research

Effects of Hindlimb Unloading and Ionizing Radiation on Murine Gene Expression in Skin and Bone

Abstract

Long duration spaceflight causes a negative calcium balance and reduces bone density in astronauts. The underlying mechanisms of spaceflight-induced bone loss and the possible influences of both microgravity and radiation are not fully understood although emerging evidence suggests that these two factors may interact to result in increased bone loss. Previously, gene expression analysis of hair follicles from astronauts, as well as skin from space-flown mice, revealed changes in the expression of genes related to DNA damage and oxidative stress responses. These results resemble the responses of bone to spaceflight-like radiation and simulated weightlessness by hindlimb unloading (HU). Hence in this study, we initiated studies to determine whether skin can be used to predict the responses of bone to simulated microgravity and radiation. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR). To investigate the effects of irradiation andor HU on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated) (CT), hindlimb unloading (HU), 56Fe radiation (IR) and both HU+IR. Animals were euthanized 11 days post-IR, and results were analyzed by 1-way ANOVA. In skin samples, Cdkn1a was decreased to the same extent in HU and HU+IR (47 of CT). In addition, HU reduced FoxO3 expression (46 of CT) and IR increased Gadd45g expression 135 compared CT in skin. But in bone, HU increased FoxO3 expression 31 compared the level of CT. These results suggest that radiation and simulated weightlessness regulated simliar oxidative stress and cell cycle arrest genes in both skin and bone, although the time course and direction of changes may differ. This research may lead to the development of a relatively simple diagnostic tool for bone loss with the advantage that hair follicles and skin are relatively easy to acquire from subjects

    Similar works