39 research outputs found

    The LiaFSR three-component System of Bacillus subtilis

    Get PDF
    Soil bacteria are exposed to constant changes in temperature, moisture, and oxygen content. Additionally, they have to encounter different antimicrobial substances, which are produced by competing bacteria. Those agents often target the bacterial cell envelope, which is an essential structure composed of the cell wall and cell membrane. In order to counteract such life-threatening conditions, bacteria developed signal transducing systems to monitor their environment and to respond signal-specifically to any stress conditions, mostly by differential gene expression. Different principles of signal transducing systems have been evolved: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic function (ECF) sigma factors. Bacillus subtilis is a soil bacterium, which counteracts cell envelope stress by four different 2CSs (LiaSR, BceRS, PsdRS, and YxdJK) and at least three different ECF sigma factors (σX, σM, and σW). In the course of the present thesis, the LiaSR 2CS was investigated in detail. The LiaSR 2CS of B. subtilis is a cell envelope stress-sensing system that shows a high dynamic range of induction in response to cell wall antibiotics like bacitracin. It provides no resistance against its inducer molecules. Rather, it is a damage-sensing system that maintains the cell envelope integrity under stress conditions. The membrane-anchored histidine kinase (HK) LiaS and its cognate response regulator (RR) LiaR work together with a third protein, LiaF, which was identified as the inhibitor of the 2CS. Upon induction, the target promoter PliaI is induced by phosphorylated LiaR, leading to the expression of the liaIH-liaGFSR locus, with liaIH as being the most induced genes. In the first part of this thesis, the mechanisms of stimulus perception and signal transduction of the LiaFSR system were analyzed. Therefore, the native stoichiometry of the proteins LiaF, LiaS, and LiaR were determined genetically and biochemically with a resulting ratio of 18 to 4 to 1. We found out that maintaining this specific stoichiometry is crucial for the functionality of the LiaFSR system and thus a proper response to cell envelope stress. Changing the relative protein ratios by the overproduction of either LiaS or LiaR leads to a constitutive activation of the promoter PliaI. These data suggest a non-robust behavior of the LiaFSR system regarding perturbations of its stoichiometry, which stands in contrast to quantitative analyses of other well-known 2CSs. Furthermore, a HK-independent phosphorylation of the RR LiaR was observed. This happened in each case if the amount of LiaR exceeded those of LiaS, irrespective of the presence or absence of a stimulus. By using growth media supplied with different carbon sources, acetyl phosphate was identified as being the phosphoryl group-donor for LiaR under these conditions. Moreover, by performing a mutagenesis experiment, we obtained genetic evidence that LiaS is a bifunctional HK offering both a kinase and a phosphatase activity. In the second part of this thesis, the liaI promoter was used to generate a protein expression toolbox for the use in B. subtilis, referred to as the LIKE (from the German “Lia-kontrollierte Expression”) system. PliaI is a perfect candidate for driving recombinant protein expression. It is tightly regulated under non-inducing conditions showing no significant basal expression levels. Depending on the inducer molecule concentration, it is induced up to 1000-fold reaching a maximum already 30 minutes after addition of the inducer. Two expression vectors, an integrative and a replicative one, were constructed consisting of an alternative liaI promoter, which was optimized to enhance promoter strength. Additionally, different B. subtilis expression hosts were generated that possess liaIH deletions to prevent undesired protein production. The feasibility of the LIKE system was evaluated by using gfp and ydfG as reporter genes and bacitracin as inducer molecule. As a result, both proteins were successfully overproduced

    The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Get PDF
    Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (P-liaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results: Based on these traits of P-liaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the "LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the P-liaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the P-liaI promoter. Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of P-liaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories

    The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Get PDF
    Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min.Results: Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the " LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter.Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories. © 2012 Toymentseva et al.; licensee BioMed Central Ltd

    An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia

    Get PDF
    To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis

    Zur Epizootiologie der Aegyptianellose des Gefl�gels

    No full text

    K2P Channel Lipid Binding and Structural Impacts

    No full text
    Two-pore potassium channels (K₂ᴘ) are leak channels responsible for maintaining the resting membrane potential. While they are known to be activated by lysophospholipids and particularly sensitive to their lipid environment as mechanosensitive channels, their direct lipid interactions are poorly understood. Found in the nervous system, TREK channels are a subset of K₂ᴘ channels implicated in disease and responsible for pain sensation. Understanding these channels interactions with the surroundings can provide insight into the function of these and in turn the prevention or treatment. High resolution native mass spectrometry allows us detect post translational modifications as well as perform individual lipid binding measurements other techniques cannot detect. Interestingly, TRAAK is found to have two isoforms expressed in humans, each with unique lipid binding preferences, however both isoforms bind POPA avidly. During lipid screening, the protein is able to discriminate lipid tail length, unsaturation as well as the sn-1 linkage to the glycerol backbone resulting in various lipid binding affinities. When the channel is reconstituted in proteoliposomes, TRAAK is activated by POPA more than other PO lipids and can be measured in a dose dependent fashion. These fascinating results led us to perform the lipid studies on another member of the family TREK-2, a highly glycosylated member of the TREK family. After the improving the glycosylation, we were able to perform the lipid titrations as well as the functional assays. Even with a 45% sequence similarity to TRAAK, the lipid binding patterns proved to be very different, showing a higher affinity for most lipids except for a plasmalogen and a PIP lipid. The high affinity lipids most likely have a defined lipid binding spot that can be analyzed using structural studies. The Fab for TRAAK is particularly difficult to work with and binding is not reproducible increasing the difficulty for crystallography. A cryoEM structure of TRAAK in the presence of POPA was able to resolve a lipid binding site near the TM1 and 4. We have also explored alternative Fabs using helical epitope tags with high affinity in an attempt to find more viable options for structural studies

    Social and technological aspects of RU486

    No full text
    Executive summary: Examining the abortion debate from its beginnings to the present, it can be shown that the politics of RU486 abortion is the same as abortion in general. The legalization of RU486 in the United States has been such an extensive process due to contention from pro-life advocates. The reasons people oppose RU486 are the same reasons why they generally oppose abortion. RU486 is a pill that causes a non-surgical abortion, but is not yet legal in the United States. Many women in society who are looking for different abortion methods are uninformed about RU486 or other abortion methods. Using the most popular information medium today, the facts and opinions will be accessible to help inform individuals about different abortion methods and abortion politics. Through the use of interviews, books, magazine articles, and web pages, an educational web page about this pill and other abortion techniques will be created. By conducting interviews with representatives of organizations from two sides of the abortion debate, a more effective and informative representation of the pro-life or pro-choice organizations can be shown. The data collected from these interviews will serve as a support for the background information researched. Using the responses received from the interviews to reinforce the findings of the research, led to a conclusion that there are three major issues evident in this debate. These issues were common in the interview findings and the research. The first issue is the status of the embryo. The second issue is that the debate is not about data, but rather how to assess the data. Finally, the third issue is the role of a person in society. The purpose of this web page is to illustrate the political and technical aspects of RU486 and the abortion debate in an unbiased form, thus providing readers with the necessary information about RU486 and abortion to make educated decisions

    The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    No full text
    Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min.Results: Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the " LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter.Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories. © 2012 Toymentseva et al.; licensee BioMed Central Ltd

    The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    No full text
    Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min.Results: Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the " LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter.Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories. © 2012 Toymentseva et al.; licensee BioMed Central Ltd

    The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Get PDF
    Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min.Results: Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the " LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter.Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production factories. © 2012 Toymentseva et al.; licensee BioMed Central Ltd
    corecore