1,502 research outputs found

    Comparison of SIVmac239(352–382) and SIVsmmPBj41(360–390) enterotoxic synthetic peptides

    Get PDF
    AbstractTo characterize the active domain of the simian immunodeficiency virus (SIV) surface unit (SU) enterotoxin, peptides corresponding to the V3 loop of SIVmac239 (SIVmac) and SIVsmmPBj41 (SIVpbj) were synthesized and examined for enterotoxic activity, α-helical structure, and interaction(s) with model membranes. SIVmac and SIVpbj induced a dose-dependent diarrhea in 6–8-day-old mouse pups similar to full-length SU. The peptides mobilized [Ca2+]i in HT-29 cells with distinct oscillations and elevated inositol triphosphate levels. Circular dichroism analyses showed the peptides were predominantly random coil in buffer, but increased in α-helical content when placed in a hydrophobic environment or with cholesterol-containing membrane vesicles that are rich in anionic phospholipids. None of the peptides underwent significant secondary structural changes in the presence of neutral vesicles indicating ionic interactions were important. These data show that the SIV SU enterotoxic domain localizes in part to the V3 loop region and interacts with anionic membrane domains on the host cell surface

    Anomalous Roughening in Experiments of Interfaces in Hele-Shaw Flows with Strong Quenched Disorder

    Get PDF
    We report experimental evidences of anomalous kinetic roughening in the stable displacement of an oil-air interface in a Hele-Shaw cell with strong quenched disorder. The disorder consists on a random modulation of the gap spacing transverse to the growth direction (tracks). We have performed experiments varying average interface velocity and gap spacing, and measured the scaling exponents. We have obtained beta=0.50, beta*=0.25, alpha=1.0, alpha_l=0.5, and z=2. When there is no fluid injection, the interface is driven solely by capillary forces, and a higher value of beta around beta=0.65 is measured. The presence of multiscaling and the particular morphology of the interfaces, characterized by high slopes that follow a L\'evy distribution, confirms the existence of anomalous scaling. From a detailed study of the motion of the oil--air interface we show that the anomaly is a consequence of different local velocities over tracks plus the coupling in the motion between neighboring tracks. The anomaly disappears at high interface velocities, weak capillary forces, or when the disorder is not sufficiently persistent in the growth direction. We have also observed the absence of scaling when the disorder is very strong or when a regular modulation of the gap spacing is introduced.Comment: 14 pages, 17 figure

    Anomalous roughening of wood fractured surfaces

    Full text link
    Scaling properties of wood fractured surfaces are obtained from samples of three different sizes. Two different woods are studied: Norway spruce and Maritime pine. Fracture surfaces are shown to display an anomalous dynamic scaling of the crack roughness. This anomalous scaling behavior involves the existence of two different and independent roughness exponents. We determine the local roughness exponents ζloc{\zeta}_{loc} to be 0.87 for spruce and 0.88 for pine. These results are consistent with the conjecture of a universal local roughness exponent. The global roughness exponent is different for both woods, ζ\zeta = 1.60 for spruce and ζ\zeta = 1.35 for pine. We argue that the global roughness exponent ζ\zeta is a good index for material characterization.Comment: 7 two columns pages plus 8 ps figures, uses psfig. To appear in Physical Review

    Variance of transmitted power in multichannel dissipative ergodic structures invariant under time reversal

    Full text link
    We use random matrix theory (RMT) to study the first two moments of the wave power transmitted in time reversal invariant systems having ergodic motion. Dissipation is modeled by a number of loss channels of variable coupling strength. To make a connection with ultrasonic experiments on ergodic elastodynamic billiards, the channels injecting and collecting the waves are assumed to be negligibly coupled to the medium, and to contribute essentially no dissipation. Within the RMT model we calculate the quantities of interest exactly, employing the supersymmetry technique. This approach is found to be more accurate than another method based on simplifying naive assumptions for the statistics of the eigenfrequencies and the eigenfunctions. The results of the supersymmetric method are confirmed by Monte Carlo numerical simulation and are used to reveal a possible source of the disagreement between the predictions of the naive theory and ultrasonic measurements.Comment: 10 pages, 2 figure

