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1CS	 one‐component	system

2CS	 two‐component	system

ABC	 ATP	binding	cassette

AckA	 acetate	kinase

ATP	 adenosine‐5’‐triphosphate

cAMP	 cyclic	adenosine‐3’,5’‐monophosphate

CAMP	 cationic	antimicrobial	peptide

CAP	 catabolite	activator	protein

CESR	 cell	envelope	stress	response

CoA	 coenzyme	A	

CRE	 catabolite‐responsive	element

CTD	 C‐terminal	DNA‐binding	domain

DNA	 deoxyribonucleic	acid

ECF	 extracytoplasmic	function

e.g.	 for	example	

GlcNAc	 N‐acetylglucosamin

HK	 histidine	kinase

IPTG	 isopropyl‐β‐D‐thiogalactopyranoside

MLS	 macrolide‐lincosamide‐streptogramin

mRNA	 messenger	RNA

MurNAc	 N‐acetylmuramic	acid

OD	 optical	density

PCR	 polymerase	chain	reaction

Pta	 phosphotransacetylase

RNA	 ribonucleic	acid

RR	 response	regulator
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UMP	 uridine	monophosphate
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Summary	
 

Soil	bacteria	are	exposed	to	constant	changes	in	temperature,	moisture,	and	oxygen	content.	

Additionally,	they	have	to	encounter	different	antimicrobial	substances,	which	are	produced	

by	 competing	 bacteria.	 Those	 agents	 often	 target	 the	 bacterial	 cell	 envelope,	 which	 is	 an	

essential	structure	composed	of	the	cell	wall	and	cell	membrane.	In	order	to	counteract	such	

life‐threatening	 conditions,	 bacteria	 developed	 signal	 transducing	 systems	 to	monitor	 their	

environment	and	to	respond	signal‐specifically	to	any	stress	conditions,	mostly	by	differential	

gene	expression.	Different	principles	of	signal	transducing	systems	have	been	evolved:	one‐

component	 systems	 (1CSs),	 two‐component	 systems	 (2CSs),	 and	 extracytoplasmic	 function	

(ECF)	 sigma	 factors.	 Bacillus	 subtilis	 is	 a	 soil	 bacterium,	 which	 counteracts	 cell	 envelope	

stress	by	four	different	2CSs	(LiaSR,	BceRS,	PsdRS,	and	YxdJK)	and	at	least	three	different	ECF	

sigma	 factors	 (σX,	 σM,	 and	 σW).	 In	 the	 course	 of	 the	 present	 thesis,	 the	 LiaSR	 2CS	 was	

investigated	in	detail.	

The	LiaSR	2CS	of	B.	subtilis	is	a	cell	envelope	stress‐sensing	system	that	shows	a	high	dynamic	

range	of	induction	in	response	to	cell	wall	antibiotics	like	bacitracin.	It	provides	no	resistance	

against	 its	 inducer	molecules.	Rather,	 it	 is	a	damage‐sensing	system	that	maintains	 the	cell	

envelope	 integrity	 under	 stress	 conditions.	 The	membrane‐anchored	 histidine	 kinase	 (HK)	

LiaS	and	 its	cognate	response	regulator	(RR)	LiaR	work	together	with	a	 third	protein,	LiaF,	

which	was	identified	as	the	inhibitor	of	the	2CS.	Upon	induction,	the	target	promoter	PliaI	 is	

induced	 by	 phosphorylated	 LiaR,	 leading	 to	 the	 expression	 of	 the	 liaIH‐liaGFSR	 locus,	with	

liaIH	 as	 being	 the	 most	 induced	 genes.	 In	 the	 first	 part	 of	 this	 thesis,	 the	 mechanisms	 of	

stimulus	perception	and	signal	transduction	of	the	LiaFSR	system	were	analyzed.	Therefore,	

the	native	stoichiometry	of	the	proteins	LiaF,	LiaS,	and	LiaR	were	determined	genetically	and	

biochemically	 with	 a	 resulting	 ratio	 of	 18	 to	 4	 to	 1.	 We	 found	 out	 that	 maintaining	 this	

specific	stoichiometry	is	crucial	for	the	functionality	of	the	LiaFSR	system	and	thus	a	proper	

response	to	cell	envelope	stress.	Changing	the	relative	protein	ratios	by	the	overproduction	of	

either	LiaS	or	LiaR	leads	to	a	constitutive	activation	of	the	promoter	PliaI.	These	data	suggest	a	

non‐robust	 behavior	 of	 the	 LiaFSR	 system	 regarding	 perturbations	 of	 its	 stoichiometry,	

which	stands	in	contrast	to	quantitative	analyses	of	other	well‐known	2CSs.	Furthermore,	a	

HK‐independent	phosphorylation	of	the	RR	LiaR	was	observed.	This	happened	in	each	case	if	

the	 amount	 of	 LiaR	 exceeded	 those	 of	 LiaS,	 irrespective	 of	 the	 presence	 or	 absence	 of	 a	

stimulus.	 By	 using	 growth	media	 supplied	with	 different	 carbon	 sources,	 acetyl	 phosphate	

was	 identified	 as	 being	 the	 phosphoryl	 group‐donor	 for	 LiaR	 under	 these	 conditions.	
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Moreover,	by	performing	a	mutagenesis	experiment,	we	obtained	genetic	evidence	that	LiaS	

is	a	bifunctional	HK	offering	both	a	kinase	and	a	phosphatase	activity.	

In	the	second	part	of	this	thesis,	the	liaI	promoter	was	used	to	generate	a	protein	expression	

toolbox	for	the	use	in	B.	subtilis,	referred	to	as	the	LIKE	(from	the	German	“Lia‐kontrollierte	

Expression”)	system.	PliaI	is	a	perfect	candidate	for	driving	recombinant	protein	expression.	It	

is	 tightly	 regulated	 under	 non‐inducing	 conditions	 showing	 no	 significant	 basal	 expression	

levels.	 Depending	 on	 the	 inducer	 molecule	 concentration,	 it	 is	 induced	 up	 to	 1000‐fold	

reaching	 a	 maximum	 already	 30	 minutes	 after	 addition	 of	 the	 inducer.	 Two	 expression	

vectors,	an	integrative	and	a	replicative	one,	were	constructed	consisting	of	an	alternative	liaI	

promoter,	 which	 was	 optimized	 to	 enhance	 promoter	 strength.	 Additionally,	 different	 B.	

subtilis	 expression	 hosts	were	 generated	 that	 possess	 liaIH	 deletions	 to	 prevent	 undesired	

protein	production.	The	feasibility	of	the	LIKE	system	was	evaluated	by	using	gfp	and	ydfG	as	

reporter	 genes	 and	 bacitracin	 as	 inducer	 molecule.	 As	 a	 result,	 both	 proteins	 were	

successfully	overproduced.	
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Zusammenfassung	
 

Bodenbakterien	 sind	 ständig	 wechselnden	 Umweltbedingungen	 ausgesetzt.	 Enorme	

Schwankungen	 in	Temperatur,	Feuchtigkeits‐	und	Sauerstoffgehalt	sind	charakteristisch	 für	

dieses	Habitat.	Zusätzlich	kommen	sie	mit	 antimikrobiellen	Substanzen	 in	Kontakt,	die	von	

Nahrungskonkurrenten	sekretiert	werden.	Ein	typisches	Angriffsziel	dieser	Substanzen	stellt	

die	 Zellhülle,	 bestehend	 aus	 Zellwand	 und	 Zellmembran,	 dar,	 da	 diese	 eine	 essentielle	

Funktion	 als	 Schutzschild	 vor	 schädlichen	 äußeren	 Einflüssen	 innehat.	 Um	 diesen	

lebensbedrohlichen	 Bedingungen	 standzuhalten,	 bevor	 die	 Zelle	 ernsthaft	 Schaden	 nimmt,	

entwickelten	Bakterien	signaltransduzierende	Systeme,	um	ihre	Umgebung	überwachen	und	

spezifisch	auf	Zellwandstress	reagieren	zu	können.	Verschiedene	Arten	dieser	Systeme	haben	

sich	 entwickelt:	 Einkomponentensysteme,	 Zweikomponentensysteme	 und	 ECF	

(extracytoplasmic	function)	Sigma	Faktoren.	Das	Bodenbakterium	Bacillus	subtilis	besitzt	vier	

verschiedene	 Zweikomponentensysteme	 (LiaSR,	 BceRS,	 PsdR	 und	 YxdJK)	 und	 mindestens	

drei	verschieden	ECF	Sigma	Faktoren	(σX,	σM	und	σW),	um	Zellhüllstress	entgegenzuwirken.	

Im	Zuge	dieser	Arbeit	wurde	das	LiaSR	Zweikomponentensystem	detailliert	untersucht.	

Das	 LiaSR	 Zweikomponentensystem	 von	B.	 subtilis	 ist	 ein	 hochdynamisches	 Zellhüllstress‐

detektierendes	 System,	 welches	 in	 Gegenwart	 von	 Zellwandantibiotika,	 wie	 zum	 Beispiel	

Bacitracin,	 induziert	 wird.	 Es	 vermittelt	 jedoch	 keine	 Resistenz	 gegenüber	 induzierenden	

Molekülen,	 es	 ist	 vielmehr	 ein	 System,	 das	 Schäden	 in	 der	 Zellhülle	 detektiert,	 um	 die	

Funktionsfähigkeit	 der	 Zellhülle	 unter	 Stressbedingungen	 durch	 gezielte	 Expression	 der	

Targetgene	 aufrechtzuerhalten.	 Die	 membranständige	 Histidinkinase	 LiaS	 und	 das	

zugehörige	Antwortregulatorprotein	LiaR	stehen	unter	der	negativen	Kontrolle	eines	dritten	

Proteins,	 LiaF,	 welches	 als	 Inhibitor	 des	 Zweikomponentensystems	 identifiziert	 wurde.	 In	

Anwesenheit	 eines	 Stimulus	 wird	 der	 Targetpromotor	 PliaI	 durch	 den	 phosphorylierten	

Antwortregulator	 LiaR	 aktiviert,	 was	 zu	 einer	 Expression	 des	 liaIH‐liaGFSR	 Lokus	 führt,	

wobei	 liaIH	 die	 am	 stärksten	 induzierten	 Gene	 darstellen.	 Im	 ersten	 Teil	 dieser	 Arbeit	

wurden	 die	 Mechanismen	 der	 Stimuluswahrnehmung	 und	 Signalweiterleitung	 des	 LiaFSR	

Systems	 analysiert.	 Dafür	 wurde	 die	 natürliche	 Stöchiometrie	 der	 Proteine	 LiaF,	 LiaS	 und	

LiaR	 mit	 Hilfe	 von	 genetischen	 und	 biochemischen	 Methoden	 ermittelt,	 mit	 einem	

resultierenden	 Proteinmengenverhältnis	 von	 18:4:1.	 Die	 Aufrechterhaltung	 dieses	

spezifischen	Verhältnisses	 ist	entscheidend	für	die	Funktionsweise	des	LiaFSR	Systems	und	

demzufolge	auch	für	eine	adäquate	Reaktion	auf	Zellhüllstress.	Eine	Änderung	der	relativen	

Stöchiometrie	 durch	 eine	 Überproduktion	 von	 entweder	 LiaS	 oder	 LiaR	 führt	 zu	 einer	

konstitutiven	 Aktivierung	 des	 Promotors	 PliaI.	 Diese	 Ergebnisse	 deuten	 auf	 ein	 sensibles	
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Verhalten	 des	 LiaFSR	 Systems,	 bezüglich	 einer	 stochastischen	 Variabilität	 der	

Proteinmengenverhältnisse,	hin.	Diese	Beobachtungen	stehen	im	Gegensatz	zu	quantitativen	

Untersuchungen	 anderer	 Zweikomponentensysteme.	 Weiterhin	 wurde	 eine	 LiaS‐

unabhängige	 Phosphorylierung	 von	 LiaR	 untersucht.	 Sobald	 die	 Proteinmenge	 des	

Antwortregulators	LiaR	die	der	Histidinkinase	LiaS	übersteigt,	 ist	 eine	Aktivierung	von	PliaI	

messbar,	 wobei	 die	 An‐	 oder	 Abwesenheit	 eines	 Stimulus	 keine	 Rolle	 spielt.	 Mit	 Hilfe	 von	

Wachstumsmedien,	 denen	 verschiedene	 Kohlenstoffquellen	 hinzugefügt	 wurden,	 konnte	

Acetylphosphat	 als	 Phosphorylgruppendonor	 für	 LiaR	 identifiziert	 werden.	 Des	 Weiteren	

wurde	 die	 Histidinkinase	 LiaS	 bezüglich	 einer	 Bifunktionalität	 näher	 untersucht.	 Mit	 Hilfe	

eines	Mutageneseexperimentes	wurde	der	genetische	Beweis	erbracht,	dass	LiaS	eine	Kinase‐	

und	eine	Phosphataseaktivität	besitzt.	

Im	zweiten	Teil	der	vorliegenden	Arbeit	wurde	ein	neuartiges	Proteinexpressionssystem	zur	

Anwendung	 in	 B.	 subtilis	 etabliert,	 das	 sogenannte	 LIKE	 (Lia‐kontrollierte	 Expression)	

System.	Dieses	basiert	auf	den	Promotor	PliaI.	Dieser	Promotor	 ist	 sehr	gut	geeignet	 für	die	

Expression	 rekombinanter	 Proteine,	 da	 er	 nahezu	 kein	 basales	 Expressionsniveau	 unter	

nicht‐induzierenden	Bedingungen	besitzt	und	in	Abhängigkeit	der	Induktorkonzentration	bis	

zu	1000‐fach	 induziert	wird,	wobei	das	Aktivitätsmaximum	schon	30	Minuten	nach	Zugabe	

des	Induktors	erreicht	wird.	Zwei	Expressionsvektoren	wurden	konstruiert,	wobei	es	sich	um	

einen	 integrativen	 und	 einen	 replikativen	 Vektor	 handelt.	 Beide	 Vektoren	 besitzen	 einen	

alternativen	 liaI	 Promotor,	 der	 zur	 Verbesserung	 der	 Promotorstärke	 optimiert	 wurde.	

Außerdem	 wurden	 verschiedene	 B.	 subtilis	 Expressionsstämme	 entwickelt,	 die	 alle	

Mutationen	 im	 liaIH	 Operon	 aufweisen,	 um	 eine	 unerwünschte	 Proteinsynthese	 zu	

vermeiden.	Die	Funktionsfähigkeit	des	LIKE	Systems	wurde	mit	Hilfe	der	Reportergene	gfp	

und	 ydfG	 sowie	 Bacitracin	 als	 induzierendes	 Molekül	 evaluiert.	 Beide	 Proteine	 konnten	

erfolgreich	überproduziert	werden.	
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Parts	of	this	chapter	have	been	adapted	from:		

Schrecke,	K.*,	 Staroń,	A.*,	Mascher,	T.	 (2012).	Two‐component	systems	 in	bacteria.	Chapter	

11:	 Two‐Component	 signaling	 in	 the	 Gram‐positive	 envelope	 stress	 response:	

intramembrane‐sensing	histidine	kinases	and	accessory	membrane	proteins.	D.	Beier	and	R.	

Gross	(eds).	Horizon	Scientific	Press,	pp.	199‐229	

*	contributed	equally	
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1	Introduction	

The	 soil	 is	 a	 complex	 environment	 that	 is	 exposed	 to	 fluctuation	 in	 temperature,	moisture	

and	 oxygen	 content.	 Despite	 these	 facts,	 the	 soil	 is	 a	 habitat	 for	 a	 lot	 of	 different	

microorganisms,	 such	 as	 the	 Gram‐positive	 bacteria	 of	 the	 Firmicutes	 and	 Actinobacteria	

group.	 These	 bacteria	 have	 to	 be	 very	 adaptable	 to	 counteract	 life‐threatening	 conditions.	

Therefore,	 bacteria	 have	 to	monitor	 their	 environment	 constantly	 to	be	 able	 to	 respond	 to	

changes	before	they	suffer	lethal	damage.	They	developed	signal	transducing	systems,	which	

modulate	these	responses	in	order	to	survive	under	severe	stress	conditions	(Msadek,	1999).	

One	 important	example	 is	 the	detection	of	antimicrobial	 substances,	which	often	 target	 the	

bacterial	cell	envelope.	

	

1.1 Bacterial	cell	envelope	and	cell	wall	biosynthesis	–	a	short	overview	
 
The	envelope	is	a	crucial	structure	of	the	bacterial	cell.	It	gives	the	cell	its	shape,	protects	it	

against	environmental	threats	and	counteracts	the	high	internal	osmotic	pressure	(Delcour	et	

al.,	 1999,	 Höltje,	 1998).	 The	 cell	 envelope	 of	 Gram‐positive	 bacteria	 consists	 of	 the	

cytoplasmic	 membrane	 and	 a	 thick	 multilayered	 cell	 wall	 made	 up	 of	 peptidoglycan	 and	

teichoic	acids	(Foster	&	Popham,	2002).	It	differs	significantly	from	the	Gram‐negative	model,	

which	contains	a	much	thinner	peptidoglycan	layer	lacking	teichoic	acids.	In	addition,	the	cell	

envelope	 of	 Gram‐negative	 bacteria	 contains	 a	 periplasmic	 space	 surrounded	 by	 an	 outer	

membrane	(Silhavy	et	al.,	2010).	

The	 composition	 of	 peptidoglycan	 differs	 between	 species	 but	 its	 structure	 is	 always	 the	

same.	 It	 forms	a	polymer	consisting	of	 linear	glycan	strands	cross‐linked	by	short	peptides.	

The	 glycan	 strands	 are	 composed	 of	 alternating	 N‐acetylglucosamin	 (GlcNAc)	 and	 N‐

acetylmuramic	 acid	 (MurNAc)	 residues	 linked	 by	 β‐(1,4)‐glycosidic	 bonds.	 The	 MurNAc	

molecules	are	connected	by	pentapeptide	bridges,	which	lead	to	the	typical	net‐like	structure	

(Vollmer	 et	 al.,	 2008).	 The	 peptidoglycan	 biosynthesis	 starts	 in	 the	 cytoplasm	 with	 the	

conversion	 of	 fructose‐6‐phosphate	 in	GlcNAc.	Next,	 GlcNAc	 is	 activated	 by	 the	 addition	 of	

uridine	diphosphate	(UDP),	leading	to	UDP‐GlcNAc,	which	is	then	converted	to	UDP‐MurNAc.	

Afterwards,	 the	pentapeptide	 is	 attached	 to	UDP‐MurNAc	 followed	by	 its	 connection	 to	 the	

lipid	carrier	undecaprenol‐monophophate	at	the	inner	surface	of	the	cytoplasmic	membrane.	

This	complex	is	called	lipid	I.	The	second	sugar	molecule,	GlcNAc,	is	subsequently	coupled	to	

the	MurNAc	of	 lipid	I,	resulting	in	lipid	II.	This	cell	wall	precursor	is	then	transferred	to	the	

outer	 surface	 of	 the	 cytoplasmic	membrane,	where	 the	 disaccharide	 pentapeptide	 building	

block	 is	 incorporated	 into	 the	 already	 existing	 peptidoglycan	 net.	 The	 remaining	
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undecaprenol‐pyrophosphate	 is	 dephosphorylated	 and	 flipped	 back	 to	 the	 inner	 surface	 of	

the	 cytoplasmic	 membrane.	 Thus,	 the	 lipid	 carrier	 gets	 recycled	 to	 restart	 coupling	 and	

transfer	 of	 another	 cell	 wall	 precursor.	 This	 process	 is	 called	 lipid	 II	 cycle	 (Delcour	 et	 al.,	

1999,	Foster	&	Popham,	2002)	(Fig.	1.1).	

	

	

Figure	 1.1:	 Cell	wall	 biosynthesis	 of	Gram‐positive	 bacteria	 and	 its	 inhibition	by	 antibiotics.	
Crucial	 steps	 in	 cell	 wall	 biosynthesis	 are	 schematically	 indicated,	 together	 with	 their	 cellular	
localization.	GlcNAc,	N‐acetyl‐glucosamine;	MurNAc,	N‐acetyl‐muramic	acid;	UDP,	uridine	diphosphate;	
UMP,	uridine	monophosphate;	P,	phosphoryl	group;	Pi,	inorganic	phosphate.	Amino	acids	are	depicted	
as	small	gray	circles,	undecaprenol	by	the	waved	line.	Antibiotics	which	inhibit	crucial	steps	of	the	cell	
wall	 biosynthesis	 or	 target	 the	 cytoplasmic	 membrane	 (LL‐37	 and	 daptomycin)	 are	 highlighted	 in	
black.	 Lantibiotics	 is	 used	 as	 a	 collective	 term	 for	 actagardine,	 gallidermin,	 mersacidine,	 nisin,	 and	
subtilin.	

	

 

1.2 Bacteria	and	cell	envelope	stress	
 
Because	of	the	essential	functions	of	the	bacterial	cell	envelope,	it	is	a	prime	target	for	many	

antibiotics	 that	 interfere	 with	 cell	 wall	 biosynthesis	 (Jordan	 et	 al.,	 2008)	 (see	 Fig.	 1.1).	

Production	of	antibiotics	can	be	viewed	as	a	means	of	interspecies	competition	for	survival	in	

complex	and	densely	populated	habitats,	 such	as	 the	soil	habitat	 (D'Costa	et	al.,	2006).	Not	

surprisingly,	soil	bacteria	are	amongst	the	most	prolific	antibiotic	producers	(Berdy,	2005).	

In	 order	 to	 compete	 with	 other	 organisms,	 soil	 bacteria	 also	 need	 to	 have	 cunning	 and	
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sensitive	reflexes	to	respond	to	antibiotic	threat	before	the	cells	can	take	irreparable	damage.	

