

THEOREM 4.2. Let X be a geodesic, Ptolemy space which admits a continuous midpoint

map. Then X is uniquely geodesic. �

Since often convex spaces admit continuous midpoint maps, the first statement

of the following corollary is an immediate consequence.

COROLLARY 4.3. Let X be an often convex and Ptolemy space. Then X is uniquely geo-

desic and hence, by (OC3), Busemann convex. Moreover, for every sequence of pointed

Busemann convex and Ptolemy metric spaces {(Xi, xi)}, every nonprinciple ultrafilter ω

and all λi ∈ R
+, the ultralimit limω(λiXi, xi) is Busemann convex. �

The second statement goes as follows: A Busemann convex space is in particular

often convex. By (OC1) this property and by (P3) the Ptolemy property is stable under

limits. Thus the limit is often convex and Ptolemy and hence Busemann convex.

5 Proof of Theorem 1.3

In this section we prove Theorem 1.3. First, we recall the notion of generalized and weak

angles (cf. Ref. [15]). Then we prove Proposition 5.3 (a version of the Toponogov rigidity
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theorem), that was shown independently by Rinow and Bowditch under slightly more

restrictive conditions (see Refs [17] and [3]), and which will finally allow us to obtain a

proof of our Theorem 1.3.

5.1 Ultrarays associated to geodesics and their enclosed angles

Ultrarays: Let X be a geodesic metric space and let γ be a geodesic in X emanating from

p ∈ X. Now take a nonprinciple ultrafilter ω, consider the ω-blow up (X̄, d̄) of X in p, that

is (X̄, d̄) := limω{(nX,p)}n, and define γ̄ : [0,∞) −→ X̄ through γ̄(s) := limω{(γ( s
n ),p)}n for

all s ∈ [0,∞). This map is indeed a geodesic ray in (X̄, d̄) emanating in {p}n ∈ X̄. We call

γ̄ the ultraray associated to γ (and ω).

Weak angles: In order to get a grip on the interplay between geodesics and their

associated ultrarays, we recall certain notions of angles.

Given three points p, x and y in a metric space X, consider corresponding

comparison points p ′, x ′ and y ′ in the Euclidean plane E
2. Let [p ′, x ′] and [p ′, y ′] denote

the geodesic segments in E
2 connecting p ′ to x ′ and p ′ to y ′. These segments enclose an

angle in p ′ and this angle is referred to as the (Euclidean) comparison angle of x and y at

p. We write ∠p(x, y) for this angle.

Let now X be a metric space and consider two geodesic segments γ1 and γ2

parameterized by arclength, both initiating in some p ∈ X. Then γ1 and γ2 are said

to enclose the angle ∠p(γ1, γ2) (in the strict sense) at p if the limit ∠p(γ1, γ2) :=

lim
s,t→0

∠p(γ1(s), γ2(t)) exists.

Recall that a normed vector space is an inner product space if and only if all

straight line segments emanating from the origin enclose an angle. However, even in

normed vector spaces that are not inner product spaces certain so-called generalized

angles do exist between any straight line segments initiating in a common point. Such

generalized angles were introduced in Ref. [15].

Let a, b > 0 and γ1 and γ2 be as above. then we say that γ1 and γ2 enclose a

generalized angle ∠g
p(γ1,a, γ2, b) at scale (a, b), if the limit

∠g
p(γ1,a, γ2, b) := lim

s→0
∠p(γ1(as), γ2(bs))

exists. If γ1 and γ2 enclose generalized angles at all scales (a, b) and, moreover, these

generalized angles do not depend on the particular scale, then we say that γ1 and γ2
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enclose the weak angle

∠w
p (γ1, γ2) := ∠g

p(γ1, 1, γ2, 1).

Ultrarays in Busemann convex spaces: Now let X be Busemann convex and γ1

and γ2 be geodesics on X with γ1(0) = p = γ2(0). Then, for all scales (a, b), the generalized

angle ∠g
p(γ1,a, γ2, b) exists. This is immediate, since s �→ |γ1(as)γ2(bs)|

s is monotonously

increasing.

Next consider the ultrarays γ1 and γ2 associated to γ1 and γ2. These ultrarays

satisfy

d̄
(
γ1(as), γ2(bs)

)
= s · d̄

(
γ1(a), γ2(b)

)
∀a, b, s > 0. (5.1)

Moreover, the existence of weak angles of geodesics γ1 and γ2 in a Busemann convex

space is equivalent to the existence of angles (in the strict sense) between their asso-

ciated ultrarays γ1 and γ2 in X̄.

LEMMA 5.1. Let X be Busemann convex, let γ1 and γ2 denote geodesics in X initiating

in a common point p ∈ X and let γ1 and γ2 denote their associated ultrarays. Then the

following properties are mutually equivalent.

(1) The rays γ1 and γ2 enclose a weak angle.

(2) The ultrarays γ1 and γ2 enclose an angle (in the strict sense).

(3) The union γ1(R+) ∪ γ2(R+) admits an isometric embedding into the Eu-

clidean plane E
2. �

PROOF. The equivalence of conditions (2) and (3) follows immediately from Equation

(5.1). Moreover, this equation also implies that the ultrarays γ1 and γ2 enclose an angle

if and only if they enclose a weak angle. Hence the equivalence of conditions (1) and (2)

is a consequence of 1
s d̄(γ1(as), γ2(bs)) = lim

ω
{n|γ1(a/n)γ2(b/n)|}n, and the fact that the

generalized angles between γ1 and γ2 exist for all scales in any case. �

PROPOSITION 5.2. Let X be Busemann convex. Assume that for all geodesic segments γ1

and γ2 with γ1(0) = p = γ2(0), the weak angle ∠w
p (γ1, γ2) exists. Then X is a CAT(0)-space.