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging

    Get PDF
    Kappa opioid receptor (KOR) modulation has been pursued in many conceptual frameworks for the treatment of human pain, depression, and anxiety. As such, several imaging tools have been developed to characterize the density of KORs in the human brain and its occupancy by exogenous drug-like compounds. While exploring the pharmacology of KOR tool compounds using positron emission tomography (PET), we observed discrepancies in the apparent competition binding as measured by changes in binding potential (BP ND , binding potential with respect to non-displaceable uptake). This prompted us to systematically look at the relationships between baseline BP ND maps for three common KOR PET radioligands, the antagonists [ 11 C]LY2795050 and [ 11 C]LY2459989, and the agonist [ 11 C]GR103545. We then measured changes in BP ND using kappa antagonists (naloxone, naltrexone, LY2795050, JDTic, nor-BNI), and found BP ND was affected similarly between [ 11 C]GR103545 and [ 11 C]LY2459989. Longitudinal PET studies with nor-BNI and JDTic were also examined, and we observed a persistent decrease in [ 11 C]GR103545 BP ND up to 25 days after drug administration for both nor-BNI and JDTic. Kappa agonists were also administered, and butorphan and GR89696 (racemic GR103545) impacted binding to comparable levels between the two radiotracers. Of greatest significance, kappa agonists salvinorin A and U-50488 caused dramatic reductions in [ 11 C]GR103545 BP ND but did not change [ 11 C]LY2459989 binding. This discrepancy was further examined in dose-response studies with each radiotracer as well as in vitro binding experiments

    On the SigmaN cusp in the pp -> pK+Lambda reaction

    Full text link
    Measurements of the pppK+Λpp \to pK^+\Lambda reaction at TpT_p = 2.28 GeV have been carried out at COSY-TOF. In addition to the Λp\Lambda p FSI and NN^* resonance excitation effects a pronounced narrow structure is observed in the Dalitz plot and in its projection on the pΛp\Lambda-invariant mass. The structure appears at the pppp \to NK+ΣK^+\Sigma threshold and is interpreted as Σ\SigmaN cusp effect. The observed width of 20 MeV/c2c^2 is substantially broader than anticipated from previous inclusive measurements. Angular distributions of this cusp structure are shown to be dissimilar to those in the residual pK+ΛpK^+\Lambda channel, but similar to those observed in the pK+Σ0pK^+\Sigma^0 channel

    Response of Wheat Fungal Diseases to Elevated Atmospheric CO2 Level

    Get PDF
    Infection with fungal pathogens on wheat varieties with different levels of resistance was tested at ambient (NC, 390 ppm) and elevated (EC, 750 ppm) atmospheric CO2 levels in the phytotron. EC was found to affect many aspects of the plant-pathogen interaction. Infection with most fungal diseases was usually found to be promoted by elevated CO2 level in susceptible varieties. Powdery mildew, leaf rust and stem rust produced more severe symptoms on plants of susceptible varieties, while resistant varieties were not infected even at EC. The penetration of Fusarium head blight (FHB) into the spike was delayed by EC in Mv Mambo, while it was unaffected in Mv Regiment and stimulated in Mv Emma. EC increased the propagation of FHB in Mv Mambo and Mv Emma. Enhanced resistance to the spread of Fusarium within the plant was only found in Mv Regiment, which has good resistance to penetration but poor resistance to the spread of FHB at NC. FHB infection was more severe at EC in two varieties, while the plants of Mv Regiment, which has the best field resistance at NC, did not exhibit a higher infection level at EC. The above results suggest that breeding for new resistant varieties will remain a useful means of preventing more severe infection in a future with higher atmospheric CO2 levels

    Systematic study of the pp -> pp omega reaction

    Full text link
    A systematic study of the production of omega-mesons in proton-proton-collisions was carried out in a kinematically complete experiment at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected using the large-acceptance COSY-TOF spectrometer at an external beam line at the Cooler Synchrotron COSY at Forschungszentrum J\"ulich. The total cross section, angular distributions of both omega-mesons and protons were measured and presented in various reference frames such as the overall CMS, helicity and Jackson frame. In addition, the orientation of the omega-spin and invariant mass spectra were determined. We observe omega-production to take place dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and, additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant omega-production via N^*-resonances was found, as proton angular distributions are almost isotropic and invariant mass spectra are compatible with phase space distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for omega-production was concluded from the orientation of the decay plane of the omega-meson. Although the Jackson angle distributions in the omega-p-Jackson frame are anisotropic we argue that this is not an indication of a resonance but rather a kinematical effect reflecting the anisotropy of the omega angular distribution. The helicity angle distribution in the omega-p-helicity frame shows an anisotropy which probably reflects effects of the omega angular momenta in the final state; this observable may be, in addition to the orientation of the omega decay plane, the most sensitive one to judge the validity of theoretical descriptions of the production process.Comment: 17 pages, 16 figures, accepted for publication in EPJ

    Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development

    Get PDF
    The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.Yi-Cheng Chang, Jan Manent, Jan Schroeder, Siew Fen Lisa Wong, Gabriel M. Hauswirth, Natalia A. Shylo, Emma L. Moore, Annita Achilleos, Victoria Garside, Jose M. Polo, Paul Trainor, Edwina McGlin
    corecore