Hence,	both	production	of	and	resistance	against	antibiotics	are	part	of	the	microbial	warfare	

in	complex	habitats.	

The	ability	of	a	bacterial	 cell	 to	respond	to	changing	environmental	conditions	necessitates	

the	presence	of	signal	transducing	systems	that	respond	to	specific	cues	and	initiate	stimulus‐

specific	 cellular	 responses,	 usually	 through	 differential	 gene	 expression.	 In	 bacteria,	 three	

major	 regulatory	 principles	 are	 involved	 in	 transmembrane	 signaling:	 one‐component	

systems	 (1CSs),	 two‐component	 systems	 (2CSs),	 and	 alternative	 sigma	 factors	 of	 the	

extracytoplasmic	 function	(ECF)	 family	 (Staroń	&	Mascher,	2010).	 In	1CSs,	 the	sensory	and	

regulatory	domains	are	 fused	on	a	single	polypeptide	chain	(Ulrich	et	al.,	2005).	Because	of	

this	 restrictive	 protein	 architecture,	 such	 systems	 predominantly	 respond	 to	 intracellular	

signals	 and	 play	 only	 a	minor	 role	 in	 transmembrane	 signal	 transduction.	 In	 contrast,	 ECF	

sigma	 factors	 and	 2CSs	 –	which	 separate	 sensory	 and	 regulatory	 functions	 on	 two	distinct	

proteins	 –	 can	 easily	 facilitate	 responses	 to	 intracellular,	 membrane‐derived,	 and	

extracytoplasmic	signals	(Mascher	et	al.,	2006,	Staroń	et	al.,	2009).	Very	often,	such	signaling	

systems	are	 involved	 in	sensing	stress	conditions	which	can	potentially	harm	the	microbial	

cell.	 In	 response,	 they	 mount	 protective	 countermeasures,	 very	 often	 through	 differential	

expression	 of	 target	 genes	 that	 are	 involved	 in	 stress‐resistance	 (Storz	 &	 Hengge‐Aronis,	

2000).	

This	 thesis	 focuses	 on	 one	 2CS	 that	 is	 involved	 in	 orchestrating	 the	 cell	 envelope	 stress	

response	 (CESR)	 in	Gram‐positive	bacteria	with	a	 low	G+C	content	 (Firmicutes).	A	 classical	

2CS	 consists	 of	 a	 membrane‐anchored	 histidine	 kinase	 (HK)	 and	 a	 cytoplasmic	 response	

regulator	 (RR).	 The	HK	 functions	 as	 sensor	 protein,	which	 is	 able	 to	 sense	 specific	 stimuli	

with	 its	 N‐terminal	 extracellular	 input	 domain.	 Thereupon,	 the	 HK	 undergoes	 an	

intramolecular	 conformational	 change	 leading	 to	 the	 autophosphorylation	 of	 a	 conserved	

histidine	 residue	 within	 the	 C‐terminal	 transmitter	 domain.	 The	 cognate	 RR	 uses	 this	

phospho‐HK	 as	 phosphoryl	 group‐donor,	 resulting	 in	 the	 phosphorylation	 of	 a	 conserved	

aspartate	residue	within	its	N‐terminal	receiver	domain.	This	phosphorylation	activates	the	

RR,	 which	 often	 leads	 to	 differential	 gene	 expression	 through	 binding	 to	 individual	 target	

promoter	regions	by	 its	C‐terminal	effector	domain.	The	system	can	be	set	back	to	the	pre‐

stimulus	 state	 via	 dephosphorylation	 of	 the	 RR,	 catalyzed	 by	 a	 phosphatase	 activity	 of	 the	

cognate	HK,	the	RR	itself,	or	an	external	phosphatase	(Mascher	et	al.,	2006,	Stock	et	al.,	2000).	

The	 response	 of	 the	 Gram‐positive	 model	 organism	 B.	 subtilis	 to	 antibiotics	 has	 been	

particularly	 well	 studied	 during	 the	 last	 10	 years,	 both	 at	 the	 level	 of	 differential	 gene	

expression	and	protein	production,	by	extensively	applying	transcriptomics	and	proteomics	
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approaches	 (Wecke	&	Mascher,	 2011).	 In	 case	 of	 cell	wall	 antibiotics,	 the	 underlying	CESR	

regulatory	network	was	thoroughly	characterized	and	shown	to	consist	of	at	least	three	ECF	

sigma	 factors	 and	 four	 2CSs	 (Jordan	 et	 al.,	 2008)	 (Fig.	 1.2).	 Of	 the	 four	 2CSs,	 three	 are	

paralogous	to	each	other,	the	BceRS,	PsdRS,	and	YxdJK	2CSs.	They	are	referred	to	as	BceRS‐

like	 2CSs,	 based	 on	 the	 best‐understand	 example.	 All	 of	 them	 are	 associated	 with	 genes	

encoding	an	ABC	transporter,	which	are	strongly	induced	in	the	presence	of	specific	cell	wall	

antibiotics	and	mediate	antibiotic	resistance	against	 them	(Jordan	et	al.,	2008,	Staroń	et	al.,	

2011).	The	LiaSR	system	 is	 the	 fourth	CESR	2CS	of	B.	subtilis,	which	responds	 to	a	broader	

range	of	cell	wall	antibiotics	(Fig.	1.2).	While	its	physiological	role	is	still	unclear	in	B.	subtilis,	

it	 seems	 to	 represent	 the	 primary	 general	 CESR	 system	 in	many	 other	Firmicutes	 bacteria	

(Jordan	et	al.,	2008).	Both	BceRS‐	and	LiaSR‐like	2CSs	are	widely	distributed	in	this	phylum	

and	all	systems	investigated	to	date	in	a	range	of	Firmicutes	bacteria	are	involved	in	specific	

cell	wall	antibiotic	resistances	or	more	general	CESRs	(Jordan	et	al.,	2008).	

	

	

Figure	1.2:	Regulatory	network	of	the	CESR	of	B.	subtilis.	ECF	σ	factors	and	the	corresponding	anti‐
σ	 factors	 are	 illustrated	 in	 medium	 gray.	 2CSs	 are	 marked	 in	 dark	 gray.	 Transmembrane	 sensor	
proteins	are	shown	on	top,	the	regulator	proteins	below.	The	target	genes	are	depicted	at	the	bottom.	
Arrows	 indicate	 activation,	 T‐shaped	 lines	 repression.	 Dotted	 lines	 show	 cross	 regulation.	 Selected	
antibiotics	 that	 induce	 the	systems	are	 illustrated	above.	Bac,	bacitracin;	CAP,	 cationic	 antimicrobial	
peptides;	 Cep,	 cephalosporin;	 Fos,	 fosfomycin;	 Lan,	 lantibiotics;	 Van,	 vancomycin;	 CM,	 cytoplasmic	
membrane	(Jordan	et	al.,	2008,	modified).	
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The	focus	of	this	thesis	is	the	2CS	LiaSR	of	B.	subtilis	which	will	be	described	in	detail	in	the	

following	sections.	

	

1.3 LiaFSR‐like	systems	
 

1.3.1 The	paradigm:	LiaFSR	of	B.	subtilis	
 
LiaFSR‐like	 cell	 envelope	 stress‐sensing	 signal	 transduction	 systems	 are	 widely	 conserved	

among	 the	 Firmicutes	 group	 of	 Gram‐positive	 bacteria.	 The	 best	 studied	 system	 so	 far	 is	

LiaFSR	 of	B.	 subtilis,	 which	was	 originally	 identified	 in	 the	 course	 of	 investigations	 on	 the	

bacitracin	stimulon	in	this	organism	(Mascher	et	al.,	2003)	(Fig.	1.3).	LiaSR	is	one	of	four	cell	

envelope	 stress	 sensing	 2CSs	 in	 B.	 subtilis.	 Its	 name	 stands	 for	 “lipid	 II	 cycle	 interfering	

antibiotic	sensor	and	response	regulator”.	LiaSR	does	primarily	respond	to	 the	presence	of	

cell	 wall	 antibiotics	 that	 interfere	 with	 the	 lipid	 II	 cycle,	 such	 as	 bacitracin,	 vancomycin,	

ramoplanin,	 or	 cationic	antimicrobial	peptides	 (CAMPs)	 (Mascher	et	al.,	 2004,	Pietiäinen	et	

al.,	 2005)	 (Fig.	 1.2),	 but	 also	 to	 detergents,	 organic	 solvents	 (e.g.	 ethanol,	 phenol),	 and	 to	

more	unspecific	stimuli	like	secretion	stress,	alkaline	shock,	and	filamentous	phage	infection,	

although	to	a	weaker	degree	(Hyyryläinen	et	al.,	2005,	Mascher	et	al.,	2004,	Petersohn	et	al.,	

2001,	Pietiäinen	et	al.,	2005,	Tam	le	et	al.,	2006,	Wiegert	et	al.,	2001).	A	strong	induction	by	

membrane	 perturbing	 agents,	 such	 as	 daptomycin	 and	 rhamnolipids,	 was	 shown	 more	

recently	(Hachmann	et	al.,	2009,	Wecke	et	al.,	2011,	Wecke	et	al.,	2009).	

The	 HK	 LiaS	 belongs	 to	 the	 subgroup	 of	 so‐called	 intramembrane‐sensing	 (IM)‐HKs	

possessing	two	membrane‐spanning	regions	linked	by	a	short	extracytoplasmic	loop	of	only	

14	 amino	 acids	 (Mascher,	 2006,	Mascher	et	al.,	 2006).	 The	 second	 transmembrane	helix	 is	

connected	 to	 a	 cytoplasmic	HAMP	domain,	which	 is	most	 likely	 involved	 in	 intramolecular	

signal	 transfer	 processes	 (Hulko	 et	al.,	 2006).	 The	 conserved	HK	 core	 of	 LiaS	 contains	 the	

HisKA_3/dimerization	 (also	DHp,	 standing	 for	dimerization	 and	histidine	phosphotransfer)	

domain	 and	 the	 ATP‐binding	 domain	 (HATPase_c	 =	 Histidine‐Kinase‐like‐ATPase).	 The	

invariant	 histidine	 residue	 of	 the	 autophosphorylation	 site	 is	 located	 within	 the	 HisKA_3	

domain.	

LiaR	 is	a	 typical	 two‐domain	RR	protein	with	a	conserved	N‐terminal	 receiver	domain	 that	

contains	the	invariant	aspartate	residue,	and	a	variable	C‐terminal	DNA‐binding	domain.	It	is	

a	 member	 of	 the	 NarL/FixJ	 family	 of	 RRs	 sharing	 the	 characteristic	 helix‐turn‐helix	 motif	

responsible	for	binding	to	DNA	(Galperin,	2006,	Galperin,	2010).	
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Figure	 1.3:	 Schematic	 representation	 of	 the	 genes	 and	 proteins	 of	 the	 LiaFSR	 system	 of	 B.	
subtilis.	 Genes	 and	 proteins	 are	 marked	 in	 dark	 gray	 (2CS)	 and	 medium	 gray	 (LiaF).	 Other	
genes/proteins	belonging	to	the	lia	operon	are	labeled	in	light	gray.	Genes	flanking	the	lia	operon	are	
white.	Promoters	are	marked	with	bent	arrows,	terminators	are	represented	by	vertical	bars.	

	

The	LiaSR	2CS	is	genetically	and	functionally	linked	to	a	third	protein,	LiaF.	This	membrane	

protein	 contains	 three	 or	 four	 membrane‐spanning	 regions	 in	 its	 N‐terminus.	 The	

functionally	important	C‐terminus	of	LiaF	features	no	obvious	conserved	domains.	LiaF	was	

identified	 as	 controlling	 the	 LiaSR‐dependent	 signal	 transduction	 in	 a	 repressive	 manner.	

Therefore,	 LiaF	 together	 with	 LiaSR	 constitutes	 a	 three‐component	 system	 (Jordan	 et	 al.,	

2006).	

LiaFSR	are	 encoded	by	 the	 last	 three	genes	of	 the	hexa‐cistronic	operon	 liaIH‐liaGFSR	 (Fig.	

1.3),	whose	expression	is	controlled	in	an	autoregulative	manner.	A	basal	expression	level	of	

the	 last	 four	 genes,	 liaGFSR,	 is	 ensured	 by	 a	weak	 constitutive	 promoter	 upstream	 of	 liaG	

(PliaG)	(Jordan	et	al.,	2006).	Inducing	conditions	lead	to	a	strong	LiaR‐dependent	activation	of	

the	 promoter	 located	 directly	 upstream	 of	 liaI	 (PliaI)	 resulting	 in	 an	 expression	 of	 two	

different	 transcripts:	 a	 major	 1.1	 kb	 transcript	 containing	 liaIH	 and	 a	 4	 kb	 transcript	

encompassing	 the	 entire	 locus.	 This	 pattern	 is	 due	 to	 a	weak	 terminator	 structure	 located	

downstream	of	liaH	(Mascher	et	al.,	2004).	PliaI	seems	to	be	the	only	relevant	target	promoter	

controlled	 by	 LiaR,	 but	 the	 physiological	 role	 of	 LiaIH	 remains	 unclear	 so	 far	 (Wolf	 et	 al.,	

2010).	LiaH	is	a	member	of	the	phage	shock	protein	(Psp)	family.	LiaI	and	LiaG	are	membrane	

proteins	of	unknown	function.	

In	the	absence	of	any	external	stress,	the	liaI	promoter	is	transiently	induced	at	the	onset	of	

stationary	phase	(Jordan	et	al.,	2007)	(Fig.	1.4).	During	this	transition	state	from	exponential	



CHAPTER 1 Introduction 

8 
 

to	the	stationary	growth	phase,	B.	subtilis	cells	undergo	an	intricate	differentiation	program	

to	 adapt	 to	 non‐optimal	 living	 conditions.	 A	 complex	 regulatory	 cascade	 is	 initiated	 at	 this	

time	point	that	orchestrates	this	transition	from	vegetative	cells	to	the	formation	of	dormant	

endospores	 (Errington,	 2003,	 Msadek,	 1999,	 Phillips	 &	 Strauch,	 2002).	 During	 vegetative	

growth,	the	transition	state	regulator	AbrB	represses	PliaI	via	direct	binding	to	the	promoter	

sequence,	 thereby	 preventing	 PliaI	 activity.	Moreover,	 the	 repressor	 protein	 LiaF	 keeps	 the	

LiaFSR	system	switched	off	in	the	absence	of	suitable	extracellular	stimuli.	The	transition	to	

stationary	phase	leads	to	increasing	amounts	of	phosphorylated	Spo0A,	the	master	regulator	

of	 sporulation,	 which	 inhibits	 abrB	 expression,	 thus	 releasing	 PliaI	 from	 AbrB‐dependent	

repression.	 Simultaneously,	 a	 so	 far	 unknown	 stimulus	 activates	 the	 HK	 LiaS	 (and/or	 its	

release	 from	LiaF	 repression)	 that	 in	 turn	activates	LiaR,	 resulting	 in	 the	expression	of	 the	

liaIH	operon.	The	observed	induction	is	significantly	weaker	(approx.	10‐15	fold)	compared	

to	the	response	to	strong	inducers	(approx.	100‐fold)	(Jordan	et	al.,	2007).	

	

	

Figure	1.4:	Transition	state	induction	of	PliaI	in	B.	subtilis.	The	regulatory	proteins	involved	during	
exponential	growth	(right)	and	the	transition	state	(left)	are	named	and	marked	in	light,	medium,	and	
dark	gray.	Arrows	indicate	activation,	T‐shaped	lines	repression.	The	genomic	context	of	PliaI	is	shown	
schematically	below,	including	the	LiaR‐	and	AbrB‐binding	sites.	See	text	for	details.	

	

In	 summary,	 LiaFSR‐dependent	 gene	 expression	 is	 induced	 by	 cell	 envelope	 perturbating	

conditions	and	 is	also	embedded	 in	 the	 transition	state	regulation	of	B.	subtilis	 through	 the	
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interplay	of	at	least	five	regulatory	proteins:	LiaR,	LiaS,	LiaF,	AbrB,	and	Spo0A	(Jordan	et	al.,	

2007)	(Fig.	1.4).	The	biological	significance	of	this	induction	is	still	unclear.	

	

1.3.2 Distribution	and	conservation	of	LiaFSR‐like	regulatory	systems	
 
As	 already	 mentioned,	 LiaFSR‐like	 systems	 are	 widely	 conserved	 within	 the	 group	 of	

Firmicutes	bacteria,	with	the	exception	of	the	genera	Clostridium	and	Lactobacillus	(Jordan	et	

al.,	 2008,	 Jordan	 et	al.,	 2006).	 In	 all	 species	 possessing	 liaSR	 homologs,	 liaF‐like	 genes	 are	

always	located	directly	upstream	of	the	2CS	genes.	Two	groups	were	described	based	on	the	

genomic	 context	 of	 the	 corresponding	 loci	 (Jordan	 et	 al.,	 2006,	 Mascher,	 2006).	 Group	 I	

includes	 liaFSR	homologs	found	in	Bacillus	and	Listeria	species,	which	are	regulatory	linked	

to	 liaIH	 operons.	 The	 difference	 between	 these	 two	 genera	 is	 the	 location	 of	 the	 liaIH‐like	

genes	either	as	a	part	of	 the	 liaIH‐(G)FSR	 locus	 (Bacillus)	or	genetically	 separated	 from	the	

liaFSR	operon,	but	still	under	the	transcriptional	control	of	LiaSR	(Listeria).	Additionally,	liaG	

homologous	genes	are	only	found	in	B.	subtilis,	Bacillus	licheniformis,	and	Bacillus	halodurans.	

Group	 II	 includes	 species	 that	 lack	 liaIH	 homologs.	 Here,	 only	 a	 liaFSR	 locus	 is	 conserved	

(Jordan	 et	 al.,	 2006).	 In	 the	 following	 sections,	 the	 current	 state	 of	 knowledge	 about	 the	

LiaFSR‐dependent	 cell	 envelope	 stress	 response	 in	 different	 Firmicutes	 species	 will	 be	

discussed.	

 

1.3.2.1 LiaFSR‐like	systems	of	group	I	(liaIH‐liaFSR)	in	other	Firmicutes	species	
 
YvqEC	 of	 B.	 licheniformis.	 In‐depth	 transcriptional	 profile	 analyses	 of	 B.	 licheniformis	 in	

response	to	cell	wall	antibiotics	identified	the	LiaFSR	homologous	system	YvqFEC	(Wecke	et	

al.,	2006).	YvqFEC	is	strongly	induced	in	the	presence	of	bacitracin	and,	to	a	weaker	degree,	

by	vancomycin	and	D‐cycloserine.	Similar	to	B.	subtilis,	the	YvqFEC	system	is	encoded	as	part	

of	 the	 yvqIH‐yvqGFEC	 locus,	 where	 yvqIH	 represents	 the	 liaIH	 and	 yvqGFEC	 the	 liaGFSR	

homologous	genes.	The	expression	of	the	yvq	locus	is	controlled	in	an	autoregulative	manner	

by	YvqC	 from	a	promoter	upstream	of	yvqIH.	 In	contrast	 to	B.	subtilis,	 three	 instead	of	 two	

transcripts	 can	be	observed	 after	 induction,	 including	 the	major	 transcript	yvqIH	 (due	 to	 a	

stem	loop	structure	downstream	of	yvqH),	a	transcript	representing	the	whole	locus,	and	an	

additional	transcript	of	2.5	kb	in	size	(yvqIH‐yvqGF’)	caused	by	a	second	stem	loop	structure	

within	 the	 yvqF	 gene	 (Wecke	 et	 al.,	 2006).	 Yvq	mutants	 of	 B.	 licheniformis	 have	 not	 been	

analyzed	 yet.	 Therefore,	 the	 physiological	 role	 of	 this	 system	 is	 unknown.	Moreover,	 YvqC	

target	genes	other	than	the	yvq	locus	itself	have	not	been	identified	so	far.	However,	the	close	
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homology	 between	 B.	 subtilis	 and	 B.	 licheniformis	 suggests	 that	 the	 two	 systems	 are	 very	

similar	with	regard	to	their	behavior,	physiological	role	and	hence	regulons.	

LiaSRLm	of	Listeria	monocytogenes.	More	information	is	available	on	the	LiaFSR	homolog	of	

L.	 monocytogenes,	 which	 was	 named	 LiaFLm‐LiaSRLm	 (formerly	 Lmo1020‐1021‐1022).	

Detailed	 transcriptional	 studies	 revealed	a	massive	upregulation	of	 this	 system	by	cell	wall	

active	 antibiotics	 such	 as	 bacitracin	 and	 vancomycin.	 The	 regulon	 controlled	 by	 LiaRLm	 is	

much	larger	than	that	of	B.	subtilis,	 including	29	genes	organized	in	16	transcriptional	units	

(Fritsch	et	al.,	2011).	 In	addition	to	the	 liaIHLm	and	 liaFSRLm	operons,	 transcription	of	genes	

encoding	 components	 of	 ABC	 transporters	 as	 well	 as	 predicted	 membrane	 or	

extracytoplasmic	proteins	was	induced.	

The	most	surprising	difference	between	the	Lia	responses	of	L.	monocytogenes	and	that	of	B.	

subtilis	 is	a	derepression	of	 target	genes	 in	 liaSLm	mutants.	The	 lack	of	 the	HK	protein	 in	B.	

subtilis	 leads	 to	 a	 “locked	 OFF”	 phenotype	 demonstrating	 a	 loss	 of	 response	 to	 adequate	

stimuli	due	to	the	lack	of	the	sensor	protein.	In	L.	monocytogenes,	 it	was	postulated	that	the	

remaining	 LiaRLm	 protein	 undergoes	 a	 non‐specific	 phosphorylation	 via	 the	 phosphoryl	

group‐donor	 acetyl	 phosphate,	which	 can	 take	place	 due	 to	 the	 lack	 of	 LiaSLm	 phosphatase	

activity	(Fritsch	et	al.,	2011).	The	physiological	role	of	the	LiaFSR	system	in	L.	monocytogenes	

is	so	far	unclear,	since	no	resistance	against	inducing	compounds	could	be	detected	(Fritsch	

et	al.,	2011).	