�

PROOF. We first show that the weak angle satisfies the four axioms of an angle as

formulated in Ref. [4] II.1.8 (p. 162). Thus, we have to show
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(A1) ∠w
p (γ1, γ2) = ∠w

p (γ2, γ1)

(A2) ∠w
p (γ1, γ3) ≤ ∠w

p (γ1, γ2) + ∠w
p (γ2, γ3)

(A3) if γ2 is the restriction of γ1 to an initial segment, then ∠w
p (γ1, γ2) = 0

(A4) if the concatenation of γ1 = [p, x] and γ2 = [p, y] is a geodesic [x, y], then

∠w
p (γ1, γ2) = π

Now (A1), (A3), (A4) are trivially true by the definition. Since weak angles

between rays coincide (by Lemma 5.1) with the angles of their associated ultrarays and

since such angles satisfy the triangle inequality also (A2) holds. Furthermore we see that

∠w
p ([p, x], [p, y]) ≤ ∠p(x, y),which follows from the Busemann convexity. Now implication

(4) =⇒ (2) on p.161 of II.1.7 in Ref. [4] remains valid, if one replaces the Alexandrov angle

in condition (4) through the weak angle (cf. the paragraph after II.1.8 in Ref. [4]). This

implies that X is a CAT(0)-space. �

5.2 A convex hull proposition

The purpose of this subsection is to prove the following proposition.

PROPOSITION 5.3. (Compare [17], p. 432, par. 7 and p. 463, par. 20 as well as [3],

Lemma 1.1. and the remark after its proof) Let X be Busemann convex and let γ1, γ2 :

I −→ X be two linearly reparameterized (finite or infinite) geodesics in X such that

t �→ |γ1(t)γ2(t)| is affine. Then the convex hull C of γ1 and γ2 is a convex subset of a two-

dimensional normed vector space. �

Given a geodesic metric space X, a function f : X −→ R is called affine if its

restriction to each affinely parameterized geodesic γ in X satisfies f (γ(t)) = at + b for

some numbers a, b ∈ R that may depend on γ. We say that affine functions on X separate

points, if for each pair of distinct points x, x ′ ∈ X there is an affine function f : X −→ R

with f (x) �= f (x ′). With this terminology the following theorem has been proven in

Ref. [10].

THEOREM 5.4. (Theorem 1.1 in [10]) Let X be a geodesic metric space. If affine functions

on X separate points then X is isometric to a convex subset of a normed vector space

with a strictly convex norm. �

Using this result, we are able to provide the proof.

PROOF OF PROPOSITION 5.3. Let yt : It −→ X be the geodesic from γ1(t) to γ2(t) where

It = [0, |γ1(t)γ2(t)|] . Let C0 :=
⋃

t∈I yt(It).
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m0
m1 m2

g1
g2

g1(t1)

g1(t2)

g2(t1)

g2(t2)

yt1(s1)

yt2(s2)

Fig. 2 This figure visualizes our notation used in the proof of Proposition 5.3.

Claim: C0 is convex, that is, C0 = C.

In order to prove this claim, we may assume that γ1 and γ2 are closed. Then C0 is

closed and it is sufficient to prove that for t1, t2 ∈ I, s1 ∈ It1 and s2 ∈ It2 the midpoint of

yt1(s1) and yt2(s2) is contained in C0. (See Figure 2.)

Let m denote the unique midpoint map on X and set

m0 := m(yt1(s1), yt2(s2)), m1 := γ1

(
t1 + t2

2

)
, and m2 := γ2

(
t1 + t2

2

)
.

From the convexity of the distance function and the fact that

|m1m2| =
1
2

[
|γ1(t1)γ2(t1)| + |γ1(t2)γ2(t2)|

]
,

we deduce that |m1m2| = |m1m0| + |m0m2|. Thus m0 is contained in the geodesic y t1+t2
2

.

This proves the claim.

In fact, with the same reasoning as above we deduce more, namely that |m0m1| =

s1+s2
2 . This shows that the function F1 : C −→ R, given through F1(yt(s)) = s is affine on C.

Moreover, the function F2 : C −→ R, given through F2(yt(s)) = t is affine as well,

since the midpoint between yt1(s1) and yt2(s2) lies on the geodesic y t1+t2
2

.

Now the affine functions F1 and F2 separate the points of C. Thus we can apply

Theorem 5.4, which finishes the proof. �

5.3 Proof of Theorem 1.3

Every CAT(0)-space is both, Ptolemy and Busemann convex. It remains to show that a

Busemann convex and Ptolemy metric space is already CAT(0).
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In order to reach a contradiction, suppose that X is Ptolemy and Busemann

convex but not CAT(0). Then, due to Proposition 5.2 there do exist two geodesics γ1 and

γ2 that do not enclose a weak angle at their common starting point p = γ1(0) = γ2(0). Let

γ1 and γ2 denote the geodesic rays defined in Y = limω{nX,p}n as above. Then, due to

Lemma 5.1, γ1 and γ2 do not enclose an angle in {p}n ∈ Y either.

Now Y is Busemann convex by Corollary 4.3. Moreover, the function t �→
|γ1(t)γ2(t)| is linear. Thus, by Proposition 5.3, the convex hull C of γ1 and γ2 is isomet-

ric to a convex set of a two-dimensional normed vector space. Since Y is Ptolemy, C is

flat by Corollary 2.1. It follows that γ1 and γ2 enclose an angle, which yields the desired

contradiction. �
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