29 research outputs found

    In vivo structure-mediated regulation of ribonucleotide reductase in S. pombe

    Get PDF
    Sufficient and balanced pools of deoxyribonucleotide triphophates (dNTPs) is crucial for high-fidelity DNA replication as well as correct DNA repair. The enzyme RiboNucleotide Reductase (RNR) catalyses NDP to dNDP and is therefore an essential enzyme by providing the “building blocks” to the cells. dNTPs production needs to be tightly regulated in order to minimize mutation frequencies and prevent genome instability. RNR in S. pombe is composed of two proteins, Cdc22R1 and Suc22R2, and has been described as a heterotetramer with a dimer of each subunit: the big subunit Cdc22R1 and the small subunit Suc22R2. S. pombe also posseses an RNR inhibitor: Spd1, as well as a second RNR regulator Spd2 which has been newly discovered. Spd1 has been demonstrated to inhibit RNR and to regulate its activity throughout the cell cycle. The detailed mechanism of the RNR regulation during the cell cycle or after DNA damage is not entirely clear, as are the means of inhibition by Spd1. In order to shed some light on the RNR complex and its regulation, we used various microscopybased methods to study RNR in vivo as well as in vitro. The data of this thesis suggest there are different forms of active RNR heterocomplexes, found throughout the cell cycle in the cytoplasm as well as in the nucleus. We propose that the precise stoichiometry of subunits in the complexes may vary, or that the complex conformation may be modified in an Spd1-dependent manner. In addition, treatment of the cells with a UV mimetic agent, 4NQO, seems to promote RNR regulation in an Spd1-dependent manner. On the contrary, inhibition of RNR by HydroxyUrea (HU) affects the RNR in a possible structure-related manner, independently of Spd1 or Spd2. The in vivo observations correlate with structural and/or oligomerization modifications of the RNR, representing a novel RNR regulation in S. pombe

    Aging and Spaceflight: Catalase Targeted to Mitochondria Alters Skeletal Structure and Responses to Musculoskeletal Disuse

    Get PDF
    Microgravity and ionizing radiation in the spaceflight environment pose multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration which resembles aging. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment. To accomplish this, we will use both wildtype (WT) mice and a well-established, genetically-engineered animal model (mCAT mice) which displays extended lifespan (Schriner et al. 2005). The animal model selected to test these ideas is engineered to quench ROS in mitochondria by targeted over-expression of the human catalase gene to the mitochondrial matrix. We showed previously that mCAT mice express the catalase transgene in skeletal tissues, bone forming osteoblasts, and bone resorbing osteoclasts. In addition, mCAT mice also display increased catalase activity in bone. Our findings revealed that exposure of adult, male, C57Bl/6J mice to simulated spaceflight (hindlimb unloading and gamma radiation) led to an increase in markers of oxidative damage (malondialdehyde, 4-hydroxynonenol) in skeletal tissue of WT mice but not mCAT mice. To extend our hypothesis to other, spaceflight-relevant tissues, we are performing a ground-based study simulating 30 days of spaceflight by hindlimb unloading to determine potential protective effects of mitochondrial catalase activity on aging of multiple tissues (cardiovascular, nervous and skeletal)

    Candidate Nutritional Countermeasure to Mitigate Adverse Effects of Spaceflight

    Get PDF
    Problem statement: During spaceflight, astronauts are subjected to microgravity as well as radiation, both of which have adverse effects on bones, soft tissues and organs, possibly by shared mechanisms. For this reason there is a need to identify broad-spectrum countermeasures to protect multiple tissues from both insults.6.The spaceflight environment poses multiple challenges to homeostasis, including microgravity and ionizing radiation. Together, these factors contribute to cellular stress, and effects include increased generation of reactive oxygen species (ROS), oxidative and DNA damage, cell cycle arrest and cell senescence. We have shown that a purified diet supplemented with dried plum (DP, 25) conferred full protection of cancellous structure from the rapid bone loss caused by exposure to ionizing radiation (Schreurs et al. 2016). Based on these promising results for a new countermeasure to prevent space radiation induced-tissue damage, we will conduct additional studies to advance the potential countermeasure to a higher CRL level. We will test the DP diet for its ability to prevent bone loss caused by simulated microgravity as well as exposure to radiation. This will be achieved by exposing mice to each factor (simulated microgravity and radiation) alone and in combination. We hypothesize that spaceflight conditions lead to oxidative damage and bone loss, and that DP, a dietary additive rich in antioxidant and polyphenolic compounds, is an effective countermeasure for multiple tissues, including bone. To test this hypothesis we will accomplish the following aims: Aim 1 Determine if the antioxidant rich diet DP prevents simulated microgravity-induced bone loss. Aim 2 Determine if DP prevents simulated spaceflight-induced bone loss (microgravity and radiation combined). Aim 3 Determine if DP is effective as a countermeasure for adverse effects of simulated microgravity and radiation on non-skeletal tissues (brain, eye)

    Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Get PDF
    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment

    Effects of Hindlimb Unloading and Ionizing Radiation on Murine Gene Expression in Skin and Bone

    Get PDF
    Long duration spaceflight causes a negative calcium balance and reduces bone density in astronauts. The underlying mechanisms of spaceflight-induced bone loss and the possible influences of both microgravity and radiation are not fully understood although emerging evidence suggests that these two factors may interact to result in increased bone loss. Previously, gene expression analysis of hair follicles from astronauts, as well as skin from space-flown mice, revealed changes in the expression of genes related to DNA damage and oxidative stress responses. These results resemble the responses of bone to spaceflight-like radiation and simulated weightlessness by hindlimb unloading (HU). Hence in this study, we initiated studies to determine whether skin can be used to predict the responses of bone to simulated microgravity and radiation. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR). To investigate the effects of irradiation andor HU on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated) (CT), hindlimb unloading (HU), 56Fe radiation (IR) and both HU+IR. Animals were euthanized 11 days post-IR, and results were analyzed by 1-way ANOVA. In skin samples, Cdkn1a was decreased to the same extent in HU and HU+IR (47 of CT). In addition, HU reduced FoxO3 expression (46 of CT) and IR increased Gadd45g expression 135 compared CT in skin. But in bone, HU increased FoxO3 expression 31 compared the level of CT. These results suggest that radiation and simulated weightlessness regulated simliar oxidative stress and cell cycle arrest genes in both skin and bone, although the time course and direction of changes may differ. This research may lead to the development of a relatively simple diagnostic tool for bone loss with the advantage that hair follicles and skin are relatively easy to acquire from subjects

    Influence of Social Isolation During Prolonged Simulated Weightlessness by Hindlimb Unloading

    Get PDF
    The hindlimb unloading (HU) model has been used extensively to simulate the cephalad fluid shift and musculoskeletal disuse observed in spaceflight with its application expanding to study immune, cardiovascular and central nervous system responses, among others. Most HU studies are performed with singly housed animals, although social isolation also can substantially impact behavior and physiology, and therefore may confound HU experimental results. Other HU variants that allow for paired housing have been developed although no systematic assessment has been made to understand the effects of social isolation on HU outcomes. Hence, we aimed to determine the contribution of social isolation to tissue responses to HU. To accomplish this, we developed a refinement to the traditional NASA Ames single housing HU system to accommodate social housing in pairs, retaining desirable features of the original design. We conducted a 30-day HU experiment with adult, female mice that were either singly or socially housed. HU animals in both single and social housing displayed expected musculoskeletal deficits versus housing matched, normally loaded (NL) controls. However, select immune and hypothalamic-pituitary-adrenal (HPA) axis responses were differentially impacted by the HU social environment relative to matched NL controls. HU led to a reduction in % CD4+ T cells in singly housed, but not in socially housed mice. Unexpectedly, HU increased adrenal gland mass in socially housed but not singly housed mice, while social isolation increased adrenal gland mass in NL controls. HU also led to elevated plasma corticosterone levels at day 30 in both singly and socially housed mice. Thus, musculoskeletal responses to simulated weightlessness are similar regardless of social environment with a few differences in adrenal and immune responses. Our findings show that combined stressors can mask, not only exacerbate, select responses to HU. These findings further expand the utility of the HU model for studying possible combined effects of spaceflight stressors