 

1.3.2.2 LiaFSR‐like	systems	of	group	II	(liaFSR)	in	other	Firmicutes	species	
 
VraSR	 of	 Staphylococcus	 aureus.	 The	 best	 studied	 LiaSR	 homolog,	 VraSR,	 was	 originally	

identified	as	one	of	the	most	strongly	upregulated	systems	after	treatment	with	vancomycin	

in	vancomycin‐resistant	Staphylococcus	aureus	 (VRSA)	compared	 to	a	vancomycin‐sensitive	

strain	(VSSA)	(Kuroda	et	al.,	2000).	It	 is	encoded	as	the	last	two	genes	of	the	tetra‐cistronic	

autoregulated	 operon	 orf1‐yvqF‐vraS‐vraR	 (Yin	 et	 al.,	 2006).	 The	 VraSR	 system	 strongly	

responds	 to	 the	 presence	 of	 cell	 wall‐interfering	 antibiotics	 like	 glycopeptides	 (e.g.	

vancomycin	 and	 teicoplanin),	 bacitracin,	 β‐lactams,	 and	 D‐cycloserine,	 but	 not	 to	 general	

stresses	such	as	heat,	high	osmolarity,	or	pH	shifts.	A	total	of	46	genes	were	identified	to	be	

induced	 by	 VraR	 after	 exposure	 to	 vancomycin	 (Kuroda	 et	 al.,	 2003).	 Some	 of	 them	 are	

associated	 with	 the	 cell	 wall	 biosynthesis,	 including	 pbp2	 and	 sgtB	 required	 for	

polymerization	of	peptidoglycan,	and	murZ	crucial	for	murein	monomer	precursor	synthesis.	

The	 VraSR	 system	 plays	 a	 critical	 role	 in	 resistance	 against	 all	 of	 its	 inducers	 except	 D‐

cycloserine	 and	 levofloxiacin.	 The	 overproduction	 of	 pencillin‐binding	 protein	 (PBP)	 2	
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significantly	 increases	the	resistance	to	teicoplanin,	showing	that	the	reduction	of	observed	

teicoplanin	resistance	in	vraSR	null	mutants	is	due	to	the	loss	of	PBP2	induction	(Gardete	et	

al.,	 2006,	 Kuroda	 et	 al.,	 2003).	 Penicillin	 binds	 to	 PBPs,	 which	 are	 required	 for	 cell	 wall	

synthesis,	 and	 inactivates	 them.	 The	 resistance	 against	 the	 β‐lactam	 antibiotic	 penicillin	 in	

almost	all	S.	aureus	 strains	 is	 caused	by	 the	production	of	β‐lactamases	 (Boyle‐Vavra	et	al.,	

2006).	Accordingly,	β‐lactams	 that	are	 insensitive	 to	β‐lactamase	 (e.g.	methicillin,	oxacillin)	

were	used	for	treatment	of	S.	aureus	infections.	However,	methicillin‐resistant	Staphylococcus	

aureus	(MRSA)	strains	evolved	quickly	and	had	acquired	the	mecA	gene,	which	encodes	a	new	

PBP	 variant,	 PBP2a,	 with	 a	 low	 affinity	 to	 β‐lactams.	 PBP2	 and	 PBP2a	 work	 together	 to	

mediate	oxacillin	resistance,	but	its	expression	is	not	sufficient	for	the	resistance	phenotype.	

The	 recovery	 of	 the	 oxacillin	 resistance	 of	 a	 vraS	 mutant	 is	 not	 warranted	 by	 the	

overexpression	 of	mecA	 or	 pbp2,	 but	 rather	 by	 the	 complementation	 with	 the	 entire	 vra	

operon.	This	shows	that	VraS	is	also	required	even	when	mecA	and	pbp2	are	transcribed.	It	is	

most	likely	that	VraSR	modulate	the	expression	of	one	or	several	factors	other	than	PBP2	and	

PBP2a	 that	 influence	 the	 oxacillin	 resistance	 (Boyle‐Vavra	 et	al.,	 2006).	More	 recently,	 the	

biochemistry	of	VraSR‐dependent	signal	transduction	has	been	intensively	studied	(Belcheva	

&	Golemi‐Kotra,	2008),	as	described	in	CHAPTER	4	(4.2.2).	

CesSR	 of	 Lactococcus	 lactis.	 The	 CesSR	 system	 (formerly	 LlkinD‐LlrD;	 also	 TCS‐D)	 was	

originally	identified	in	the	L.	 lactis	strain	MG1363	as	induced	during	the	onset	of	stationary	

phase	and	involved	in	the	resistance	to	salt	and	osmotic	stress	(O'Connell‐Motherway	et	al.,	

2000).	 Later,	 it	 was	 demonstrated	 that	 CesSR	 is	 strongly	 induced	 in	 the	 presence	 of	 the	

bacteriocin	 lactococcin	 972	 (Lcn972)	 (Martinez	 et	 al.,	 2007),	 which	 is	 a	 ribosomally	

synthesized	 antimicrobial	 peptide	 produced	 by	 lactic	 acid	 bacteria.	 A	 genome‐wide	

transcriptional	analysis	of	L.	lactis	revealed	26	upregulated	genes	after	Lcn972	treatment,	of	

which	21	are	controlled	by	CesR	(Martinez	et	al.,	2007).	Some	of	these	genes	encode	proteins	

involved	 in	 peptidoglycan	 biosynthesis	 and	 modification.	 CesR	 also	 regulates	 the	

transcription	 of	 its	 own	 tri‐cistronic	 operon,	 which	 includes	 the	 liaF	 homolog	 yjbB	

(llmg1650).	The	highest	upregulation	in	CesSR‐dependent	gene	expression	was	detected	for	

llmg0169	and	the	operon	llmg2164‐2163	(Martinez	et	al.,	2007).	While	all	three	genes	encode	

proteins	with	unknown	 function,	 Llmg2163	harbors	 an	N‐terminal	PspC	domain.	PspC	was	

originally	 described	 for	 the	 phage	 shock	 response	 of	 E.	 coli	 and	 proteins	 harboring	 this	

domain	 are	 known	 to	 protect	 the	 cell	 against	 extracytoplasmic	 stress	 and	 to	maintain	 the	

integrity	of	 the	cytoplasmic	membrane.	The	overexpression	of	 llmg2164‐2163	was	 found	to	

specifically	 protect	L.	 lactis	 cells	 against	 Lcn972,	 but	 not	 against	 other	 cell	wall	 antibiotics	

(Roces	et	al.,	2009).	
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The	 CesSR	 system	 is	 also	 induced	 in	 the	 presence	 of	 lipid	 II‐interfering	 antibiotics	 like	

bacitracin,	nisin,	or	plantaricin	C.	Deletion	of	cesR	leads	to	an	increased	susceptibility	to	these	

agents,	 suggesting	 that	 CesSR	 mediates	 resistance	 against	 them	 (Martinez	 et	 al.,	 2007).	

Additionally,	 peptidoglycan	hydrolysis	due	 to	 the	exposure	 to	 lysozyme	 is	 also	detected	by	

CesSR	(Veiga	et	al.,	2007).	

LiaSR	of	Streptococcus	mutans.	LiaSR	(formerly	HK11‐RR11)	of	S.	mutans	was	identified	as	

one	of	several	systems	that	affect	the	expression	of	virulence	factors	 in	this	organism	(Li	et	

al.,	2002).	LiaFSR	was	shown	to	be	involved	in	biofilm	formation	and	acid	tolerance,	and	LiaS	

was	suggested	to	be	a	pH	sensor	(Chong	et	al.,	2008,	Li	et	al.,	2002).	

LiaFSR	 of	 S.	 mutans	 is	 encoded	 within	 the	 penta‐cistronic	 operon	 liaFSR‐ppiB‐pnpB.	 The	

genes	 ppiB	 and	 pnpB	 encode	 a	 peptidyl‐prolyl	 cis/trans	 isomerase	 and	 a	 polynucleotide	

phosphorylase,	 respectively.	 As	 in	B.	 subtilis,	 the	 LiaFSR	 system	of	S.	mutans	 is	 induced	by	

lipid	 II‐interfering	antibiotics	 like	bacitracin,	vancomycin,	and	nisin	as	well	as	by	other	cell	

wall	 antibiotics,	 such	 as	 chlorhexidine.	Moreover,	 it	 is	 induced	by	 low	pH,	 high	osmolarity,	

and	ethanol.	β‐lactams	and	D‐cycloserine	do	not	function	as	inducers	(Suntharalingam	et	al.,	

2009).	

The	 LiaFSR	 system	 of	S.	mutans	 clearly	 differs	 from	 that	 of	B.	 subtilis	 in	 terms	 of	 the	 time	

point	of	the	stimulus‐independent	induction.	The	expression	of	S.	mutans	lia	genes	is	10‐fold	

repressed	 in	 stationary	 phase	 and	 2‐fold	 in	mid‐logarithmic	 phase	 compared	 to	 the	 early‐

logarithmic	growth	phase.	This	observation	suggests	an	 involvement	of	LiaFSR	in	early	 log‐

phase	 growth,	 which	 is	 characterized	 by	 high	 growth	 rates,	 increased	 cell	 division,	 cell	

separation,	and	peptidoglycan	biosynthesis	(Suntharalingam	et	al.,	2009).	 Indeed,	S.	mutans	

LiaR	directly	and/or	indirectly	controls	a	large	regulon	consisting	of	174	genes	during	biofilm	

growth	 encoding	 proteins	 involved	 in	 membrane	 protein	 synthesis	 and	 peptidoglycan	

biosynthesis,	 envelope	 chaperone/proteases,	 and	 transcriptional	 regulators	 (Perry	 et	 al.,	

2008,	Suntharalingam	et	al.,	2009).	

The	LiaFSR	system	of	S.	mutans	was	also	associated	with	playing	a	role	 in	activation	of	 the	

essential	WalRK‐like	2CS	VicRKX	(also	named	CovRSX)	(Dubrac	et	al.,	2008,	Tremblay	et	al.,	

2009),	 which	 controls	 the	 expression	 of	 fructosyltransferase,	 glucosyltransferases,	 and	

glucan‐binding	 proteins	 (Lee	 et	 al.,	 2004,	 Senadheera	 et	 al.,	 2005).	 It	 is	 active	 during	

exponential	growth	at	neutral	pH,	when	a	 rapid	delivery	of	 cell	wall	precursors	due	 to	 fast	

rates	 of	 cell	wall	 biosynthesis	 is	 required.	 Induction	 of	 VicRKX	 in	 the	 presence	 of	 cell	wall	

antibiotics	was	shown	to	be	controlled	by	LiaFSR	rather	than	by	autoregulation	(Tremblay	et	

al.,	2009).	Despite	the	wide	distribution	of	WalRK‐like	and	LiaFSR‐like	2CSs,	this	is	so	far	the	

only	documented	direct	regulatory	connection	between	such	two	systems.	
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LiaFSR	 of	 Streptococcus	 pneumoniae.	 The	 LiaFSR‐homologous	 system	 TCS03	 of	 S.	

pneumoniae	 was	 found	 to	 be	 upregulated	 after	 exposure	 to	 vancomycin	 in	 both	 a	

vancomycin‐sensitive	 and	 vancomycin‐tolerant	 strain	 (Haas	 et	 al.,	 2005).	 In	 a	 later	 study,	

bacitracin,	 nisin,	 and	 tunicamycin	 were	 described	 to	 induce	 the	 TCS03,	 whereas	 D‐

cycloserine	and	ampicillin	did	not	(Eldholm	et	al.,	2010).	Interestingly,	the	same	authors	did	

not	 detect	 any	 upregulation	 of	 TCS03	 after	 vancomycin	 treatment	 in	 laboratory	 strain	 R6,	

indicating	 strain‐specific	 differences.	 In	 addition,	 cell	 envelope	 stress	 elicited	 by	 murein	

hydrolases	and	autolysins	is	also	perceived	by	TCS03	(Eldholm	et	al.,	2010).	TCS03	does	not	

seem	to	provide	resistance	against	the	lipid	II‐interfering	antibiotics,	which	act	as	inducers	of	

the	system.	Instead	of	a	resistance	phenotype,	a	physiological	role	as	protectant	against	self‐

lysis	 in	 competent	 S.	pneumoniae	 cells	was	 proposed	 (Eldholm	 et	al.,	 2010,	 Eldholm	 et	al.,	

2009).	This	observation	again	indicates	that	LiaFSR‐like	systems,	despite	comparable	inducer	

ranges,	 have	 adapted	 their	 very	 diverse	 physiological	 roles	 to	 the	 specific	 needs	 of	 the	

respective	organism.	

The	TCS03‐encoding	operon	consists	of	10	genes	(spr0342‐spr0351)	and	is	the	most	strongly	

induced	 target	of	 the	S.	pneumoniae	 LiaR‐dependent	gene	expression.	The	 first	 three	genes	

encode	 LiaFSR	 (spr0342‐0345)	 (Eldholm	 et	 al.,	 2010).	 A	 genome‐wide	 transcriptional	

profiling	revealed	18	genes	 that	are	upregulated	 in	a	LiaR‐dependent	manner,	 ten	of	which	

are	 already	 part	 of	 the	 LiaFSR	 operon	 and	 some	 other	 target	 genes	 encode	 stress‐related	

proteins,	which	are	involved	in	the	response	to	heat	shock.	Moreover,	genes	encoding	a	Spx	

homolog	as	well	as	the	phage	shock	protein	C	(PspC)	are	induced,	which	were	also	found	as	

part	of	the	CesSR	regulon	in	L.	lactis	and	the	LiaSR	regulon	in	S.	mutans	(Eldholm	et	al.,	2010,	

Martinez	et	al.,	2007,	Suntharalingam	et	al.,	2009).	

 

1.3.3 Stimuli	of	Lia‐like	systems	
 
LiaFSR‐homologous	 systems	 respond	 to	 a	 relatively	 broad	 range	 of	 stimuli,	 which	 are	 all	

associated	with	cell	envelope	stress.	Therefore,	these	systems	presumably	represent	cell	wall	

damage‐sensing	 systems	 in	 contrast	 to	 drug‐sensing	 detoxification	 modules	 like	 BceRSAB	

(Rietkötter	 et	 al.,	 2008).	 Despite	 a	 wide	 range	 of	 physiological	 functions	 associated	 with	

LiaFSR‐like	systems,	the	range	of	inducers	is	nevertheless	well	defined.	

Three	different	classes	of	stimuli	can	be	distinguished.	The	 first	class	contains	 lipid	 II	 cycle	

inhibitors	like	bacitracin,	nisin,	or	vancomycin,	which	are	common	inducers	of	all	described	

LiaFSR‐like	 systems	 (Fig.	 1.1).	 They	 belong	 to	 the	 class	 of	 antimicrobial	 peptides	 (AMPs)	

which	share	a	cationic	and	amphipathic	nature	as	well	as	a	similar	mode	of	action.	They	all	

inhibit	 the	 cell	 wall	 biosynthesis	 by	 binding	 to	 different	 moieties	 of	 either	 lipid	 II	 or	
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undecaprenol	pyrophosphate	(UPP)	(Rietkötter	et	al.,	2008,	Schneider	&	Sahl,	2010,	Staroń	et	

al.,	2011).	Bacitracin	specifically	binds	to	UPP	and	prevents	its	dephosphorylation/recycling,	

thus	 blocking	 cell	 wall	 biosynthesis	 (Storm	 &	 Strominger,	 1973).	 Nisin	 disrupts	 the	

membrane	 integrity	 by	 pore	 formation	 via	 initial	 binding	 to	 the	 pyrophosphate	 of	 lipid	 II	

(Schneider	 &	 Sahl,	 2010).	 Vancomycin	 inhibits	 the	 transpeptidation	 of	 peptidoglycan	 by	

binding	to	the	D‐Ala‐D‐Ala	terminus	of	 the	pentapeptide	chain	of	 lipid	II	 (Schneider	&	Sahl,	

2010).	 The	 bacteriocin	 lactococcin	 972	 (Lcn972),	 which	 was	 described	 as	 the	 strongest	

inducer	of	CesSR	in	L.	lactis,	inhibits	the	peptidoglycan	synthesis	by	binding	to	lipid	II	at	the	

level	of	septum	formation,	thereby	blocking	cell	division	(Martinez	et	al.,	2008)	(Fig.	1.1).	

The	second	class	of	inducers	includes	agents	that	do	not	interfere	with	the	lipid	II‐cycle,	but	

also	influence	the	integrity	of	the	cell	envelope.	Good	examples	are	daptomycin,	that	affects	

the	cell	membrane	causing	membrane	depolarization	or	perforation	(Silverman	et	al.,	2003,	

Straus	&	Hancock,	 2006),	 rhamnolipids,	which	 are	 biosurfactans	 that	 alter	 the	 cell	 surface	

leading	 to	 increased	 hydrophobicity	 and	membrane	 permeability	 (Vasileva‐Tonkova	 et	 al.,	

2011),	 as	 well	 as	 more	 general	 stresses	 like	 alkaline	 shock,	 detergents,	 phenol,	 ethanol,	

secretion	stress,	and	 infections	by	filamentous	phages	(Hyyryläinen	et	al.,	2005,	Mascher	et	

al.,	 2004,	 Petersohn	 et	al.,	 2001,	 Pietiäinen	 et	al.,	 2005,	 Tam	 le	 et	al.,	 2006,	Wiegert	 et	al.,	

2001).	

Class	three	contains	inducers	that	are	characteristic	of	the	specific	habitat	or	lifestyle	of	the	

different	 species,	 but	 all	 of	 them	 affect	 the	 integrity	 of	 the	 bacterial	 cell	 envelope.	 For	

example,	 the	 LiaFSR	 system	 of	 S.	 mutans	 responds	 to	 acidity	 (Li	 et	 al.,	 2002),	 a	 typical	

condition	 in	 the	 human	 oral	 cavity.	 Furthermore,	 B.	 subtilis	 LiaFSR	 is	 embedded	 in	 the	

transition	 state	 regulation	 leading	 to	 the	 induction	 of	 this	 system	 not	 by	 an	 external	 but	

rather	by	a	so	far	unknown	internal	stimulus	(Jordan	et	al.,	2007)	(Fig.	1.4).	Another	example	

is	the	induction	of	S.	pneumoniae	LiaFSR	by	murein	hydrolases	and	autolysins	in	competent	

cells	to	protect	against	self‐lysis	(Eldholm	et	al.,	2010).	

	

The	signal	transfer	within	2CSs	like	LiaSR	via	phosphorylation	enables	a	specific	response	to	

specific	 stimuli.	Normally,	 the	activation	of	 the	RR	protein	via	phosphorylation	depends	on	

the	 autophosphorylation	 of	 the	 cognate	 HK	which	 then	 serves	 as	 phosphoryl	 group‐donor	

(Stock	 et	 al.,	 2000).	 But	 an	 alternative	 HK‐independent	 way	 of	 RR	 phosphorylation	 is	 by	

acetyl	phosphate.	The	role	of	this	small	molecule	phosphoryl	group‐donor	will	be	described	

in	the	following	sections.	

	



CHAPTER 1 Introduction 

15 
 

1.4 Physiological	 role	 of	 acetyl	 phosphate	 in	 two‐component	 signal	
transduction	pathways	

 

1.4.1 Biosynthesis	of	acetyl	phosphate	
 
Acetyl	 phosphate	 is	 a	 small	 high‐energy	 molecule	 with	 a	 larger	 change	 of	 free	 standard	

enthalpy	 (ΔG°)	 of	 hydrolysis	 (‐43.3	 kJ/mol)	 than	 ATP	 (‐30.5	 kJ/mol).	 Therefore,	 it	 stores	

more	 energy	 than	 ATP	 which	 provides	 the	 possibility	 to	 generate	 ATP	 by	 substrate	

phosphorylation	(Lehninger	et	al.,	1994,	Madigan	et	al.,	2003).	Acetyl	phosphate	is	generated	

as	an	 intermediate	of	 the	Pta‐AckA	pathway	(Fig.	1.5).	 In	 this	pathway,	acetyl	phosphate	 is	

synthesized	 from	 acetyl‐CoA	 catalyzed	 by	 the	 enzyme	 phosphotransacetylase	 (Pta).	

Subsequently,	 the	 acetyl	 phosphate	 is	 converted	 to	 acetate	 by	 the	 acetate	 kinase	 (AckA),	

which	 leads	 to	 the	 generation	 of	 one	molecule	ATP.	The	produced	 acetate	 is	 then	 released	

into	 the	 medium.	 This	 so	 called	 acetogenesis	 is	 a	 reversible	 reaction,	 in	 which	 all	 steps	

proceed	in	the	opposite	direction	if	acetate	is	used	as	carbon	source	(Rose	et	al.,	1954).	

	

	

Figure	 1.5:	 Pta‐AckA	 pathway	 and	 molecular	 formula	 of	 acetyl	 phosphate.	 Pta,	
phosphotransacetylase;	AckA,	acetate	kinase;	TCA,	tricarboxylic	acid	cycle.	See	text	for	details.	

