18,593 research outputs found

    Solution of nonlinear algebraic equations characteristic of filter circuits Summary technical report

    Get PDF
    Digital computer program developed for solving nonlinear algebraic equations characteristic of filter circuit

    You and Your Neighbor

    Get PDF
    PDF pages: 2

    Artifacts with uneven sampling of red noise

    Get PDF
    The vast majority of sampling systems operate in a standard way: at each tick of a fixed-frequency master clock a digitizer reads out a voltage that corresponds to the value of some physical quantity and translates it into a bit pattern that is either transmitted, stored, or processed right away. Thus signal sampling at evenly spaced time intervals is the rule: however this is not always the case, and uneven sampling is sometimes unavoidable. While periodic or quasi-periodic uneven sampling of a deterministic signal can reasonably be expected to produce artifacts, it is much less obvious that the same happens with noise: here I show that this is indeed the case only for long-memory noise processes, i.e., power-law noises 1/fα1/f^\alpha with α>2\alpha > 2. The resulting artifacts are usually a nuisance although they can be eliminated with a proper processing of the signal samples, but they could also be turned to advantage and used to encode information.Comment: 5 figure

    Feedback in a cavity QED system for control of quantum beats

    Full text link
    Conditional measurements on the undriven mode of a two-mode cavity QED system prepare a coherent superposition of ground states which generate quantum beats. The continuous system drive induces decoherence through the phase interruptions from Rayleigh scattering, which manifests as a decrease of the beat amplitude and an increase of the frequency of oscillation. We report recent experiments that implement a simple feedback mechanism to protect the quantum beat. We continuously drive the system until a photon is detected, heralding the presence of a coherent superposition. We then turn off the drive and let the superposition evolve in the dark, protecting it against decoherence. At a later time we reinstate the drive to measure the amplitude, phase, and frequency of the beats. The amplitude can increase by more than fifty percent, while the frequency is unchanged by the feedback.Comment: 13 pages, 5 figures, ICAP 2012 23rd International Conference on Atomic Physic

    Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels

    Full text link
    Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the energy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided

    Speciation in the baboon and its relation to gamma-chain heterogeneity and to the response to induction of HbF by 5-azacytidine

    Get PDF
    In the baboon (Papio species), the two nonallelic gamma-genes produce gamma-chains that differ at a minimum at residue 75, where isoleucine (I gamma-chain) or valine (V gamma) may be present. This situation obtains in baboons that are sometimes designated as Papio anubis, Papio hamadryas, and Papio papio. However, in Papio cynocephalus, although the I gamma-chains are identical with those in the above mentioned types, the V gamma-chains have the substitutions ala----gly at residue 9 and ala----val at residue 23. The V gamma-chains of P. cynocephalus are called V gamma C to distinguish them from the V gamma A-chains of P. anubis, etc. A single cynocephalus animal has been found to have only normal I gamma-chains and I gamma C-chains (that is, glycine in residue 9, valine in 23, and isoleucine in 75). When HbF is produced in response to stress with 5-azacytidine, P. anubis baboons respond with greater production than do P. cynocephalus, and hybrids fall between. Minimal data on P. hamadryas and P. papio suggest an even lower response than P. cynocephalus. As HbF increases under stress, the ratio of I gamma to V gamma-chains changes from the value in the adult or juvenile baboon toward the ratio in the newborn baboon. However, it does not attain the newborn value. The V gamma A and V gamma C-genes respond differently to stress. In hybrids, the production of V gamma A- chains exceeds that of V gamma C-chains. A controlling factor in cis apparently is present and may be responsible for the species-related extent of total HbF production. It may be concluded that the more primitive the cell in the erythroid maturation series that has been subjected to 5-azacytidine, the more active is the I gamma-gene

    Appearance of the Single Gyroid Network Phase in Nuclear Pasta Matter

    Get PDF
    Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic network-like structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the most prominent result, we identify for the first time the {\it single gyroid} network structure of cubic chiral I4123I4_123 symmetry, a well known configuration in nanostructured soft-matter systems, both as a dynamical state and as a cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations. Most of them are isomeric states. The very small energy differences to the ground state indicate its relevance for structures in nuclear pasta.Comment: 7 pages, 4 figure
    • …
    corecore