    Acute Effects of Simulated Space Radiation and Micro-Gravity on Cancellous Bone Loss in Mice Tibiae

    Get PDF
    Space radiation and micro-gravity are the two major obstacles impeding human exploration of Mars and beyond. Long-duration space flights expose astronauts to high doses of high linear energy transfer (LET) radiation as well as prolonged periods of skeletal disuse due to weightlessness. One important consequence of both radiation exposure and micro-gravity is acute bone loss. However, biological responses to different radiation types and combined radiation and micro-gravity environments remain unknown. Thus, the purpose of this study is to compare the acute effects of different radiation species and simulated weightlessness on bone degeneration for the purpose of developing accurate risk assessments of prolonged space flight. Mouse models were used to simulate space flight-relevant doses of different radiation types as well as weightlessness via hind-limb unloading. Three groups of mice (n 9) were irradiated with 1 Gy (Gray) H+, 1 Gy 56Fe, and 1 Gy combined H+ and 56Fe (dual ion) respectively and compared to sham irradiated (n 9) and 2 Gy 56Fe irradiated positive controls (n 6). Two groups of mice (n 9) were hind-limb unloaded for three days and then either sham irradiated or dual ion irradiated respectively, followed by subsequent hind-limb unloading for 11 days. Cancellous tissue from tibiae metaphyses were harvested 11 days post-irradiation for ex vivo micro-computed tomography analysis. Microarchitecture parameters including bone volume to total volume ratio (BVTV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular spacing (Tb.S), and connectivity density (Conn.D) will be quantified using a novel automated segmentation procedure developed in our lab. The anticipated results will be instrumental in developing counter-measures against micro-gravity and radiation-induced bone loss. Moreover, possible synergistic effects may provide insight into underlying mechanisms mediating biological response

    Ionizing Radiation Affects Gene Expression in Mouse Skin and Bone

    Get PDF
    Future long-duration space exploration beyond low earth orbit will increase human exposure to space radiation and microgravity conditions as well as associated risks to skeletal health. In animal studies, radiation exposure (greater than 1 Gy) is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Definitive measurements and detection of bone loss typically require large and specialized equipment which can make their application to long duration space missions logistically challenging. Towards the goal of developing non-invasive and less complicated monitoring methods to predict astronauts' health during spaceflight, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (IR). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and IR (0.5 Gy 56Fe 600 MeV/n and 0.5 Gy 1H 150 MeV/n), euthanized at one and 11 days post-irradiation (IR). To determine the extent of bone loss, tibiae were harvested and cancellous microarchitecture in the proximal tibia quantified ex vivo using microcomputed tomography (microCT). Statistical analysis was performed using Student's t-test. At one day post-IR, expression of FGF18 in skin was significantly greater (3.8X) than sham-irradiated controls, but did not differ at 11 days post IR. Expression levels of other genes associated with antioxidant response (Nfe2l2, FoxO3 and Sod1) and the cell cycle (Trp53, Cdkn1a, Gadd45g) did not significantly differ between the control and IR groups at either time point. Radiation exposure resulted in a 27.0% increase in FGF18-positive hair follicles at one day post-IR and returned to basal levels at 11 days post-IR. A similar trend was observed from FGF18 gene expression analysis of skin. In bone (femora), there was an increase in the expression of the pro-osteoclastogenic cytokine, MCP-1, one day after IR compared to non-irradiated controls. FGF18 expression in skin and MCP- 1 expression in bone were found to be positively correlated (P less than 0.002, r=0.8779). Further, microcomputed tomography analysis of tibia from these animals showed reduced cancellous bone volume (-9.9%) at 11 days post- IR. These results suggest that measurements of early radiation induced changes in FGF18 gene expression in skin may have value for predicting subsequent loss of cancellous bone mass. Further research may lead to the development of a relatively simple diagnostic tool for bone loss, with the advantage that hair follicles and skin are relatively easy to acquire from human subjects

    Mitigating HZE Radiation-Induced Deficits in Marrow-Derived Mesenchymal Progenitor Cells and Skeletal Structure

    Get PDF
    Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility

    Role of Oxidative Damage in Radiation-Induced Bone Loss

    Get PDF
    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues
    corecore