	

The	Pta‐AckA	pathway	has	important	cellular	functions:	it	facilitates	glycolytic	flux	and	rapid	

growth	 in	 the	 presence	 of	 excess	 carbon	 sources,	 it	 recycles	 CoA‐SH,	 and	 it	 provides	 the	

majority	 of	ATP	 in	 the	absence	of	 a	 functional	 tricarboxylic	 acid	 (TCA)	 cycle	 (Wolfe,	 2005)	

(see	below	for	details).	The	latter	is	especially	important	for	organisms	that	do	not	possess	a	

complete	 TCA	 cycle,	 e.g.	 Yersinia	 pestis,	 S.	 pneumoniae,	 and	 some	 strains	 of	 S.	 aureus	

(Somerville	et	al.,	2003,	Wolfe,	2010).	
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Mutants	 lacking	either	pta	or	ackA	or	both	genes	show	distinct	phenotypes.	During	aerobic	

growth	on	 glucose,	pta	mutants	 are	not	 able	 to	 synthesize	 acetyl	phosphate,	whereas	ackA	

mutants	accumulate	acetyl	phosphate.	Growth	on	acetate	 inverts	the	order	of	reactions	and	

thus	 leads	 to	 opposite	 phenotypes	 of	 the	 respective	mutants.	 The	pta‐ackA	 double	mutant	

lacks	the	ability	to	synthesize	acetyl	phosphate	under	any	conditions	(Klein	et	al.,	2007).	

 

1.4.2 Regulation	of	the	cellular	acetyl	phosphate	pool	
 
The	 cellular	 acetyl	 phosphate	 concentration	 depends	 on	 the	 expression	 and	 activity	 of	 the	

Pta‐AckA	pathway,	primarily	mirrored	by	the	energy/nutrient	state	of	the	cell	and	the	growth	

phase	 (Prüß	&	Wolfe,	 1994,	Wolfe	et	al.,	 2003,	Klein	et	al.,	 2007,	Wolfe,	 2005).	During	 the	

exponential	 growth	 phase,	 the	 acetyl	 phosphate	 pool	 increases	 rapidly	 in	 the	 presence	 of	

oxygen	 and	 sufficient	 nutrients.	 Depletion	 of	 these	 nutrients	 during	 the	 transition	 to	

stationary	phase	 leads	 to	a	decrease	of	acetyl	phosphate	concentrations	 in	 the	cell	 (Prüß	&	

Wolfe,	1994).	After	entering	the	stationary	phase,	the	acetyl	phosphate	pool	increases	again	

most	likely	due	to	starvation	and/or	the	lack	of	oxygen	(McCleary	&	Stock,	1994).	

Environmental	factors	like	the	availability	of	oxygen,	the	pH,	the	temperature,	as	well	as	the	

type	and	amount	of	available	carbon	sources	affect	 the	synthesis	and/or	activity	of	Pta	and	

AckA	(Prüß	&	Wolfe,	1994,	Wolfe,	2005).	For	example,	 increasing	growth	 temperatures	 (in	

the	range	of	physiological	temperatures	from	32	to	40°C)	lead	to	decreased	ackA	expression	

levels	and	an	 increase	 in	Pta	activity,	which	results	 in	an	accumulation	of	acetyl	phosphate	

(Prüß	 &	 Wolfe,	 1994).	 In	 the	 presence	 of	 excess	 carbon	 sources	 like	 glucose	 or	 other	

glycolytic	 intermediates,	 respiration	via	 the	TCA	cycle	 is	 repressed	 (Crabtree	effect),	which	

leads	 to	 a	 conversion	of	 acetyl‐CoA	by	 the	Pta‐AckA	pathway	und	 thus	 an	 increased	 acetyl	

phosphate	 pool	 (Crabtree,	 1929,	Holms,	 1996,	Holms,	 1986).	 Likewise,	 the	 transition	 from	

aerobic	to	anaerobic	conditions	results	 in	 fermentation	and	an	inoperable	TCA	cycle,	which	

also	 leads	 to	 elevated	 acetyl	 phosphate	 concentrations	 (Nystrom,	 1994).	 In	 contrast,	 the	

acetyl	phosphate	pool	decreases	under	conditions	that	do	not	exceed	the	capacity	of	the	TCA	

cycle,	e.g.	transition	from	exponential	to	stationary	growth	phase	(Wolfe,	2005,	Prüß	&	Wolfe,	

1994,	Wolfe	et	al.,	2003).	Not	only	the	amount	but	also	the	type	of	carbon	source	affects	the	

acetyl	 phosphate	 concentration	 (Klein	 et	 al.,	 2007,	 McCleary	 &	 Stock,	 1994).	 For	 example,	

cells	grown	in	the	presence	of	glucose	show	a	50%	decrease	in	acetyl	phosphate	compared	to	

cells	cultured	with	pyruvate	(Klein	et	al.,	2007).	

Taken	together,	bacterial	cells	adjust	their	acetyl	phosphate	pool	in	response	to	both	growth	

phase	and	temperature	by	modulating	the	availability	of	acetyl‐CoA,	the	expression	of	ackA,	

and	the	activity	of	Pta	(Prüß	&	Wolfe,	1994,	Wolfe,	2005).	
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1.4.3 Acetyl	phosphate	as	global	signal	
 
Several	lines	of	evidence	support	the	hypothesis	that	acetyl	phosphate	acts	as	global	signal	in	

the	bacterial	 cell:	 (i)	acetyl	phosphate	 is	able	 to	phosphorylate	RRs	of	2CSs	 in	vitro	(Wolfe,	

2005),	 (ii)	 the	 acetyl	 phosphate	 pool	 varies	 significantly	 in	 response	 to	 environmental	

conditions	 (Keating	 et	 al.,	 2008,	 Klein	 et	 al.,	 2007)	 (see	 above),	 (iii)	 the	 cellular	 acetyl	

phosphate	concentration	in	E.	coli	wild	type	cells	reaches	at	least	3	mM,	which	is	sufficient	for	

an	efficient	phosphorylation	of	RRs	in	vitro	(Klein	et	al.,	2007),	and	(iv)	acetyl	phosphate	can	

influence	the	expression	of	almost	100	genes	in	E.	coli,	which	was	proven	by	comprehensive	

DNA	macroarray	analysis	(Wolfe	et	al.,	2003).	

These	 clues	 support	 the	 hypothesis	 that	 acetyl	 phosphate	 has	 physiological	 relevant	

properties	by	acting	as	direct	phosphoryl	group‐donor	for	RRs.	

 

1.4.4 In	vivo	relevance	of	acetyl	phosphate	for	the	phosphorylation	of	RRs	
 
Several	RR	proteins,	 such	as	CheY,	NRI,	PhoB,	or	OmpR,	were	described	 in	 the	 literature	 to	

have	 the	 ability	 to	 use	 acetyl	 phosphate	 as	 phosphoryl	 group‐donor	 in	 vitro	 (Da	 Re	 et	 al.,	

1999,	Feng	et	al.,	1992,	Lukat	et	al.,	1992,	Mayover	et	al.,	1999,	McCleary,	1996,	McCleary	&	

Stock,	 1994).	The	 in	vivo	 relevance	 of	 this	 reaction	 is	 still	 debated	 controversially	 since	 an	

acetyl	phosphate‐dependent	phosphorylation	of	RRs	is	usually	only	observed	after	deletion	of	

the	 cognate	 HKs	 (Wolfe,	 2005).	 However,	 in	 recent	 years	 the	 first	 indications	 for	 a	

physiological	 relevant	 role	 of	 acetyl	 phosphate	 at	 least	 for	 some	 2CSs	 have	 emerged	 (see	

below).	

RRs	that	are	acetyl	phosphate‐sensitive	under	physiological	relevant	conditions	feature	three	

major	characteristics:	(i)	they	do	not	possess	a	cognate	HK	(e.g.	RssB),	(ii)	they	are	present	in	

excess	 over	 the	 cognate	 HK	 (e.g.	 OmpR),	 or	 (iii)	 the	 cognate	 HK	 acts	 mainly	 as	 a	 net	

phosphatase	(e.g.	RcsB,	NRI)	(Wolfe,	2010).	Examples	of	all	three	categories	are	described	in	

the	following	paragraphs.	

RcsBCD	of	E.	coli.	As	mentioned	above,	96	genes	were	identified	in	E.	coli	to	be	regulated	by	

acetyl	phosphate	(Wolfe	et	al.,	2003).	Most	of	these	genes	are	involved	in	flagella	biosynthesis	

and	 encapsulation.	 Prüß	 and	 Wolfe	 described	 the	 influence	 of	 acetyl	 phosphate	 on	

flagellation,	but	 they	did	not	 identify	 the	underlying	RR,	which	 is	phosphorylated	by	acetyl	

phosphate	 (Prüß	 &	 Wolfe,	 1994).	 In	 a	 recent	 study	 by	 Fredericks	 and	 co‐workers,	 the	

responsible	regulator	was	identified	as	RcsB	(Fredericks	et	al.,	2006).	RcsB	is	part	of	the	Rcs	

phosphorelay	 consisting	 of	 the	 core	 proteins	 RcsC,	 a	 hybrid	 HK‐RR,	 the	 histidine	

phosphotransferase	 RcsD,	 and	 the	 RR	 RcsB	 (Clarke	 et	 al.,	 2002,	 Stout,	 1994,	 Stout	 &	
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Gottesman,	 1990,	Takeda	et	al.,	 2001).	The	Rcs	 phosphorelay	 represses	 genes	 required	 for	

flagellation	 and	 activates	 genes	 required	 for	 capsular	 biosynthesis	 and	 multiple	 stresses	

(Boulanger	et	al.,	2005,	Davalos‐Garcia	et	al.,	2001,	Francez‐Charlot	et	al.,	2003,	Gottesman	et	

al.,	 1985).	 Flagellation	 inhibition	 occurs	 through	 the	 ability	 of	 RcsB	 to	 repress	 the	

transcription	of	the	flhDC	operon,	encoding	the	master	regulator	of	flagella	biogenesis.	Acetyl	

phosphate	donates	its	phosphoryl	group	to	RcsB	even	in	the	presence	of	the	cognate	HK	RcsC,	

which	 causes	 the	 regulation	 of	 RcsB	 target	 genes.	 This	 is	 possible	 because	 RcsC	 operates	

primarily	 as	 an	 RcsB~P	 net	 phosphatase	 and	 the	 balance	 between	 phosphorylation	 and	

dephosphorylation	 determines	 the	 degree	 of	 activation	 of	 capsular	 biosynthesis	 and	

inhibition	of	flagellar	biogenesis	(Fredericks	et	al.,	2006).	

NtrBC	of	E.	coli.	Another	example	of	an	acetyl	phosphate‐sensitive	RR	is	NRI	(also	known	as	

NtrC),	 a	member	 of	 the	 complex	 sensory	 system	 that	monitors	 the	 availability	 of	 nitrogen.	

Under	limiting	nitrogen	conditions,	the	cognate	HK	NRII	(also	known	as	NtrB)	operates	as	a	

kinase	resulting	in	the	phosphorylation	of	NRI	and	the	transcriptional	activation	of	the	glnALG	

operon.	This	operon	encodes	a	2CS	(glnL	and	glnG)	as	well	as	the	glutamine	synthetase	(glnA)	

which	 interconverts	 L‐glutamate	 and	 ammonia	 to	 L‐glutamine.	 In	 the	 presence	 of	 suitable	

amounts	of	nitrogen,	NRII	primarily	acts	as	a	net	phosphatase	leading	to	a	reduction	of	glnALG	

transcription.	Small	amounts	of	NRI~P	are	usually	sufficient	 for	glnALG	 transcription.	Here,	

the	phosphoryl	group‐donor	was	identified	to	be	either	NRII~P	or	acetyl	phosphate.	However,	

larger	amounts	of	phosphorylated	NRI	are	necessary	if	the	cells	grow	on	secondary	nitrogen	

sources.	In	this	case,	both	donors,	NRII~P	and	acetyl	phosphate,	are	necessary	to	provide	the	

required	large	amounts	of	NRI~P	(Ninfa	et	al.,	2000).	

EnvZ/OmpR	of	E.	coli.	The	EnvZ/OmpR	2CS	regulates	the	expression	of	the	outer	membrane	

porins	OmpC	and	OmpF	under	certain	osmolarity	conditions	(Forst	&	Roberts,	1994,	Inouye	

&	Dutta,	2003).	The	phosphorylation	of	 the	RR	OmpR	primarily	depends	on	 its	cognate	HK	

EnvZ,	 but	 an	 alternative	 pathway	 via	 acetyl	 phosphate	 has	 been	 described	 (Matsubara	 &	

Mizuno,	1999,	Shin	&	Park,	1995).	The	response	to	changing	osmolarity	conditions	seems	not	

to	be	regulated	solely	by	EnvZ.	 It	was	shown	that	acetyl	phosphate	 in	combination	with	an	

additional	unidentified	HK	can	influence	porin	transcription	through	OmpR	phosphorylation	

(Matsubara	 &	Mizuno,	 1999).	Mutants	 lacking	 both	pta	 and	ackA	 as	well	 as	 the	 gene	 sixA,	

encoding	 a	phospho‐histidine	phosphatase,	 severely	 altered	 the	expression	profile	 of	ompC	

and	 ompF,	 resulting	 in	 a	 constitutive	 expression	 of	 ompC.	 These	 events	 take	 place	 in	 the	

presence	of	EnvZ	(Matsubara	&	Mizuno,	1999).	Furthermore,	phosphorylated	OmpR	has	also	

an	influence	on	flagella	biosynthesis.	It	was	shown	that	OmpR	represses	the	transcription	of	

flhDC	in	an	acetyl	phosphate‐dependent	manner	by	increasing	osmolarity,	irrespective	of	the	

presence	of	EnvZ	(Shin	&	Park,	1995).	Additionally,	OmpR	is	synthesized	in	significant	larger	
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amounts	 compared	 to	 its	 cognate	HK	 EnvZ	 in	E.	 coli	 (3500:100	molecules	 per	 cell)	 (Cai	 &	

Inouye,	 2002).	 It	 seems	 likely	 that	 some	 OmpR	molecules	 escape	 the	 kinase/phosphatase	

activities	of	EnvZ,	which	makes	them	available	for	the	phosphorylation	by	acetyl	phosphate	

(Shin	&	Park,	1995).	

RssB	of	E.	coli.	 RssB	 is	 an	 orphan	RR	 lacking	 a	 cognate	HK.	 It	 is	 responsible	 for	 the	 rapid	

degradation	of	the	sigma	factor	(σS),	which	is	encoded	by	the	gene	rpoS	(Muffler	et	al.,	1996).	

σS	 is	 a	 stationary	 phase	 specific	 sigma	 factor,	 whose	 turnover	 is	 repressed	 under	 carbon	

starvation,	shift	to	high	osmolarity,	or	heat	shock.	Such	conditions	lead	to	increased	cellular	

levels	 of	 σS	 and	 the	 activation	of	 genes	with	 stress‐protecting	 functions.	 It	was	 shown	 that	

acetyl	 phosphate	 does	 not	 affect	 the	 synthesis	 of	 σS,	 but	 its	 degradation.	 The	half‐life	 of	 σS	

increases	 2.5‐fold	 in	 acetyl	 phosphate‐free	 mutants	 (Δpta/ΔackA).	 Therefore,	 acetyl	

phosphate	modulates	 the	activity	of	RssB	by	phosphorylation	and	hence	 the	 turnover	of	σS	

(Bouche	et	al.,	1998).	

 

1.4.5 Acetyl	phosphate‐insensitive	RRs	
 
In	 addition	 to	 these	 examples	 of	 acetyl	 phosphate‐sensitive	 RRs,	 an	 acetyl	 phosphate‐

insensitive	RR	was	recently	described	(Boll	&	Hendrixson,	2011).	FlgR	is	the	RR	of	the	FlgSR	

2CS	of	Campylobacter	jejuni,	whose	phosphorylation	is	required	for	the	expression	of	the	σ54	

regulon,	 including	 flagellar	 rod	 and	 hook	 genes	 (Hendrixson	&	DiRita,	 2003,	Wosten	 et	al.,	

2004).	 FlgR	 belongs	 to	 the	 family	 of	 NtrC‐like	 RRs,	 which	 feature	 an	 essential	 C‐terminal	

DNA‐binding	domain	(CTD)	important	for	the	interaction	with	the	target	promoter	sequence	

(Huala	&	Ausubel,	1989,	North	&	Kustu,	1997,	Shiau	et	al.,	1993).	In	FlgR,	the	CTD	also	binds	

DNA,	but	this	 interaction	seems	to	be	not	essential	 for	gene	expression	(Boll	&	Hendrixson,	

2011).	The	activity	of	an	FlgR	mutant	lacking	its	CTD	(FlgRΔCTD)	can	be	modulated	by	acetyl	

phosphate	in	the	presence	and	absence	of	the	cognate	HK	FlgS,	which	is	not	the	case	for	wild	

type	FlgR	proteins.	 It	 seems	 that	 the	CTD	 limits	 phosphotransfer	 from	acetyl	 phosphate	 to	

FlgR,	making	it	a	key	specificity	determinant	in	the	FlgSR	2CS	(Boll	&	Hendrixson,	2011).	

Possible	 explanations	 of	 how	 this	 CTD	 limits	 cross‐talk	 by	 undesirable	 acetyl	 phosphate‐

dependent	phosphorylation	are	 interdomain	contacts	between	the	receiver	domain	and	the	

DNA‐binding	 domain	 within	 RRs	 that	 seem	 to	 stabilize	 the	 inactive	 conformation	 of	 the	

receiver	domain	(Barbieri	et	al.,	2010).	This	was	demonstrated	for	RRs	of	the	OmpR/PhoB‐

subfamily,	 but	 this	 mechanism	 could	 be	 nevertheless	 a	 common	 feature	 of	 cross‐talk	

prevention	for	RRs	of	other	groups.	
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1.5 Aims	of	this	thesis	
 
In	 B.	 subtilis,	 the	 mechanisms	 of	 stimulus	 perception	 and	 signal	 transduction	 of	 the	 cell	

envelope	stress‐sensing	2CS	LiaSR	are	not	well‐understood.	Therefore,	the	main	objectives	of	

this	thesis	were	to	get	a	deeper	insight	into	the	underlying	mechanisms	and	to	characterize	

the	function	of	the	repressor	protein	LiaF.	

CHAPTER	 2	 is	 the	main	 part	 of	 this	 work	 and	 deals	 with	 the	 stoichiometry	 of	 the	 LiaFSR	

system.	A	correlation	between	the	protein	copy	numbers	of	LiaF,	LiaS,	and	LiaR	and	a	proper	

response	to	cell	envelope	stress	was	discovered.	Different	lia	mutants,	in	which	the	ratios	of	

the	 three	 proteins	 were	 changed,	 showed	 distinct	 phenotypes	 resulting	 in	 a	 constitutive	

activity	of	PliaI	 if	LiaS	or	LiaR	are	overproduced,	even	under	non‐inducing	conditions.	These	

observations	 lead	 to	analyzing	 the	 stoichiometry	of	 the	native	LiaFSR	system	 in	detail.	The	

relative	 LiaFSR	 ratios	 were	 first	 determined	 by	 a	 genetic	 approach	 and	 then	 directly	

measured	by	quantitative	Western	blot	analysis.	Second,	LiaS	was	investigated	with	regard	to	

a	possible	bifunctionality	 including	both	kinase	and	phosphatase	activity.	Third,	 the	 in	vivo	

relevance	 of	 acetyl	 phosphate	 for	 activating	 the	 Lia	 system	was	 investigated	 in	 detail.	 In	 a	

previous	study,	phosphorylation	of	LiaR	by	acetyl	phosphate	was	proven	in	vitro	(Wolf	et	al.,	

2010),	 but	 the	 evidence	 whether	 LiaR	 is	 acetyl	 phosphate‐sensitive	 under	 physiologically	

relevant	conditions	was	the	aim	of	the	present	thesis.	

Another	aim	of	this	thesis	was	the	establishment	of	a	novel	protein	expression	system	for	B.	

subtilis	that	is	based	on	the	liaI	promoter	(CHAPTER	3).	It	possesses	some	advantages	making	

it	a	perfect	candidate	for	controlled	heterologous	protein	expression:	(i)	PliaI	is	basically	shut	

off	 under	 non‐inducing	 conditions	 during	 the	 exponential	 grows	 phase,	 (ii)	 it	 shows	 an	

impressive	 dynamic	 range	 of	 induction,	 which	 is	 100‐	 to	 1000‐fold	 in	 the	 presence	 of	 a	

suitable	stimulus,	 (iii)	 the	 induction	of	PliaI	occurs	already	5	 to	10	minutes	after	addition	of	

the	 inducer,	 and	 (iv)	 the	 induction	 is	 inducer	 concentration‐dependent.	 These	 positive	

features	were	used	to	generate	appropriate	expression	vectors	and	expression	hosts	in	order	

to	get	a	new	protein	(over‐)expression	toolbox.	
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Summary

The response regulator/histidine kinase pair LiaRS of
Bacillus subtilis, together with its membrane-bound
inhibitor protein LiaF, constitutes an envelope stress-
sensing module that is conserved in Firmicutes
bacteria. LiaR positively autoregulates the expression
of the liaIH-liaGFSR operon from a strictly LiaR-
dependent promoter (PliaI). A comprehensive pertur-
bation analysis revealed that the functionality of the
LiaFSR system is very susceptible to alterations of its
protein composition and amounts. A genetic analysis
indicates a LiaF:LiaS:LiaR ratio of 18:4:1. An excess
of LiaS over LiaR was subsequently verified by quan-
titative Western analysis. This stoichiometry, which is
crucial to maintain a functional Lia system, differs
from any other two-component system studied to
date, in which the response regulator is present in
excess over the histidine kinase. Moreover, we dem-
onstrate that LiaS is a bifunctional histidine kinase
that acts as a phosphatase on LiaR in the absence of
a suitable stimulus. An increased amount of LiaR –
both in the presence and in the absence of LiaS –
leads to a strong induction of PliaI activity due to phos-
phorylation of the response regulator by acetyl phos-
phate. Our data demonstrate that LiaRS, in contrast to
other two-component systems, is non-robust with
regard to perturbations of its stoichiometry.

