11,016 research outputs found
RE-1000 free-piston Stirling engine update
A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given
A 1.82 m^2 ring laser gyroscope for nano-rotational motion sensing
We present a fully active-controlled He-Ne ring laser gyroscope, operating in
square cavity 1.35 m in side. The apparatus is designed to provide a very low
mechanical and thermal drift of the ring cavity geometry and is conceived to be
operative in two different orientations of the laser plane, in order to detect
rotations around the vertical or the horizontal direction. Since June 2010 the
system is active inside the Virgo interferometer central area with the aim of
performing high sensitivity measurements of environmental rotational noise. So
far, continuous not attempted operation of the gyroscope has been longer than
30 days. The main characteristics of the laser, the active remote-controlled
stabilization systems and the data acquisition techniques are presented. An
off-line data processing, supported by a simple model of the sensor, is shown
to improve the effective long term stability. A rotational sensitivity at the
level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the
required specification for the improvement of the Virgo suspension control
system, is demonstrated for the configuration where the laser plane is
horizontal
Anisotropic Electron Spin Lifetime in (In,Ga)As/GaAs (110) Quantum Wells
Anisotropic electron spin lifetimes in strained undoped (In,Ga)As/GaAs (110)
quantum wells of different width and height are investigated by time-resolved
Faraday rotation and time-resolved transmission and are compared to the
(001)-orientation. From the suppression of spin precession, the ratio of
in-plane to out-of-plane spin lifetimes is calculated. Whereas the ratio
increases with In concentration in agreement with theory, a surprisingly high
anisotropy of 480 is observed for the broadest quantum well, when expressed in
terms of spin relaxation times.Comment: 4 pages, 4 figures, revise
Design of small Stirling dynamic isotope power system for robotic space missions
Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory
Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process
We propose to produce neutron-rich nuclei in the range of the astrophysical
r-process around the waiting point N=126 by fissioning a dense
laser-accelerated thorium ion bunch in a thorium target (covered by a CH2
layer), where the light fission fragments of the beam fuse with the light
fission fragments of the target. Via the 'hole-boring' mode of laser Radiation
Pressure Acceleration using a high-intensity, short pulse laser, very
efficiently bunches of 232Th with solid-state density can be generated from a
Th layer, placed beneath a deuterated polyethylene foil, both forming the
production target. Th ions laser-accelerated to about 7 MeV/u will pass through
a thin CH2 layer placed in front of a thicker second Th foil closely behind the
production target and disintegrate into light and heavy fission fragments. In
addition, light ions (d,C) from the CD2 production target will be accelerated
as well to about 7 MeV/u, inducing the fission process of 232Th also in the
second Th layer. The laser-accelerated ion bunches with solid-state density,
which are about 10^14 times more dense than classically accelerated ion
bunches, allow for a high probability that generated fission products can fuse
again. In contrast to classical radioactive beam facilities, where intense but
low-density radioactive beams are merged with stable targets, the novel
fission-fusion process draws on the fusion between neutron-rich, short-lived,
light fission fragments both from beam and target. The high ion beam density
may lead to a strong collective modification of the stopping power in the
target, leading to significant range enhancement. Using a high-intensity laser
as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP),
estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass
range of A=180-190, thus enabling to approach the r-process waiting point at
N=126.Comment: 13 pages, 6 figure
Design of multihundredwatt DIPS for robotic space missions
Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established
Development of Advanced Stirling Radioisotope Generator for Space Exploration
Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions
En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration
The fission-fusion reaction mechanism was proposed in order to generate
extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid
neutron capture nucleosynthesis process (r-process). The production of such
isotopes and the measurement of their nuclear properties would fundamentally
help to increase the understanding of the nucleosynthesis of the heaviest
elements in the universe. Major prerequisite for the realization of this new
reaction scheme is the development of laser-based acceleration of ultra-dense
heavy ion bunches in the mass range of A = 200 and above. In this paper, we
review the status of laser-driven heavy ion acceleration in the light of the
fission-fusion reaction mechanism. We present results from our latest
experiment on heavy ion acceleration, including a new milestone with
laser-accelerated heavy ion energies exceeding 5 MeV/u
- …