Introduction

Two-component systems (2CSs) are a ubiquitously distrib-
uted principle of signal transduction that allows a bacterial
cell to respond to changes in environmental and cellular
parameters (Stock et al., 2000; Mascher et al., 2006; Gao

and Stock, 2009). Typically, these systems consist of a
sensor histidine kinase (HK) and a cognate response
regulator (RR). In the presence of a suitable stimulus
(= input), the HK undergoes a conformational change,
which leads to the activation of the catalytic domain and
ultimately to the autophosphorylation of an invariant histi-
dine residue. Subsequently, the phospho-HK serves as
phospho-donor for the corresponding RR, leading to the
phosphorylation of a conserved aspartate residue in the
receiver domain of this RR. This phosphorylation leads to
the activation of the RR, which can then mediate the
cellular response, usually through differential expression
of its target genes (= output). The system can be set back
to the pre-stimulus state by dephosphorylation of the
response regulator (Parkinson, 1993; Stock et al., 2000).
This activity can be provided by specific phosphatases,
but mostly it is the intrinsic property of the cognate
HKs themselves, which are often bifunctional kinases/
phosphatases. In the absence of a stimulus, such HKs act
as phosphatases, thereby reducing or even preventing
undesired phosphorylation of the cognate RR both from
cross-talk and through the cellular pool of acetyl phosphate
(Laub and Goulian, 2007).

The LiaRS system is one of over 30 2CSs encoded in the
genome of the Gram-positive model organism Bacillus
subtilis (Fabret et al., 1999). This 2CS was originally iden-
tified as one of the signalling devices orchestrating the cell
envelope stress response in this organism (Mascher et al.,
2003). LiaRS strongly responds to the presence of a
number of cell wall antibiotics, such as bacitracin, dapto-
mycin, nisin, ramoplanin and vancomycin (Mascher et al.,
2004; Pietiäinen et al., 2005; Hachmann et al., 2009;
Wecke et al., 2009) and is also weakly induced by other
more unspecific stresses that interfere with envelope integ-
rity, such as alkaline shock and secretion stress (Wiegert
et al., 2001; Hyyryläinen et al., 2005). Upon activation,
phosphorylated LiaR strongly induces expression from the
strictly LiaR-dependent promoter PliaI upstream of the liaIH-
liaGFSR operon, thereby also autoregulating expression
of the LiaRS 2CS. This leads to the generation of two
distinct transcripts: the major liaIH transcript and a tran-
script of the entire liaIH-liaGFSR locus. In the absence of a
suitable stimulus, the expression of the LiaRS 2CS is
ensured by a weak constitutive promoter, PliaG, located

Accepted 14 December, 2012. *For correspondence. E-mail
mascher@bio.lmu.de; Tel. (+49) 89 218074622; Fax (+49) 89
218074626.

Molecular Microbiology (2013) 87(4), 769–788 � doi:10.1111/mmi.12130
First published online 21 January 2013

© 2012 Blackwell Publishing Ltd



upstream of liaG (Jordan et al., 2006). Phylogenomic
studies revealed that LiaRS is a conserved cell envelope
stress-sensing 2CS present in most Firmicutes (low G+C
Gram-positive) bacteria (Jordan et al., 2006; 2008). It is
linked by genomic context and function to liaF, encoding a
membrane protein that acts as a specific inhibitor of LiaRS.
In liaF deletion mutants, the LiaRS 2CS is constitutively
active even in the absence of envelope stress (Jordan
et al., 2006). This observation was later confirmed by a
study of the homologous system in Streptococcus mutans
(Suntharalingam et al., 2009).

Previous studies have shown that the LiaR-dependent
target promoter upstream of the liaIH operon (PliaI) is
tightly regulated by at least three different transcriptional
regulators, LiaR, AbrB and Spo0A (Jordan et al., 2007).
The close interplay between the corresponding regulatory
cascades ensures that this promoter is almost shut off
during exponential growth. Under inducing conditions, the
activity of PliaI can increase almost three orders of magni-
tude in a LiaR-dependent fashion (Mascher et al., 2004;
Jordan et al., 2006), with its primary target, LiaH, becom-
ing the most abundant cytosolic protein in B. subtilis (Wolf
et al., 2010). LiaH is a homologue of the Escherichia coli
phage shock protein (Psp) A. The latter maintains the
proton motive force under extracytoplasmic stress condi-
tions that affect the membrane integrity (Model et al.,
1997; Darwin, 2005). Because of the similar structure of
PspA and LiaH and an overlapping inducer spectrum, we
hypothesize that LiaFSR mounts a PspA-like response
(Wolf et al., 2010). The small membrane protein LiaI
seems to act as membrane anchor for LiaH. The cellular
function of LiaG is not known so far.

We have previously shown that the PliaI activity can be
locked in constitutive ‘ON’ or ‘OFF’ states in a liaF or liaR
mutant respectively (Wolf et al., 2010). Both of these
extreme situations are exclusively Lia-dependent. In
aiming to unravel the mechanism behind the tight regula-
tion and impressive dynamic range of PliaI-dependent
transcription initiation, we focused our attention on the
mechanism of signal transduction mediated by the LiaFSR
system.

This article describes the results of comprehensive
genetic and biochemical studies on the stoichiometry of the
LiaFSR system. A systematic deletion/complementation
screen revealed that the LiaFSR system is very suscepti-
ble to alterations of its protein compositions and amounts.
Under native conditions, the amount of LiaF exceeds that
of LiaS. Likewise, an excess of the HK LiaS over LiaR is
also crucial for the functionality of the LiaFSR system. Our
data indicate that the stoichiometry of the Lia system is
essential for the dynamic range and output observed at the
level of its target promoter, PliaI. Increasing the abundance
of either LiaS or LiaR leads to ‘locked-ON’ phenotypes,
even in the absence of a stimulus. Hence, the Lia system

behaves non-robustly with regard to its protein stoichiom-
etry, in contrast to other 2CSs studied in this respect.

Results

Hyperactivity of PliaI is the result of positive polar effects
from inserted resistance cassettes

We previously noticed by b-galactosidase assay using a
PliaI–lacZ reporter strain that the constitutive liaI promoter
activity of a liaF mutant, in which the gene has been
replaced by a kanamycin resistance cassette, was 10
times higher than the maximum promoter activity in the
induced wild type (Jordan et al., 2006) (see Fig. 1A).
Surprisingly, a liaS mutant constructed in a similar way
also shows a ‘locked-ON’ behaviour with regard to the
activity of the strictly LiaR-dependent PliaI, despite the
absence of the HK responsible for activating LiaR
(Fig. 1A). But here, the activity was lower and compara-
ble to the induced wild type. Subsequent time-course
experiments revealed a PliaI-dependent accumulation of

Fig. 1. Effect of mutations or deletions of liaF, liaS or liaR on PliaI

activity as a measure for the LiaR-dependent expression of liaIH.
A. Cultures of strains TMB488 (wild type), TMB019 (liaS::kan),
TMB018 (liaF::kan), TMB216 (DliaS), TMB331 (DliaF), TMB020
(liaR::kan) and TMB232 (liaS::kan, LiaR D54A) were grown in LB
medium to mid-exponential phase (OD600 ~ 0.4) and split. One-half
was induced by the addition of bacitracin (final concentration 50 mg
ml-1; black bars), and the other half served as an uninduced control
(grey bars). Cells were harvested 30 min post induction and the
activity of the PliaI–lacZ reporter was measured by b-galactosidase
assay as described previously (Mascher et al., 2004).
b-Galactosidase activity is expressed in Miller units (Miller, 1972). A
log scale was applied for reasons of clarity.
B. To illustrate the strong constitutive activity of PliaI in the DliaF
(TMB329) and liaF::kan (TMB002) mutants as well as the 10-fold
increased activity of DliaF relative to the induced wild type, a
Western blot is shown below, using antibodies against LiaH.
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b-galactosidase over time in the liaS mutant (data
not shown), indicating a significantly increased LiaR-
dependent basal expression. Both, the liaS::kan and the
liaF::kan mutants no longer responded to the extracellu-
lar addition of sublethal bacitracin concentration
(Fig. 1A), and in each case, the observed PliaI activity
was still LiaR-dependent (data not shown). These obser-
vations could be explained either by postulating an
important role of LiaS as a phosphatase under these
conditions, and/or by assuming polar effects of the
inserted kanamycin resistance cassette on the expres-
sion of downstream gene(s). We first investigated the
second hypothesis.

Because of the strong increase in LiaR-dependent PliaI

activity, we suspected positive polar effects as the possi-
ble reason for the observed behaviour. Therefore, we
used markerless deletion mutants of both genes, con-
structed with the pMAD vector system (Arnaud et al.,
2004). The resulting PliaI reporter strains TMB216 (DliaS)
and TMB331 (DliaF) now showed significantly reduced
basal expression levels. While the latter confirmed the
inhibitor function of LiaF, the overall promoter activity was
now comparable to the induced wild type, irrespective of
the presence or absence of bacitracin (Fig. 1A). Likewise,
the DliaS strain now showed a locked-OFF behaviour
comparable to the uninduced wild type, as expected
(Fig. 1A; for values, see Table S2).

To rule out any artefacts derived from the PliaI–lacZ
reporter system used to study LiaR activity, we verified the
observed differences between the liaF::kan and the DliaF
mutants by Western blot analysis, monitoring LiaH
expression in the absence of bacitracin by specific poly-
clonal antibodies (Fig. 1B). Again, we observed significant
differences in LiaH accumulation comparable to the
results from the b-galactosidase assays described above.
For the liaS::kan mutant, the strong positive polar effect of
the kanamycin resistance cassette was directly visualized
by Northern blots (Fig. 2). Figure 2A shows a schematic
representation of the lia locus in the wild type and the
liaS::kan mutant, as well as the expected and observed
transcripts. The Northern blot revealed a significant over-
expression of a liaR-specific transcript that correlates in
size with a kan-liaR mRNA (Fig. 2B).

We next quantified the expression levels of liaF, liaS
and liaR by real-time RT-PCR in the wild type (+/- baci-
tracin) and the allelic replacement/clean deletion mutants
of liaF and liaS (Table 1). The results are in complete
agreement with the data described above. Replacement
of liaF by the kanamycin cassette results in a 10-fold
increased level of liaS compared with the clean deletion.
Likewise, liaR expression is increased 20-fold in the
liaS::kan strain compared with the DliaS mutant. Taken
together, our data demonstrate that the strong positive
polar effect (10- to 20-fold induction of downstream

Fig. 2. Positive polar effect of the kanamycin resistance cassette
on the LiaR expression.
A. Schematic representation of the native lia locus of B. subtilis as
well as the lia locus with integrated kanamycin resistance cassette
replacing liaS. The fragments covered by the two probes used for
Northern hybridization are indicated and labelled 1 and 2. The
transcripts detected by Northern blots are marked by arrows,
whereas the detection of transcripts at the uninduced condition is
represented by grey arrows and those at the induced condition by
black arrows. Their respective sizes are given on the left.
B. Northern blot analysis of liaIH and liaR expression, using the two
probes indicated above. Five micrograms of total RNA for liaIH
detection and 10 mg for liaR detection (-, no induction; +, induction
with 50 mg ml-1 bacitracin) was loaded on a formaldehyde gel and
Northern blot analysis was performed as described in Experimental
procedures. The formaldehyde gels with separated 23S- and
16S-rRNAs are shown below.
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genes) strongly affects the LiaR-dependent output at the
level of target promoter (PliaI) activity.

LiaR is phosphorylated by the cellular pool of acetyl
phosphate in the absence of LiaS

While positive polar effects could be identified as the
reason for the observed PliaI hyperactivity in strains har-
bouring allelic replacement mutations, the strong promoter
activity in case of the liaS::kan mutant was still puzzling.
Activation of RR activity depends on a HK-dependent
phosphorylation and subsequent dimerization. We there-
fore wondered if phosphorylation of LiaR played a role in
the observed promoter activity in the liaS::kan mutant. To
address this question, we constructed a mutant in which
we introduced a single point mutation during the allelic
replacement of liaS, which leads to an aspartate to alanine
exchange in LiaR, thereby rendering the invariant site of
RR phosphorylation dysfunctional. This strain (TMB247:
liaS::kan, LiaR D54A) also showed a strong expression of
a kan-liaR transcript, but no expression of the LiaR-
dependent liaIH or liaIHGF-kan-liaR transcripts (Fig. 2B).
Accordingly, the resulting PliaI–lacZ reporter strain
(TMB232) only showed basal expression levels compara-
ble to the uninduced wild type (Fig. 1A). While we cannot
rule out that the introduced amino acid exchange somehow
affected LiaR stability or folding, our data nevertheless
strongly suggests that phosphorylation of LiaR is a prereq-
uisite for the observed output in the absence of the cognate
HK LiaS.

Acetyl phosphate has been described in the literature
as a small molecule phospho-donor capable of phospho-
rylating response regulators in vivo, since it can reach
intracellular concentration comparable to those of ATP
(about 3–5 mM), at least in E. coli (McCleary and Stock,
1994; Wolfe, 2005; Klein et al., 2007). While the phos-
phatase activity of bifunctional HKs usually prevents

undesired phosphorylation of their cognate RRs in the
absence of suitable triggers, some RRs are readily phos-
phorylated in their absence, as has been demonstrated
for the VanRS system of Streptomyces coelicolor (Hutch-
ings et al., 2006). We therefore hypothesized a similar
scenario for the Lia system.

Acetyl phosphate is produced from pyruvate via acetyl-
CoA as part of the cellular overflow metabolism. Under
normal conditions, acetyl-CoA is synthesized from pyru-
vate and metabolized by the tricarboxylic acid (TCA)
cycle. Whenever too much acetyl-CoA is present in the
cell to be metabolized via the TCA cycle, the excess
acetyl-CoA is converted to acetyl phosphate. This reaction
is catalysed by the enzyme phospho-transacetylase,
which is encoded by the pta gene. Acetyl phosphate is
then converted to acetate (a reaction catalysed by the
acetate kinase AckA), which is released into the medium.
If the cells grow on acetate, the order of biochemical
reactions is inverted (Wolfe, 2005).

The cellular amount of acetyl phosphate can be influ-
enced by the carbon sources supplied to the medium. For
E. coli, the highest concentrations of acetyl phosphate
were determined with pyruvate as carbon source
(McCleary and Stock, 1994; Wolfe, 2005; Klein et al.,
2007). We therefore decided to compare the PliaI activity of
the liaS::kan mutant in the presence and absence of pta
or ackA with varying carbon sources. The results are
summarized in Fig. 3.

In the chemically defined CSE medium (Stülke et al.,
1993), the PliaI activity strongly responds to the available
carbon source, at least in the liaS::kan mutant. If succi-
nate [0.56% (w/v) final concentration], an intermediate
of the TCA cycle that does not feed into the overflow
metabolism, is used as the sole carbon source, a signifi-
cant reduction of the basal PliaI activity of the liaS::kan
mutant is observed compared with LB medium. In con-
trast, addition of pyruvate [0.5% (w/v) final concentration]

Table 1. Transcription of liaFSR.

Straina

liaFb liaSb liaRb

Ct

Fold changes, relative to

Ct

Fold changes, relative to

Ct

Fold changes,
relative to

liaR(WT–Bac) liaF(WT–Bac) liaR(WT–Bac) liaS(WT–Bac) liaR(WT–Bac)

WT (- Bac) 8.2 � 0.1 49 � 8 1 8.3 � 0.2 47 � 16 1 13.8 � 0.3 1
WT (+ Bac) 2.7 � 0.1 2165 � 419 44 � 1 3.0 � 0.1 1791 � 412 39 � 4 9.3 � 0.2 22 � 2
liaF::kan n.a. n.a. n.a. 0.8 � 0.1 8568 � 1983 189 � 20 7.5 � 0.2 77 � 8
DliaF n.a. n.a. n.a. 4.1 � 0.2 910 � 303 19 � 0.1 8.9 � 0.3 31 � 2
liaS::kan n.d. n.d. n.d. n.a. n.a. n.a. 8.5 � 0.1 41 � 8
DliaS n.d. n.d. n.d. n.a. n.a. n.a. 13.3 � 0.3 2 � 1

a. Strains used: W168 (WT), TMB002 (liaF::kan), TMB329 (DliaF), TMB004 (liaS::kan) and TMB213 (DliaS) (Bac, Bacitracin).
b. Genes quantified, using primer pairs TM0630/TM0631 (liaF), TM0628/TM0629 (liaS) and TM0093/TM0094 (liaR) (Ct, threshold cycle; n.a., not
applicable; n.d., not determined).
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to CSE medium increased the promoter activity in this
mutant more than 10-fold compared with LB medium and
100-fold compared with CSE alone (Figs 1A and 3). The
wild type shows comparable PliaI activities in LB medium
and CSE medium with or without pyruvate. Irrespective of
the carbon source, the promoter activity drops to the
same basal level in a pta mutant, thereby clearly demon-
strating that most of the increased LiaR-dependent PliaI

activity in the liaS::kan background can be attributed to
stimulus-independent cross-phosphorylation from acetyl
phosphate (Fig. 3 and data not shown), as has been
demonstrated at least for some other 2CSs (Laub and
Goulian, 2007). An ackA/liaS double mutant, which is not
able to convert acetyl phosphate to acetate, shows PliaI

activities comparable to the liaS::kan mutant (Fig. 3).
The discrepancy in PliaI activity between the DliaS and

liaS::kan strains (Fig. 1A) seemed to indicate that phos-
phorylation of LiaR by acetyl phosphate only leads to a
measurable output if LiaR is simultaneously overpro-
duced, as is the case in the liaS::kan strain (Fig. 2B). To
address this question, we introduced an additional copy of
liaR under the control of a xylose-inducible promoter, into
the DliaS reporter strain TMB216 (Table 2), resulting in
strain TMB641, thereby simulating the situation of strain
TMB019. Indeed, this strain showed a similar behaviour

(Figs 3 and 1A). And again, the ‘locked-ON’ behaviour
was completely dependent on acetyl phosphate, as dem-
onstrated by the lack of promoter activity after introducing
the pta::tet allele into this strain (Fig. 3).

To unequivocally demonstrate that indeed acetyl
phosphate is responsible for the observed stimulus-
independent activation of PliaI, we also reversed the reac-
tion by adding acetate to the CSE medium (60 mM final
concentration), thereby driving the Pta-AckA pathway
backwards. Under these conditions, we received similar
results as described for CSE + pyruvate: the PliaI activity of
the liaS::kan mutant again increases about 100-fold com-
pared with CSE medium alone and drops to a basal level in
an ackA::mls mutant, which is no longer able to produce
acetyl phosphate from acetate anymore. The same basal
PliaI activity is observed for the DliaS mutant, which does not
overproduce LiaR (Fig. 3).

Taken together, the data obtained so far strongly sug-
gests that LiaR can be phosphorylated by the cellular
pool of acetyl phosphate, but only if LiaR is overex-
pressed in the absence of the cognate HK LiaS. This
artificial susceptibility of LiaR for acetyl phosphate-
dependent activation is therefore in good agreement
with the results obtained for other bacterial RR (Laub
and Goulian, 2007).

Fig. 3. Carbon source-dependent activation of PliaI in different lia, pta and ackA mutants. Cultures of strains TMB488 (wild type), TMB019
(liaS::kan), TMB505 (liaS::kan, pta::tet), TMB232 (liaS::kan, LiaR D54A), TMB216 (DliaS), TMB641 (DliaS, pXT-liaR), TMB678 (DliaS, pXT-liaR,
pta::tet), TMB190 (ackA::mls) and TMB191 (liaS::kan, ackA::mls) were grown in CSE medium and/or CSE medium supplemented with
pyruvate [0.5% (w/v) final concentration] or acetate (60 mM final concentration) to mid-exponential phase (OD600 ~ 0.6). Cells were harvested
and PliaI activity was measured as described. A log scale was applied for reasons of clarity. Integration of the empty complementation vector
pXT did not affect the behaviour of the parental strain (TMB216) shown above (data not shown).
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LiaS is a bifunctional HK that possesses a
phosphatase activity

The data described in the previous section suggests that
LiaS is a bifunctional kinase that functions as a phos-

phatase in the absence of inducing conditions. LiaS
belongs to the HPK7 family of HKs, which harbours a
HisKA_3 dimerization and histidine phosphotransfer
domain. Within this domain, a conserved DxxxQ motif was
recently identified (Huynh et al., 2010). For the HK NarX it

Table 2. Bacterial strains used in this study.

Strain Genotype or characteristic(s)a Reference, source or constructionb

E. coli strains
DH5a recA1 endA1 gyrA96 thi hsdR17rK- mK+relA1 supE44 F80DlacZDM15

D(lacZYA-argF)U169
Sambrook and Russell (2001)

XL1blue endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F′[Tn10 proAB+ lacIq

D(lacZ)M15] hsdR17(rK
- mK

+) tetR
Laboratory stock

BL21(DE3)/pLysS F- lon ompT rB mB hsdS gal (cIts857 ind1 Sam7 nin5 lacUV5-T7gene1) Laboratory stock
TME741 BL21(DE3)/pLysS pKSEx102 This work
TME744 BL21(DE3)/pLysS pKSEx103 This work

B. subtilis strains
W168 Wild type, trpC2 Laboratory stock
CU1065 W168 attSPb2D2 Laboratory stock
HB0933 CU1065 liaR::kan Mascher et al. (2003)
TMB002 CU1065 liaF::kan Jordan et al. (2006)
TMB004 CU1065 liaS::kan Jordan et al. (2006)
TMB016 CU1065 amyE::(cat PliaI–lacZ) Jordan et al. (2006)
TMB018 CU1065 amyE::(cat PliaI–lacZ) liaF::kan Jordan et al. (2006)
TMB019 CU1065 amyE::(cat PliaI–lacZ) liaS::kan Jordan et al. (2006)
TMB020 CU1065 amyE::(cat PliaI–lacZ) liaR::kan Jordan et al. (2006)
TMB174 W168 ackA::mls LFH-PCR→W168
TMB186 W168 pta::tet LFH-PCR→W168
TMB190 TMB016 ackA::mls TMB174 ch. DNA→TMB016
TMB191 TMB019 ackA::mls TMB174 ch. DNA→TMB019
TMB213 W168 DliaS Jordan et al. (2007)
TMB216 TMB213 amyE::(cat PliaI–lacZ) TMB016 ch. DNA→TMB213
TMB232 W168 amyE::(cat PliaI–lacZ) liaS::kan LiaR D54A TMB016 ch. DNA→TMB247
TMB247 W168 liaS::kan LiaR D54A CCR/LFH-PCR→W168
TMB278 W168 amyE::(cat PliaG-opt.-liaF–lacZ) pER503→W168
TMB281 W168 amyE::(cat PliaG-opt.-liaS–lacZ) pER504→W168
TMB282 W168 amyE::(cat PliaG-opt.-liaR–lacZ) pER505→W168
TMB329 W168 DliaF Wolf et al. (2010)
TMB331 TMB329 amyE::(cat PliaI–lacZ) TMB016 ch. DNA→TMB329
TMB466 W168 amyE::lacZ (pAC7) pAC7→W168
TMB468 W168 amyE::lacZ (pAC5) pAC5→W168
TMB469 W168 amyE::(kan Pveg-SDliaF–lacZ) pKS1001→W168
TMB478 W168 amyE::(kan Pveg-SDliaS–lacZ) pKS1002→W168
TMB479 W168 amyE::(kan Pveg-SDliaR–lacZ) pKS1003→W168
TMB480 W168 amyE::(kan Pveg–lacZ) pKS1005→W168
TMB488 W168 amyE::(cat PliaI–lacZ) TMB016 ch. DNA→W168
TMB500 TMB216 thrC::(spec Pxyl-liaS-FLAG3) pKS704→TMB216
TMB501 TMB216 lacA::(erm Pspac-FLAG3-liaS) pKS-FLAG1→TMB216
TMB505 TMB019 pta::tet TMB186 ch. DNA→TMB019
TMB639 TMB488 thrC::(spec Pxyl-liaR) pDW701→TMB488
TMB641 TMB216 thrC::(spec Pxyl-liaR) pDW701→TMB216
TMB654 TMB488 thrC::(spec Pxyl-liaF) pSJ701→TMB488
TMB678 TMB641 pta::tet TMB186 ch. DNA→TMB641
TMB1131 TMB488 thrC::(spec Pxyl-liaFSR) pKS726→TMB488
TMB1141 W168 liaS-FLAG3 pMAD-based sequence insertion
TMB1146 TMB1141 amyE::(cat PliaI–lacZ) TMB488 ch. DNA→TMB1141
TMB1155 W168 FLAG3-liaF pMAD-based sequence insertion
TMB1156 TMB1155 amyE::(cat PliaI–lacZ) TMB488 ch. DNA→TMB1155
TMB1201 W168 FLAG3-liaR pMAD-based sequence insertion
TMB1271 TMB1201 amyE::(cat PliaI–lacZ) TMB488 ch. DNA→TMB1201
TMB1488 TMB488 thrC::(spec Pxyl-liaS) pKS727→TMB488
TMB1490 TMB216 thrC::(spec Pxyl-liaS) pKS727→TMB216
TMB1505 TMB216 thrC::(spec Pxyl-liaS (LiaS Q164A)) pKS729→TMB216

a. Resistant cassettes: kan, kanamycin; cat, chloramphenicol; tet, tetracycline; spec; spectinomycin; erm, erythromycin, mls, macrolide–
lincosamide–streptogramin (erythromycin + lincomycin)
b. ch. DNA, chromosomal DNA.

774 K. Schrecke, S. Jordan and T. Mascher �

© 2012 Blackwell Publishing Ltd, Molecular Microbiology, 87, 769–788



was shown that the glutamine residue plays a critical role in
phosphatase activity, and the exchange by an alanine,
glutamate or histidine residue results in a kinase ON,
phosphatase OFF protein (Huynh et al., 2010). Since this
motif is also found in LiaS (data not shown), we introduced
a copy of liaS, in which the conserved glutamine 164
residue was substituted by an alanine, into the DliaS
mutant and analysed the PliaI activity by b-galactosidase
assay (Fig. 4). In contrast to the wild type behaviour of the
complementation mutant carrying a native liaS gene, the
LiaS Q164A mutant shows a constitutive PliaI activity com-
parable to the induced wild type. These genetic findings,
together with the physiological data described above,
strongly suggest that LiaS possesses a phosphatase activ-
ity. This is in perfect agreement with biochemical in vitro
evidence from the direct LiaS orthologues VraS of Staphy-
lococcus aureus (Belcheva and Golemi-Kotra, 2008) and
LiaSLm of Listeria monocytogenes (Fritsch et al., 2011),
which were both demonstrated to be bifunctional HKs. In
fact, all HKs belonging to the family HPK7 investigated so
far, such as DesK or NarX/Q are bifunctional kinases
(Schröder et al., 1994; Albanesi et al., 2004). In the case of
LiaS, this phosphatase activity is very important to keep the
output (PliaI activity) switched off in the absence of inducing
conditions.

Overproduction of LiaS or LiaR – but not LiaF – affects
the functionality of the LiaFSR system

The results obtained so far seemed to indicate that the
LiaFSR system is very susceptible to changes in the
relative stoichiometry of its three components. Specifi-
cally, the observed activation of LiaR in the absence of
LiaS provoked the question: would an artificial increase of

the RR be sufficient to result in a ‘locked-ON’ phenotype,
even in the presence of LiaS? To address this question,
we overproduced each of the three proteins in the wild
type reporter strain, using the xylose-dependent pXT
expression system (Derre et al., 2000).

Overproduction of the inhibitor protein LiaF had only mild
effects on the functionality of the LiaRS 2CS. The
maximum PliaI activity in the presence of bacitracin was
reduced by a factor of three, while no change of the
uninduced basal expression level was observed (Fig. 5A).
The intact expression of a functional LiaF protein from this
construct was verified by its ability to suppress the ‘locked-
ON’ phenotype of a liaF mutant (data not shown). There-
fore, we conclude that the LiaFSR system is relatively
robust with regard to increasing LiaF concentrations.
However, we cannot exclude that the mild effect on PliaI

might also be the result of only a weak overproduction of
LiaF. Since both the purification of LiaF (to raise antibodies
against the protein) and also Western blots against an
epitope-tagged functional LiaF, expressed from its native
chromosomal position, failed (data not shown), this
hypothesis can unfortunately not be verified experimen-
tally at the moment.

In contrast, overproduction of LiaR resulted in a ‘locked-
ON’ phenotype (Fig. 5A). As hypothesized, a xylose-
dependent increase in the amount of LiaR therefore
results in the same behaviour as observed in the liaS
mutants, above. Since liaS is not overexpressed in this
strain, the increase in PliaI activity without external stimuli
might be caused by a phosphorylation via acetyl phos-
phate that can appear due to an inefficient dephosphor-
ylation by LiaS. For LiaS, we observed an intermediate
phenotype. Overproduction significantly increased the
uninduced basal expression level without affecting the
response to bacitracin (Fig. 5A).

Because of the weak Shine–Dalgarno (SD) sequence
upstream of liaS (see below for details), we wondered if
this intermediate behaviour was due to inefficient transla-
tion initiation, resulting in only a moderate increase in the
cellular amount of LiaS. To investigate this hypothesis, we
cloned two different FLAG3-tagged liaS alleles, one under
the control of its native SD sequence into the vector pXT
(Derre et al., 2000), the other with an optimized ribosome
binding site provided by the vector pALFLAG3 (Schöbel
et al., 2004) respectively. The resulting plasmids were
then introduced into strain TMB216 (DliaS, PliaI–lacZ),
resulting in strains TMB500 and TMB501 respectively
(Table 2). The results of the b-galactosidase assay are
shown in Fig. 5B. In the presence of xylose, the DliaS
mutant did not show any promoter activity, as observed
before (Fig. 1A). Expression of liaS under the control of its
native SD sequence restored the phenotype to wild type
behaviour, indicating that sufficient amounts of intact LiaS
were produced. In contrast, expression of LiaS with the

Fig. 4. Effect of a Q164A exchange in LiaS on the PliaI activity. PliaI

activity of strains TMB488 (wild type), TMB216 (DliaS), TMB1490
(DliaS, pXT-liaS) and TMB1505 (DliaS, pXT-LiaS Q164A).
Experimental conditions and labelling of the bars are as described
in Fig. 1.
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optimized SD sequence resulted in a ‘locked-ON’ behav-
iour (Fig. 5B). These differences could be directly corre-
lated with the different amounts of LiaS in the cells.
Western analysis with FLAG-tag-specific antibodies iden-
tified a strongly increased amount of LiaS protein in the
membrane fraction when expressed with an optimized
ribosome binding site, compared with the complementa-
tion with the native SD sequence (Fig. 5C). These results
demonstrate that overproduction of both LiaS and LiaR
severely perturbates the signal transduction mediated by
the LiaFSR system, even in the presence of all other Lia
proteins in their native amounts.

In contrast, the simultaneous overexpression of all three
genes, liaF, liaS and liaR, which increases the cellular
amount of these proteins simultaneously without changing
their stoichiometry to each other, shows a comparable
behaviour to the wild type (Fig. 5A). This result demon-
strates that the absolute protein amounts of LiaFSR have
no effect on the PliaI activity. As long as the ratio between
LiaS and LiaR is maintained, the phosphatase activity of
LiaS is sufficient to prevent stimulus-independent phos-
phorylation of LiaR by acetyl phosphate.

Taken together, the data obtained from our perturbation
studies indicate that the LiaFSR system seems to behave
non-robustly with regard to alterations in the cellular ratios
of LiaS and LiaR relative to the other protein components
of the Lia system. We hypothesized that the stoichiometry
of LiaF:LiaS:LiaR is very important for the functionality of
Lia-dependent signal transduction. To study this in more
detail, we next performed an in-depth genetic analysis
of the wild type expression levels of the three genes/
proteins by determining transcription and translation ini-
tiation both independently and in conjunction. For LiaSR
the results were subsequently also verified by quantitative
Western blot analyses to estimate the number of proteins
in the cell.

Transcription of liaR is almost 50-fold weaker compared
with liaF or liaS

We first studied the expression of the three genes by
quantitative real-time RT-PCR in the wild type strain W168,
both in the absence and in the presence of bacitracin. The
first condition monitors the intrinsic basal expression level
from the constitutive promoter upstream of liaG, while the
latter reflects the combined activity of PliaG and the LiaR-
dependent PliaI (Fig. 2A). The results are given in Table 1,
which summarizes the determined fold changes relative
to the liaR transcription of the uninduced wild type. We
detected almost equal amounts of liaF and liaS transcripts.
Surprisingly, liaR expression was significantly lower under
both conditions tested. The values indicate an overall ratio
of transcription of 49:47:1 (liaF:liaS:liaR) for uninduced
wild type cells.

Fig. 5. A. Xylose-dependent overexpression of liaF, liaS and liaR
in the wild type reporter strains. PliaI activity of TMB488 (wild type),
TMB654 (WT+liaF), TMB1488 (WT+liaS) and TMB639 (WT+liaR).
Experimental conditions and labelling of the bars are as described
in Fig. 1.
B and C. Complementation of the DliaS deletion, using two different
vector backgrounds.
B. PliaI activity of TMB488 (wild type) and TMB216 (DliaS) as
controls as well as TMB500 (SDliaS) and TMB501 (SDopt.).
Experimental conditions and labelling of the bars are as described
in Fig. 1.
C. Western blot analysis of B. subtilis strains expressing FLAG3-
tagged LiaS alleles preceded by native (TMB500; SDliaS) and an
optimized SD sequence (TMB501; SDopt.), respectively, using
antibodies against the FLAG epitope tag. The cultures were
harvested during the late mid-exponential phase (OD600 ~ 0.8) and
cells were disrupted by sonication. The whole cell extracts (W)
were further fractionated into soluble (S) and membrane (M) protein
fractions by ultracentrifugation. Western blot analysis was
performed as described in Experimental procedures.
A–C. All cultures harbouring pXT-derived constructs were grown in
LB supplemented with 0.2% (w/v) xylose.
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A sequence analysis of the liaFSR region identified two
stem-loop structures at the very end of the liaS gene and
close to each other (Fig. S1). While they lack both the
strength and the poly-U run-off typical for classical rho-
independent terminators, they could nevertheless be
responsible for a significant amount of premature tran-
scription termination that would account for the observed
differences in transcript levels. Another possibility is that
the 3′ end of the liaFSR-specific transcript is subject to
RNase degradation.

Translation initiation of LiaS is severely impaired by its
weak Shine–Dalgarno sequence

We next analysed the contribution of translation initiation
to the overall expression of the three proteins. Towards
that end, we used joining-PCR (see Experimental proce-
dures) to fuse the strong constitutive promoter Pveg (Moran
et al., 1982) with short chromosomal regions of 24 nt
length, directly upstream and including the start codon
of each of the three genes (Fig. 6A). The resulting PCR

products were then cloned into the pAC7 vector (Wein-
rauch et al., 1991) to generate translational fusions with
the lacZ gene. Therefore, any detectable b-galactosidase
activity is the result of the promoter and SD sequence
provided on the cloned fragments. Likewise, any differ-
ence between the activities of the three constructs is a
direct consequence of the translation initiation sequences
of the short DNA fragments shown in Fig. 6A. As a nega-
tive control, Pveg was cloned into pAC7 in a similar
manner, but lacking a SD sequence. The B. subtilis wild
type strain W168 was transformed with the four plasmids
and also the empty vector, resulting in strains TMB466,
TMB469 and TMB478–480 (Table 2). b-Galactosidase
assays were performed with lysates from cells harvested
during mid-exponential growth phase without induction.
The results are shown in Fig. 6B.

Both the empty vector and the plasmid that contains
Pveg without a SD sequence did not show any activity.
The level of translation initiation of the three complete
fragments differed significantly. While translation of the
b-galactosidase from the SD sequences of liaF and
liaR only differed two- to threefold, the b-galactosidase
activity was 10- to 30-fold lower for liaS (Fig. 6B). This
result correlates very well with the weakly conserved
SD sequence of liaS (Fig. 6A), and the data shown in
Fig. 5C.

Transcription and translation initiation combined indicate
a LiaF:LiaS:LiaR ratio of 18:4:1

To study the combined effects of transcription and trans-
lation initiation on protein expression of the LiaFSR
system in its natural genetic context, we next transla-
tionally fused the three fragments shown in Fig. 7A with
a promoter-/SD-less lacZ gene using the vector pAC5
(Martin-Verstraete et al., 1992). Initially, we used the
weak native promoter upstream of liaG (PliaG) (Jordan
et al., 2006). But the resulting constructs did not give
rise to any detectable b-galactosidase activity (data not
shown). Cloning the fragments under control of the
strong Pveg used above failed for the two longer frag-
ments, most probably due to toxic effects of liaF expres-
sion in E. coli that we had already observed previously.
We therefore used an engineered version of PliaG, har-
bouring an optimized -35 and extended -10 promoter
region, and termed PliaG-opt. (Fig. 7B) to introduce as few
alterations as possible and also avoid a strong expres-
sion of liaF during the cloning procedure. Thus, the
b-galactosidase activity of all three reporter strains
derived from these plasmids is under the transcriptional
control of PliaG-opt. and under the translational control of
the specific SD sequences of liaF, liaS or liaR respec-
tively. All strains showed a weak, but clearly detectable
b-galactosidase activity (Fig. 7C). Even the expression

Fig. 6. Translation initiation of liaF, liaS and liaR.
A. Sequences of liaF-, liaS- and liaR-mRNA including the
Shine–Dalgarno sequence (underlined bold letters) up to the start
codon (underlined letters) are illustrated. These fragments are
under the control of Pveg and translationally fused to lacZ using the
vector pAC7.
B. Cultures of strains TMB466 (pAC7 empty vector) and TMB480
(Pveg–lacZ) as negative controls as well as TMB469 (SDliaF–lacZ),
TMB478 (SDliaS–lacZ) and TMB479 (SDliaR–lacZ) were grown in LB
medium to mid-exponential phase (OD600 ~ 0.6). Cells were
harvested and b-galactosidase activity was measured as described.
A log scale was applied for reasons of clarity.
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level for the longest and weakest construct (SDliaR)
was significantly (more than twofold) above the back-
ground level of the empty vector. Based on the results
shown in Fig. 7C, the overall native stoichiometry of
LiaF:LiaS:LiaR is 18:4:1.

Quantitative Western blot analysis verifies an excess of
LiaS over LiaR

So far, the findings on the native stoichiometry of LiaFSR
are based on indirect genetic approaches. To support and
substantiate these data, we next performed quantitative
Western blot analysis to determine the cellular amounts of
the proteins involved. For this, the corresponding genes
were either N-terminally (liaF and liaR) or C-terminally
(liaS) fused to a FLAG3 sequence that was integrated
directly into the native lia locus via pMAD (Arnaud et al.,
2004; see Experimental procedures for details). The PliaI

activity of the generated strains was checked to ensure
wild type behaviour and the functionality of the system in
the presence of FLAG3-tagged proteins (Fig. S2). Fur-
thermore, protein standards were expressed and purified
from E. coli BL21(DE3) using the overexpression vector
pProEx1, which generates N-terminal His6-tag fusions to
the cloned genes. To be able to detect the proteins via
Western blotting, an additional FLAG3-tag was fused
C-terminal to these proteins. Quantitative Western blots
were carried out as described in Experimental proce-
dures. The standards were analysed by ImageJ software
and band intensities were plotted against known amounts
of proteins. Finally, the cellular amounts of proteins were
calculated from the standard curve.

For LiaF, all attempts to (over)express and purify the
protein failed, presumably because of the toxicity of LiaF
production in E. coli, as mentioned above. Furthermore,
the detection of a functional FLAG3-tagged LiaF protein
was also not successful. This could be due to either an
inefficient protein transfer during the Western blot proce-
dure or the loss of the epitope tag in the course of LiaF
processing. But for LiaS and LiaR the quantification suc-
ceeded. An example of a quantitative Western blot for
both proteins is shown in Fig. 8A and B. The correspond-
ing standard curves are represented in Fig. 8C and D. In
LB medium grown until mid-exponential phase in the
absence of an inducer, we determined about 10 mol-
ecules of LiaS per cell, but could not detect any LiaR. We
therefore also quantified the protein amounts in cells
induced with bacitracin. Here, B. subtilis W168 cells con-
tained an average of 150 molecules of LiaS-FLAG3 per
cell. Under the same conditions, we determined ~ 20 mol-
ecules per cell for FLAG3-LiaR (Fig. 8E). Since the ratio
of LiaS to LiaR should not be affected by bacitracin induc-
tion, this result should also be a reliable measure for the
relative amounts of both proteins in uninduced cells.
While the absolute numbers for both proteins calculated
for individual experiments varied significantly (Fig. 8E)
and should not be over-interpreted, especially since we
only used one method to calibrate the protein standard
curves, these direct measurements are nevertheless in
very good agreement with the genetic data described

Fig. 7. Expression level of liaF, liaS and liaR.
A. Schematic representation of cloned fragments including liaG up
to the start codons of liaF, liaS and liaR respectively. The
fragments are under the control of the optimized liaG promoter and
translationally fused to lacZ, using the vector pAC5.
B. Sequences of the native and optimized liaG promoter. The -35
and -10 regions were highlighted with underlined bold letters.
C. b-Galactosidase activities of B. subtilis strains containing the
fragments shown above. Cultures of strains TMB468 (pAC5 empty
vector) as negative control as well as TMB278 (SDliaF–lacZ),
TMB281 (SDliaS–lacZ) and TMB282 (SDliaR–lacZ) were grown in LB
medium to mid-exponential phase (OD600 ~ 0.6). Cells were
harvested and b-galactosidase activity was measured as described.
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above and support a clear excess (at least three- to four-
fold) of LiaS over LiaR. This solid correlation between
indirect genetic and direct biochemical data also demon-
strates that the genetic approach described in Fig. 7 pro-
vides a reliable and easy-to-perform measure to estimate
relative protein amounts in cells. Hence, although we
failed to determine the exact amount for LiaF, it stands to
reason to assume that its amount indeed exceeds that
of LiaS, based on its genetic location, strong Shine–
Dalgarno sequence and the corresponding results shown
in Figs 6 and 7 and Table 1.

Discussion

In this report, we have comprehensively investigated the
native stoichiometry of LiaFSR by genetic and biochemi-
cal approaches and the effects of its perturbation on the
functionality of this cell envelope stress-sensing system.
The data obtained in this study is summarized in Table 3.
A graphical model derived from these results is provided

in Fig. 9. Taken together, we demonstrate a crucial role
of maintaining conditions, in which the amounts of
LiaF > LiaS > LiaR.

Three very important conclusions can be drawn from the
observations reported in this article on the functionality of
the LiaFSR system. First, LiaF exerts its function through
LiaS, since it does not affect the LiaS-independent phos-
phorylation by acetyl phosphate (Fig. 3 and data not
shown) and its inhibitory effect can be overcome by LiaS
overproduction (Fig. 5). Second, in the absence of a stimu-
lus, LiaF maintains LiaS in its phosphatase state. To ensure
this, the inhibitor protein LiaF needs to be in excess over
LiaS to keep the system silent in the absence of a stimulus.
If LiaF is absent or if LiaS is strongly overexpressed even
in the presence of LiaF, the output of the Lia system, PliaI

activity, is switched on, even in the absence of an inducer
(Figs 1 and 5). Third, while LiaS – as its orthologues – is a
bifunctional histidine kinase, at least its phosphatase activ-
ity seems to be rather inefficient. This hypothesis is derived
from the observation that LiaS needs to be more abundant

Fig. 8. In vitro quantification of LiaS and LiaR.
A and B. Quantitative Western blot analysis of B. subtilis strains expressing LiaS-FLAG3 (TMB1141; A) or FLAG3-LiaR (TMB1201; B) proteins
using antibodies against the FLAG epitope tag. The cultures were grown in LB medium to mid-exponential phase (OD600 ~ 0.4–0.6) and split.
One-half was induced by the addition of bacitracin (final concentration 20 mg ml-1), and the other half was kept uninduced. Cultures were
harvested 30 min post induction and cells were disrupted by sonication. The soluble (S) and membrane (M) protein fractions were fractionated
by ultracentrifugation. Quantitative Western blot analysis was performed as described in Experimental procedures.
C and D. Standard curves of His6-LiaS-FLAG3 and His6-LiaR-FLAG3 protein samples in lanes 1–5. The density of each band was plotted
against the amount of protein loaded. In case of His6-LiaR-FLAG3 (Fig. 8D) it was necessary to artificially constrain the fit to go through the
origin, since a best fit line with a non-zero y-axis intercept would have resulted in negative LiaR protein numbers per cell.
E. Average values of calculated protein amounts of LiaS-FLAG3 and FLAG3-LiaR per cell.
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than LiaR in order to prevent stimulus-independent phos-
phorylation of this RR by acetyl phosphate. If either of the
two last prerequisites for LiaFSR functionality is severely
perturbated by overexpressing either LiaS or LiaR, the
system enters a ‘locked-ON’ state, in which full PliaI activity
is reached even in the absence of a signal (Fig. 5A and
Table 3). Taken together, the LiaFSR system seems to
behave non-robust with regard to relative alterations of its
protein stoichiometry. The implications of these observa-
tions will be discussed in the following sections.

LiaFSR stoichiometry and robustness

So far, only few 2CSs have been studied with regard to
the relative cellular amounts of the sensor kinase and
response regulator and how this affects the functionality
of the 2CS.

The most detailed quantitative analyses were per-
formed for the paradigmatic 2CS EnvZ-OmpR of E. coli.

It was demonstrated that the HK EnvZ is present in sig-
nificantly lower amounts than its cognate RR OmpR,
with ~ 100 and ~ 3500 monomeric molecules per cell
respectively (Cai and Inouye, 2002). Since HKs usually
function as stable dimers, the physiological relevant
HK2:RR ratio is 1:70. Subsequently, it was shown that
the EnvZ-OmpR system is robust with regard to altera-
tions of the amount of both proteins, as long as OmpR
remains in excess over EnvZ (Batchelor and Goulian,
2003). Most recently, the stoichiometry of the VicRK
(WalRK) 2CS from Streptococcus pneumoniae (Wayne
et al., 2010) was determined. The amount of the HK was
the stoichiometrical bottleneck, with the HK2:RR ratios of
1:14.

The data obtained for LiaFSR in this study stands in
contrast to these observations. Here, the amount of the RR
LiaR is about four- to eightfold lower than that of the
cognate HK LiaS (Figs 8E and 9), and maintaining this
excess of HK over RR is crucial for the functionality of the

Table 3. Summary of the deletion/complementation studies.

Straina

Amount relative to WTb Effect

LiaF LiaS LiaR LiaS activityc PliaI activity (-/+ Bac)

WT 0 0 0 Phosphatase 1/100
WT + liaF ++ 0 0 Phosphatase 1/30
WT + liaS (+) + (+) Kinase/phosphatase 5/100
WT + liaR (+) (+) ++ Phosphatase 30/60
WT + liaFSR ++ ++ ++ Phosphatase 1/200
liaF::kan – ++ ++ Kinase 1000/1000
DliaF – (+) (+) Kinase 100/100
liaS::kan 0 – ++ n.a. 100/100
DliaS 0 – 0 n.a. 1/1
DliaS, pXT-liaS 0 0 0 Phosphatase 1/100
DliaS, pXT-liaS (opt. SD) (+) ++ (+) Kinase (phosphatase) 100/100
liaR::kan 0 0 – Phosphatase 0.5/0.5

a. WT, wild type; Bac, Bacitracin; opt. SD, optimized Shine–Dalgarno sequence.
b. 0, protein amount equal to wild type; +, increased protein amount relative to wild type; (+), increased protein amount relative to wild type due
to positive feedback regulation; -, no protein present due to deletion.
c. The activities – derived from the behaviour of the target promoter PliaI – is based on the assumption that LiaS is a bifunctional sensor kinase.
Note that this has so far only been demonstrated experimentally by in vitro assays for the LiaS orthologues VraS from Staphylococcus aureus and
LiaSLm from Listeria monocytogenes.
All values refer to uninduced conditions, except were labelled otherwise.

Fig. 9. Working model of the LiaFSR-dependent cell envelope stress response in B. subtilis. The relative ratio of the proteins LiaF, LiaS and
LiaR occurring in wild type cells is illustrated by the size and content of the grey circles. The number of proteins is based on the data of the
genetic approach. Dotted lines represent the uninduced condition, whereas the situation in the presence of bacitracin is indicated by solid
lines. Arrows indicate activation, while T-shaped lines represent inhibition. See text for details.
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LiaRS system. Because of the small differences between
the amounts of LiaS2 and LiaR, this system seems to be
particularly vulnerable to perturbations of its stoichiometry
(Fig. 5 and Table 3). In contrast, the systems described
above either have already been shown or are believed to
be robust. The insight into the nature of robustness in
bacterial signalling is only slowly evolving (Goulian, 2004)
and the overall design of the regulatory systems described
above are too different to allow drawing general conclu-
sions. But to the best of our knowledge, the data on the
LiaFSR system of B. subtilis is the first report on a particu-
larly non-robust 2CS. This unusual stoichiometry could be
interpreted as an indication for the formation of a regulatory
complex between LiaS and LiaR, in order to control RR
activity. As long as LiaS is in excess over LiaR, all RR
molecules can be controlled, whereas free LiaR can easily
be activated by phosphorylation through the cellular pool of
acetyl phosphate.

LiaR and acetyl phosphate

The phosphorylation of LiaR by acetyl phosphate occurs
either in the absence of LiaS or when the RR is present in
increased amounts relative to LiaS (Figs 3 and 5A). A
number of studies have been performed in recent years to
establish that acetyl phosphate can act as a small mol-
ecule phospho-donor for response regulators both in vitro
and in vivo (reviewed in Wolfe, 2010). While the cellular
amount of acetyl phosphate is sufficient to phosphorylate
RRs (Klein et al., 2007), this activation is usually regu-
lated by the phosphatase activity of the cognate sensor
kinase, at least in case of bifunctional HKs (Laub and
Goulian, 2007). This mechanism of preventing stimulus-
independent activation of a RR by the phosphatase activ-
ity of its cognate HK in the absence of inducing conditions
has been documented for a number of bacterial 2CS with
bifunctional HKs, including E. coli CpxAR (Wolfe et al.,
2008), S. coelicolor VanRS (Hutchings et al., 2006) and
EnvZ-OmpR from Xenorhabdus nematophilus (Park and
Forst, 2006).

Overall, our results on the phosphorylation of LiaR by
acetyl phosphate are in good agreement with the con-
clusions derived from the above studies. But in contrast
to most of these examples, we could clearly demon-
strate a full activation of LiaR by acetyl phosphate even
in the presence of LiaS, presumably as soon as the
LiaS2:LiaR ratio favours LiaR. But recently, the in vivo
sensitivity of a RR for cellular acetyl phosphate even in
the presence of the cognate HK has also been demon-
strated for the CpxAR system of E. coli. In this report,
the authors argue that the response of the RR CpxR to
intracellular acetyl phosphate might play a role in fine-
tuning the envelope stress response of this 2CS (Lima
et al., 2012).

The question if the in vivo activation of LiaR by acetyl
phosphate is physiological relevant or just an experimen-
tal artefact from overproducing LiaR is difficult to answer
at the moment. But there is accumulating evidence that
this small phospho-donor can indeed serve as an impor-
tant input for 2CSs (Wolfe, 2010). Remarkably, most
of the 2CSs that respond to acetyl phosphate in vivo,
such as E. coli CpxAR, or VanRS from S. coelicolor are
involved in some aspect of cell envelope stress response
(Hutchings et al., 2006; Wolfe et al., 2008). Moreover, a
recent study in S. pneumoniae identified three 2CSs that
respond to the cellular pool of acetyl phosphate during
normal growth, including LiaRS, VicRK and CiaRH, all of
which are associated with maintaining cell envelope
integrity (Ramos-Montanez et al., 2010). This observation
strongly supports the findings reported in our and the
above-cited study on CpxAR and might argue for a role of
acetyl phosphate for the functionality of LiaRS-like or
even envelope stress response 2CSs in general. Indeed,
it is an appealing hypothesis to postulate that for these
2CSs the primary extracellular trigger, envelope stress,
which is detected (directly or indirectly) by their HKs, is
integrated with an intracellular modulator – acetyl phos-
phate as a measure of the energy state of the cell – that
feeds into the 2CS at the level of the RRs to fine-tune the
output.

LiaF and inhibition of LiaRS-dependent
signal transduction

The Lia system is atypical in that it requires the activity of
a third protein for its functionality. LiaF has previously
been identified as a specific inhibitor of the LiaRS 2CS
(Jordan et al., 2006). This function was recently verified
for the orthologous system in S. mutans (Suntharalingam
et al., 2009). The present study not only confirms the
initial observation for a markerless liaF deletion, but also
indicates that LiaF exerts its inhibitory function through
LiaS. It does not affect the LiaS-independent phosphor-
ylation of LiaR by acetyl phosphate (Fig. 3). Moreover, the
inhibitory effect of LiaF can be overcome by increasing
the amounts of LiaS, even in the presence of LiaF (Fig. 5).
Based on these observations and the bifunctionality of
LiaS, we propose that LiaF arrests LiaS in the phos-
phatase mode in the absence of a suitable trigger. Hence,
the default setting of LiaS alone – even in the absence of
a signal – is ‘kinase ON’, whereas in the presence of LiaF,
it is switched to ‘phosphatase ON’ (Fig. 9). This hypoth-
esis is supported by the observation that increasing the
amount of LiaS relative to LiaF gradually turns on PliaI

activity even in the absence of a signal (Fig. 5A and B). As
long as LiaF is in excess, only the presence of envelope
stress releases this inhibition, thereby switching LiaS into
its kinase mode, resulting in the phosphorylation of LiaR
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and hence a strongly increased PliaI activity. A further
increase of the inhibitor does not significantly affect the
functionality of the LiaFSR system (Fig. 5A), demonstrat-
ing that a signal can overcome the inhibition of LiaS by
LiaF irrespective of the amount of excess in which LiaF is
present relative to LiaS. The importance of maintaining
such a ratio could again be interpreted as an indication for
a physical interaction – for example the formation of a
sensory/regulatory complex – between LiaF and LiaS.
While so far we were unable to demonstrate this, future
studies will hopefully shed some light on the mechanism
of interaction between the two proteins.

If we take all observations of this study together, the
following scenario can account for the observed behav-
iour (Fig. 9). Under normal non-inducing conditions, the
excess of LiaF over LiaS keeps the HK quantitatively in its
phosphatase mode. As long as LiaS is also in excess over
LiaR, it can prevent the phosphorylation of LiaR by acetyl
phosphate, thereby keeping the system completely
switched off. If under these non-inducing conditions LiaR
is overexpressed, it then stoichiometrically outcompetes
its phosphatase, LiaS, and hence becomes phosphor-
ylated by acetyl phosphate.

On the other hand, if LiaS is overexpressed, it is then in
excess over LiaF, which therefore fails to completely keep
the HK in its phosphatase state. If there is only a mild
overexpression (i.e. in the wild type under its own weak SD
sequence), it only increases the basal level of the LiaR-
dependent gene expression (Fig. 5A). Nevertheless, most
of LiaS is still kept in the phosphatase state by LiaF.
Therefore, the system is still inducible by bacitracin
(Fig. 5A). A strong overexpression of LiaS (i.e. with an
optimized SD sequence) results in a higher amount of LiaS
in the kinase state and hence a full activation of the LiaR
response even in the absence of an inducer (Fig. 5B and
C).

What is most puzzling about this model is that bifunc-
tional HKs are very often present in the cells in much
lower amounts than the cognate RRs. Nevertheless, they
are usually very well capable of dephosphorylating their
RR in the absence of a stimulus. This argues either for a
very inefficient phosphatase activity of LiaS, and/or for a
high affinity of LiaR for acetyl phosphate, again supporting
the idea that the energy state of the cell – as reflected by
the intracellular pool of acetyl phosphate – might indeed
be an important secondary input into LiaR-dependent
gene expression, as discussed above. Taken together, the
combination of the unusual stoichiometry of the Lia
system, the requirement for an additional component in
order to keep LiaS in its phosphatase state, combined
with a high affinity of LiaR for acetyl phosphate seem to
collectively argue for a physiological necessity of this par-
ticular and unusual design of the LiaFSR system for its
proper functionality. But these intriguing possibilities are

purely speculative at the moment and will require subse-
quent investigations.

The exact mechanism by which LiaF affects LiaS activity
is unknown. But one appealing hypothesis is that LiaF
could function as a stimulus-perceiving anti-kinase that
keeps LiaS inactive in the absence of a trigger, presumably
through direct protein–protein interaction. Upon sensing a
signal, LiaF releases the HK, which then acts as a LiaR-
specific kinase. Alternatively, LiaF together with LiaS could
form the stimulus perception complex of the LiaFSR
system. In this complex, LiaF would again keep LiaS in its
phosphatase state in the absence of a trigger. Upon addi-
tion of bacitracin, the LiaFS complex would perceive the
resulting envelope stress and again LiaS would switch to
its default kinase-ON mode, thereby activating LiaR. Both
possibilities would be in good agreement with the data
obtained.

While the important role of the stoichiometry could well
be a specialty of LiaFSR-like systems, due to the pres-
ence of a third inhibitory protein, our observations could
also have a more general significance for 2CSs with
HisKA_3-containing HKs.

A comparison of the stoichiometry and genetic arrange-
ment in operons of EnvZ/OmpR-like and NarXQ/NarL-like
2CSs indicates a possible connection between protein
ratios and operon structure. EnvZ-like HKs are usually
encoded downstream of their cognate RR genes, poten-
tially accounting for the observed stoichiometry with RR
exceeding the cognate HK. In contrast, for NarXQ/NarL-
like 2CSs the genetic order is usually inverted, which can
be viewed as an indication for a molar excess of HK over
RR for 2CSs. This might point towards a fundamental
difference between HisKA- (EnvZ-like) and HisKA_3-
(NarXQ-like) containing HKs with respect to their enzy-
matic (at least phosphatase) activities: A functional role of
an excess of the HK over the cognate RR suggests that in
such cases the phosphatase activity of the HK is weak. But
more work on additional HisKA- and HisKA_3-containing
HKs will be necessary in order to verify or falsify such a
hypothesis.

Experimental procedure

Media and growth conditions

Bacillus subtilis and E. coli were routinely grown in LB
medium or chemical defined CSE [Chemical defined Suc-
cinate (0.56% (w/v) Na-succinate) and Glutamate [0.75%
(w/v) K-glutamate)] medium (Stülke et al., 1993) at 37°C
with aeration. Ampicillin (100 mg ml-1) was used for selec-
tion of all plasmids in E. coli. Kanamycin (10 mg ml-1),
chloramphenicol (5 mg ml-1), spectinomycin (100 mg ml-1),
erythromycin (1 mg ml-1) plus lincomycin (25 mg ml-1) for
macrolide–lincosamide–streptogramin (MLS) resistance,
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and tetracycline (10 mg ml-1) were used for the selection of
the B. subtilis mutants used in this study.

Bacterial strains and plasmids

The strains of E. coli and B. subtilis are listed in Table 2. All
B. subtilis strains used in this study are derivatives of the
laboratory wild type strains W168 and CU1065 (W168
attSPb). The plasmids used in this study are listed in
Table 4.

DNA manipulations

The preparation of chromosomal DNA and transformation
were performed according to standard procedures (Cutting
and Van der Horn, 1990). E. coli plasmid DNA and restric-
tion enzyme fragments were isolated by using the QIAprep
spin miniprep and PCR purification kits respectively
(Qiagen). DNA ligase (Fermentas), HotStarTaq Plus DNA
Polymerase (Qiagen), and Phusion High-Fidelity DNA

Polymerase (Finnzymes) were used according to manu-
facturer’s instructions.All primers used for PCR are listed in
Table S1.

Site-directed mutagenesis of liaR and liaS

To generate an amino acid exchange of the conserved
aspartate of LiaR to alanine, we introduced a point muta-
tion in liaR via the Combined Chain Reaction (CCR). This
method was performed as described previously (Bi and
Stambrook, 1997). In brief, liaR was amplified from chro-
mosomal DNA of the wild type, using primers #0047 and
#0048 flank the overall sequence of liaR while one internal
mutagenesis primer (#0508) are positioned at the mutation
site of interest (Table S1). The mutagenesis primer carries
the point mutation where it mismatched with template as
well as a phosphorylated 5′ end. During the PCR process,
the extended specific forward primer was ligated with the
mutagenesis primer by a thermostable DNA ligase (Amp-
ligase) to create a liaR fragment with the expected point
mutation.

Table 4. Vectors and plasmids used in this study.

Plasmid Genotype, sequence or characteristic(s) Primers used for cloning Reference or source

Vectors
pAC5 amyE-up, lacZ, MCS, cat, amyE-down, bla Martin-Verstraete et al. (1992)
pAC6 amyE-up, lacZ, MCS, cat, amyE-down, bla Stülke et al. (1997)
pAC7 amyE-up, lacZ, MCS, kan, amyE-down, bla Weinrauch et al. (1991)
pXT thrC-up, Pxyl, MCS, spc, thrC-down, erm, bla Derre et al. (2000)
pMAD bgaB, ermC, bla, MCS Arnaud et al. (2004)
pDG647 pSB119, erm Guerout-Fleury et al. (1995)
pDG780 pBluescriptKS+, kan Guerout-Fleury et al. (1995)
pDG1513 pMTL22, tet Guerout-Fleury et al. (1995)
pALFLAG3rsiW lacA-up, erm, lacI, rsiW, Pspac, FLAG3, lacA-down, bla Schöbel et al. (2004)
pProEx-1 His6-tag, rTEV cleavage, PTrc, MCS, bla Life Technologies

Plasmids
pTM1 pAC6 PliaI(-83 to 72)–lacZ Jordan et al. (2006)
pMM101 pMAD DliaS Jordan et al. (2007)
pSJ102 pMAD DliaF Wolf et al. (2010)
pDW701 pXT liaR 1068/1106 This work
pER503 pAC5 PliaG-opt.-liaF (-68 to 2)–lacZ 0579/0580 This work
pER504 pAC5 PliaG-opt.-liaS (-68 to 2)–lacZ 0579/0581 This work
pER505 pAC5 PliaG-opt.-liaR (-68 to 2)–lacZ 0579/0582 This work
pKS101 pMAD FLAG3-liaF 1950/1951, 1952/1953 This work
pKS104 pMAD liaS-FLAG3 1958/1959, 1960/1961 This work
pKS105 pMAD FLAG3-liaR 1958/2041, 2042/1961 This work
pKS704 pXT liaS-FLAG3 0454/0962, 0960/0961 This work
pKS726 pXT liaFSR 0035/0893 This work
pKS727 pXT liaS 0454/0046 This work
pKS729 pXT liaS (LiaS Q164A) 2374/2375 This work
pKS1001 pAC7 Pveg-SD liaF 0856/0857 This work
pKS1002 pAC7 Pveg-SD liaS 0856/0898 This work
pKS1003 pAC7 Pveg-SD liaR 0856/0899 This work
pKS1005 pAC7 Pveg 0856/0906 This work
pKS-FLAG1 pALFLAG liaS 0958/0959 This work
pKSEx102 pProEx1 liaR-FLAG3 1530/1164, 0960/1161 This work
pKSEx103 pProEx1 liaS-FLAG3 0958/0962, 0960/1161 This work
pSJ701 pXT liaF 0035/0036 This work
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To investigate the phosphatase activity of LiaS, an amino
acid exchange of the glutamine residue within the con-
served DxxxQ motif was generated via in vitro site-directed
mutagenesis. The plasmid pKS727 (pXT-liaS) was used as
template in a PCR reaction together with mutagenesis
primers #2374 and #2375 that carry the desired point
mutation. These primers are complementary to opposite
strands of the plasmid. The extension of the primers results
in a mutated plasmid. The PCR product was digested with
DpnI to remove the methylated parental DNA template.
The mutated plasmid was then transformed into E. coli XL1
blue competent cells.

Allelic replacement mutagenesis of liaS, pta and ackA
using LFH-PCR

The Long Flanking Homology PCR (LFH-PCR) technique
is derived from a published procedure (Wach, 1996) and
was performed as described previously (Mascher et al.,
2003). The constructed strains are listed in Table 2, and
the corresponding primers are listed in Table S1.

Construction of translational B. subtilis Pveg–lacZ and
PliaG-opt.–lacZ fusions

To investigate the translation initiation of liaF, liaS and
liaR, ectopic integrations of Pveg-SDliaF/liaS/liaR–lacZ fusions
were constructed based on the vector pAC7 (Table 4). For
this purpose, one forward primer, which contains the Pveg

sequence (#0856), and three reverse primer (#0857,
#0898, #0899) were designed, which carry the Shine–
Dalgarno sequences of liaF, liaS or liaR up to each cor-
responding start codon respectively (Table S1). Each
reverse primer harbours 25 nucleotides at the 3′ end that
is inverse and complementary to the 3′ end of the Pveg-
forward primer, so that they can be fused by joining PCR.
The resulting fragments were cloned into pAC7 via SmaI
and BamHI, generating pKS1001–pKS1003 (Table 4).
After B. subtilis transformation, the plasmids integrated
into the amyE locus by double crossing-over, resulting in
a stable integration of Pveg–lacZ fusions.

To investigate the expression levels of liaF, liaS and
liaR, ectopic integrations of PliaG-opt.-SDliaF/liaS/liaR–lacZ
fusions were constructed in a comparable fashion, based
on the vector pAC5 (Table 4). Three fragments including
liaG up to the start codon of liaF, liaS or liaR, respectively,
were amplified from wild type chromosomal DNA, using
the forward primer #0579, which introduces the optimal
liaG promoter sequence, as well as the reverse primer
#0580, #0581 or #0582 (Table S1). The resulting frag-
ments were cloned into pAC5 via SmaI and BamHI,
generating pER503–pER505 (Table 4). After B. subtilis
transformation, the plasmids integrated into the amyE

locus by double crossing-over, resulting in a stable inte-
gration of PliaG-opt.–lacZ fusions.

Measurement of promoter activity by
b-galactosidase assay

Cells were inoculated from fresh overnight cultures and
grown in LB medium or CSE medium at 37°C with aera-
tion until they reached an optical density at 600 nm
(OD600) of ª 0.4. The culture was split, adding bacitracin
(50 mg ml-1 final concentration) to one-half (induced
sample) and leaving the other half untreated (uninduced
control). After incubation for an additional 30 min at 37°C
with aeration, 2 ml of each culture was harvested and the
cell pellets were frozen and kept at -20°C. The pellets
were resuspended in 1 ml of working buffer and assayed
for b-galactosidase activity as described elsewhere, with
normalization to cell density (Miller, 1972).

Preparation of total RNA for quantitative real-time
RT-PCR and Northern blotting

Total RNA was extracted from 4 ml of culture with and
without bacitracin (50 mg ml-1 final concentration). Baci-
tracin was added to the culture at an OD600 of 0.5 (mid-
exponential phase), and the cultures were incubated for
30 min at 37°C with aeration before the cells were har-
vested and rapidly frozen at -70°C. RNA was prepared
using the RNeasy kit (Qiagen) according to the manufac-
turer’s protocol. The RNA was treated with Baseline-
ZERO DNase (EPICENTRE) to remove remaining traces
of chromosomal DNA that would interfere with the subse-
quent reaction. The success of this treatment was verified
by a lack of product in a standard PCR, using the same
primers as for the real-time reverse transcription-PCR
(RT-PCR).

Quantitative real-time RT-PCR

Measurement of transcript abundance was performed by
quantitative real-time RT-PCR, using the iScript One-Step
RT-PCR Kit (Bio-Rad) according to the manufacturer’s
procedure, with minor modifications. In brief, 100 ng of
DNA-free total RNA was used in a total reaction volume of
20 ml with 0.3 mM of each primer (Table S1). The amplifi-
cation reaction was carried out in an iCycler (Bio-Rad).
Expression of rpsE and rpsJ, encoding ribosomal pro-
teins, was monitored as a constitutive reference. Expres-
sion of liaF, liaS or liaR of the uninduced wild type was
calculated as the fold change based on the CT values for
each gene, as described previously (Talaat et al., 2002).

Probe preparation and Northern blot analysis

Internal fragments of liaIH and liaR (~ 500-nucleotide
length) were amplified by PCR using the primer pairs
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listed in Table S1. The PCR fragments were purified by
using the PCR purification kit (Qiagen), and 1 mg of each
fragment was labelled with digoxygenin (DIG) by in vitro
transcription using the DIG RNA labelling mix (Roche) and
the T7-RNA polymerase (Roche) according to manufac-
turer’s protocol.

For Northern blot analysis, 5 mg or 10 mg of total RNA
were denatured and loaded on a formaldehyde agarose
gel. After electrophoresis, the RNA was transferred to a
nylon membrane (Roche) in a downward transfer using
20¥ SSC (3 M NaCl, 0.3 M sodium citrate, pH 7.0) as
transfer buffer. The RNA was cross-linked by exposing the
damp membrane to UV light. The blot was pre-hybridized
at 68°C for 1 h with pre-hybridization solution [0.2% (w/v)
SDS, 0.1% (w/v) N-lauroylsarcosinate, 5¥ SSC, 50% (v/v)
formamide, 2% (w/v) blocking reagent] and labelled probe
was added to the hybridization tube. Hybridization was
performed overnight at 68°C. The next day, the membrane
was washed twice with low-stringency buffer [2 ¥ SSC,
0.1% (w/v) SDS] at room temperature for 5 min, followed
by two high-stringency washes [0.1¥ SSC, 0.1% (w/v)
SDS] at 68°C for 15 min. For the detection of labelled
probe, the DIG Nucleic Acid Detection Kit (Roche) was
used. Therefore, the blot was removed from the hybridiza-
tion tube and placed in a box with 1¥ buffer 1 [10¥ buffer 1
is 1 M maleinic acid, 1.5 M NaCl, 0.3% (v/v) tween20,
pH 7.5] for 5 min at room temperature. The membrane was
pre-incubated with buffer 2 [10% (v/v) 10¥ buffer 1, 1%
(w/v) blocking reagent] for 30 min, treated with the anti-
body against DIG conjugated with alkaline phosphatase
(AP) (Roche) for 30 min, and washed three times with 1¥
buffer 1 for 10 min. The blot was wrapped in plastic wrap,
treated with the AP substrate CDP-Star (Roche) at a dilu-
tion of 1:200, and analysed using a LumiImager (PeqLab).

Preparation of B. subtilis cell fractions for
Western blotting

The methodology was based on a published procedure
(Heinrich et al., 2008) with the following modifications:
B. subtilis strains were grown in LB medium and 50 ml of
cells with an OD600 of 0.5–0.8 were harvested by centrifu-
gation. The cells were washed and resuspended in 1 ml of
cold disruption buffer (50 mM Tris-HCl, 100 mM NaCl,
pH 7.5). Samples were sonicated (Cell disrupter UP
200 s, Dr Hielscher, Stuttgart) on ice and an aliquot of
100 ml was removed (whole cell fraction, W). Cell debris of
the remaining 900 ml were removed by centrifugation at
5.000 g for 15 min at 4°C. The supernatant (800 ml) was
ultracentrifuged at 70.000 g for 1 h at 4°C. The superna-
tant was removed (soluble protein fraction, S) and the
membrane pellet (membrane protein fraction, M) was
washed in cold disruption buffer, ultracentrifuged again
(70.000 g, 30 min, 4°C), dissolved in 100 ml of Laemmli

buffer and heated for 5 min at 95°C. The protein content of
the W and S fractions was established according to Brad-
ford. For SDS-PAGE and Western blotting 20 mg of
samples of the W fractions, 20 ml of the S fractions, and
20 ml of the M fractions were loaded to each lane.

Western blot analysis

Western blot analysis was performed by a wet-blotting
procedure, using a Mini Trans-Blot Electrophoretic Trans-
fer Cell (Bio-Rad) according to manufacturer’s protocol.
After protein transfer, the polyvinylidene diflouride (PVDF)
membrane (Bio-Rad) was incubated with blotto [1¥ TBS
(50 mM Tris, 150 mM NaCl, pH 7.6), 2.5% (w/v) skim milk]
overnight at 4°C to prevent unspecific binding. On the next
day the membrane was treated with the primary antibody
anti-FLAG (Sigma) or anti-LiaH [polyclonal rabbit antisera
that were raised against purified His10-LiaH (Jordan et al.,
2007) at SEQLAB, Göttingen] at a dilution of 1:5000 for 3 h
at room temperature. Then, the membrane was washed
three times with blotto following by the addition of the
secondary antibody (anti-rabbit IgG, conjugated with AP,
Promega) at a dilution of 1:100.000 for 30 min.After further
three washes with blotto the membrane was incubated with
buffer 3 (100 mM Tris, 100 mM NaCl, pH 9.5) for 5 min.
The blot was wrapped in plastic wrap, treated with the AP
substrate CDP-Star (Roche) at a dilution of 1:100, and
analysed using a LumiImager (PeqLab).

Cloning, expression and purification of recombinant
N-terminal His6- and C-terminal FLAG3-tagged LiaS
and LiaR

The liaR and liaS genes were amplified from B. subtilis
W168 genomic DNA using primer pairs #1530/#1164 or
#0958/#0962, respectively, and subsequently fused to a
FLAG3 epitope tag (amplified from pALFLAG3rsiW with
primers #0960/#1161) by a second joining PCR for detec-
tion via Western blot analysis. PCR products were cloned
into the pProEx1 expression vector (Life Technologies) via
NdeI and HindIII or BamHI and HindIII, respectively,
generating plasmids pKSEx102 (His6-LiaR-FLAG3) and
pKSEx103 (His6-LiaS-FLAG3) (Table 4). For overexpres-
sion, E. coli BL21(DE3)/pLysS was transformed with
pKSEx102 or pKSEx103 and grown in LB medium. In
mid-exponential phase (OD600 of 0.4–0.6), protein expres-
sion was induced by the addition of 1 mM isopropyl-b-D-
thiogalactopyranoside (IPTG). Cultures were harvested
3 h (His6-LiaR-FLAG3) and 16 h (His6-LiaS-FLAG3) after
induction. Cell pellets were stored at -80°C until further
purification.

Purification of His6-LiaR-FLAG3. The cell pellet was
resuspended in 15 ml of loading buffer [20 mM Tris-HCl
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(pH 7.5), 300 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol,
5 mM imidazole (pH 8.0)] and cells were disrupted by
sonication. The lysate was centrifuged at 20.000 g and 4°C
for 1 h. The supernatant was loaded on a gravity flow
column containing 1 ml of Ni2+-nitrilotriacetic acid (NTA)
Superflow resin (Qiagen). After washing steps with loading
buffer and loading buffer containing 50 mM imidazole,
His6-LiaR-FLAG3 was eluted from the column using
loading buffer with imidazole concentrations of 100 mM,
200 mM and 500 mM. All fractions were analysed by SDS-
PAGE and fractions containing the most pure His6-LiaR-
FLAG3 protein were collected, quantified by Bradford
assay using the Roti-Nanoquant kit (Roth), and used as
standard for quantitative Western blot analyses.

Purification of His6-LiaS-FLAG3. The cell pellet was
resuspended in 12 ml of disruption buffer (50 mM Tris-
HCl, 100 mM NaCl, pH 7.5) and cells were disrupted by
sonication. The cell debris were removed by centrifuga-
tion (5.000 g, 4°C, 15 min) and the supernatant was used
to prepare the membrane protein fraction by ultracentrifu-
gation as described above. The membrane pellet was
resuspended in 1 ml of disruption buffer and the protein
concentration was measured via BCA assay. The solution
was diluted with loading buffer to receive a final protein
concentration of 5 mg ml-1. To solubilize the membrane
proteins, 0.5% (w/v) n-Dodecyl-b-D-maltoside (DDM) was
added and gently mixed at 4°C for 1 h. After solubilization,
the protein solution was ultracentrifuged (70.000 g, 4°C, 1
h). The supernatant was loaded on a Ni2+-NTA column and
His6-LiaS-FLAG3 was purified as described for His6-LiaR-
FLAG3 using buffers that contain 0.02% (w/v) DDM. Puri-
fied His6-LiaS-FLAG3 protein was quantified by Bradford
assay using the Roti-Nanoquant kit (Roth) and used as
standard for quantitative Western blot analyses.

Chromosomal FLAG-tagging of LiaFSR

To quantify the cellular amounts of LiaFSR, we integrated
the FLAG3-tag sequence directly into the W168 chromo-
some C-terminal of LiaS or N-terminal of LiaF and LiaR.
This was done by using the pMAD shuttle vector (Arnaud
et al., 2004). The regions about 600 bp upstream and
downstream of the position of FLAG integration were
amplified using primers listed in Table S1, thereby intro-
ducing a 66 bp extension containing the whole FLAG3
sequence to the 3′ end of the up-fragment and a 25 bp
extension to the 5′ end of the down-fragment which is
complementary to the 3′ end of the FLAG3-tag sequence.
The two fragments were fused in a second joining PCR,
and the resulting fragment was cloned into pMAD via
BamHI and NcoI, generating pKS101 (FLAG3-liaF),
pKS104 (liaS-FLAG3) and pKS105 (FLAG3-liaR)
(Table 4). The generation of the mutants basically followed

the established procedure (Arnaud et al., 2004). In brief,
B. subtilis W168 was transformed with pKS101, pKS104 or
pKS105, respectively, and incubated at 30°C with MLS
selection on LB agar plates supplemented with X-Gal
(100 mg ml-1). Blue colonies were selected and incubated
6 h at 42°C in LB medium with MLS selection, resulting in
the integration of the plasmids into the chromosome.
Again, blue colonies were picked from LB (X-Gal) plates
and incubated for 6 h in LB medium without MLS selection.
Subsequently, the liquid culture was shifted to 42°C for 3 h,
and the cells were then plated on LB (X-Gal) plates, this
time without selective pressure. White colonies that had
lost the plasmids were picked and checked for MLS sen-
sitivity. The resulting strains, TMB1141 (liaS-FLAG3),
TMB1155 (FLAG3-liaF) and TMB1201 (FLAG3-liaR) were
analysed by PCR and sequencing for the integrity of the
desired genetic modifications.

Determination of cellular amounts of LiaSR by
quantitative Western blot analysis

Cellular amounts of LiaS-FLAG3 or FLAG3-LiaR were
determined in strain TMB1141 or TMB1201 respectively.
Cells were grown in LB medium until mid-exponential
phase (OD600 at 0.4–0.6). The cultures were split, adding
bacitracin (20 mg ml-1 final concentration) to one-half
(induced sample) and leaving the other half untreated
(uninduced sample). After incubation for an additional
30 min at 37°C with aeration, 10 ml of each culture was
harvested and the cell pellets were frozen and kept at
-80°C. Additionally, the amount of harvested cells was
analysed on agar plates. The cells were resuspended in
1.1 ml of disruption buffer (50 mM Tris-HCl, 100 mM NaCl,
pH 7.5) and cells were disrupted by sonication. The cell
debris were removed by centrifugation (5.000 g, 4°C,
15 min) and the supernatant was used to separate the
soluble and membrane protein fractions by ultracentrifuga-
tion as described above. The soluble protein fractions were
concentrated up to 50 ml using Vivaspin 500 concentrator
tubes (Sartorius) and the membrane pellets were resus-
pended in 50 ml of Laemmli buffer. Ten microlitres of each
sample was loaded onto a 12.5% SDS gel together with the
purified standards using 10–200 fmol of His6-LiaS-FLAG3
and 10–100 fmol of His6-LiaR-FLAG3. The Western blot
was performed by a wet-blotting procedure, using a Mini
Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) accord-
ing to manufacturer’s protocol. After protein transfer, the
polyvinylidene diflouride (PVDF) membrane (Macherey-
Nagel) was incubated with blotto [1¥ TBS (50 mM Tris,
150 mM NaCl, pH 7.6), 2.5% (w/v) skim milk] overnight at
4°C to prevent unspecific binding. On the next day the
membrane was treated with the primary antibody anti-
FLAG (Sigma) at a dilution of 1:2000 for 1 h at room
temperature. Then, the membrane was washed four times
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with blotto following by the addition of the secondary
antibody (anti-rabbit IgG, conjugated with HRP, Promega)
at a dilution of 1:2.000 for 1 h.After further four washes with
blotto the membrane was incubated with 1¥ TBS for 5 min.
The blot was wrapped in plastic wrap, treated with the HRP
substrate Ace Glow (Peqlab) according to manufacturer’s
protocol, and analysed using a LumiImager (PeqLab). The
blot was analysed by ImageJ software. The band intensi-
ties of the standard proteins were plotted against the
known protein amounts and these curves are referred to as
standard curves. The protein amounts of LiaS-FLAG3 and
FLAG3-LiaR were calculated from the standard curves.
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The LIKE system, a novel protein expression
toolbox for Bacillus subtilis based on the liaI
promoter
Anna A Toymentseva1,2, Karen Schrecke1, Margarita R Sharipova2 and Thorsten Mascher1*
Abstract

Background: Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance,
which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a
novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the
LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly
inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min.

Results: Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis
(the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed.
To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the
ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of
these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a
number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH
region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the
LiaRS system and thereby increase target gene expression strength from the PliaI promoter.

Conclusions: The LIKE protein expression system is a novel protein expression system, which offers a number of
advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential
growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable
inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold)
induction, (iv) a choice from a range of well-defined, commercially available, and affordable inducers and (v) the
convenient conversion of LIKE-derived inducible expression strains into strong constitutive protein production
factories.

Keywords: two-component system, liaIH operon, antibiotic-inducible promoter, cell envelope stress response,
protein expression, Bacillus subtilis, bacitracin
Background
Bacillus subtilis is a widely exploited bacterium for basic
research, but also industrial and biotechnological appli-
cations [1] owing to the ease of genetic manipulation, a
systems level understanding of its genome and physi-
ology [2-4], its efficient protein secretion systems [5],
non-pathogenic GRAS-status [6] and well-characterized
mechanisms for gene expression [7]. Over the years,
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numerous genetic devices and expression systems have
been developed for this organism to facilitate the pro-
duction of homologous or heterologous proteins [7-14],
usually based on strong inducible promoters. Such sys-
tems can either be integrated into the chromosome or
located on replicative plasmids to increase the gene copy
number under the control of the inducible promoter.
A number of new expression systems based on induc-

tion by peptide antibiotics were described for Gram-
positive bacteria [9,15,16]. The nisin-controlled gene
expression (NICE) system was developed for different
species of Lactococcus and Lactobacillus and allows the
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production of the desired proteins in high amounts
(comparable to other expression systems), reaching a
maximum 3 h after nisin induction [15,16]. A very simi-
lar subtilin-regulated expression system (SURE) was re-
cently constructed for B. subtilis [9]. Both systems
enable the controlled overexpression of a variety of
homologous and heterologous proteins and enzymes
and show a number of advantages to other control ele-
ments, such as the strict control of gene expression, no
leakage of the promoter regulation under non-inducing
conditions, high levels of expression upon induction and
almost no limitations in the choice of sugar-containing
media [9,15]. For the use in B. subtilis, the SURE system
has several advantages over the NICE system: (i) The
SURE system only requires a single plasmid, thereby en-
suring a stable expression platform; (ii) the expression
levels achieved by the SURE system are significantly
higher; and (iii) it also requires lower concentrations of
the inducer molecule [9,17].
Despite significant progress in the field, no exisiting

system works equally well for all proteins and none of
the existing expression systems for B. subtilis is without
pitfalls or limitations. While the SURE system represents
a major improvement, its inducer, the lantibiotic subtilin,
is not commercially available. Instead, culture super-
natant of the lantibiotic producer must be used, which
introduces a source of variation and requires testing the
potency each time a new supernatant is used for induc-
tion. Therefore, novel tightly controllable gene expres-
sion systems are still in demand to expand and
complement the existing repertoire in order to find the
optimal solution for a given protein to be produced in B.
subtilis.
Here, such an addition to the existing bioengineering

toolbox for B. subtilis will be described. The LIKE (from
the German “LIa-Kontrollierte Expression”) system is
based on the cell envelope stress-responsive liaI pro-
moter. This promoter was initially identified in the
course of studies on the response of B. subtilis to the
presence of harmful concentrations of various cell wall
antibiotics [18]. The underlying regulatory network of
the cell envelope stress response in this organism is ra-
ther complex and consists of at least four extracytoplas-
mic function (ECF) σ factors and a similar number of
two-component systems (TCS) and has been extensively
studied [19,20]. One such TCS, LiaRS, is a central player
in the envelope stress response network of B. subtilis. It
strongly responds to antibiotics that interfere with the
lipid II cycle, such as bacitracin. Activation of the LiaRS
system of B. subtilis specifically leads to the strong in-
duction of a single target promoter, PliaI, which drives
the expression of the liaIH operon. This promoter is
basically shut off in the absence of inducing condition
during logarithmic growth and shows an impressive
dynamic range of over 100- up to 1,000-fold in the pres-
ence of suitable stimuli [21-23].
Because of its specificity and sensitivity, PliaI has

already been developed as a powerful screening tool for
mechanism-of-action studies of novel peptide antibiotics
interfering with envelope integrity [22,24,25]. But its
tightly regulated, concentration-dependent and highly
dynamic behavior also makes this promoter a very
promising candidate for the development of a novel gene
expression system. This prospect is further supported by
transcriptome studies of mutants that are constitutively
switched Lia-ON or Lia-OFF, which revealed a very spe-
cific response with only very few genes being indirectly
affected [23]. Moreover, B. subtilis is highly resistant to
bacitracin, a commercially available compound, which
can be used as an ideal inducer to activate PliaI-driven
gene expression in growing cultures of B. subtilis. More-
over, a simple gene deletion can convert the inducible
into a high-level constitutive promoter activity. Based on
these traits of PliaI, we developed vectors and strains to
apply this promoter as a powerful protein expression
system in B. subtilis.
Results and discussion
Features of the native liaI promoter (PliaI)
Previously, we have characterized the cell envelope
stress-inducible promoter PliaI, which controls the ex-
pression of the liaIH operon in B. subtilis. During nor-
mal logarithmic growth, this promoter is virtually
switched off and hence does not show any significant
basal activity. In the presence of suitable inducers such
as the cell wall antibiotic bacitracin, it strongly responds
in a concentration-dependent manner, resulting in a
more than 100-fold increased activity already 5–10 min
after the addition of bacitracin. This activity strictly
depends on the activity of the response regulator LiaR
[21-23] (Figure 1A). This tight regulation and the im-
pressive strength of PliaI under inducing conditions are
illustrated by the protein gel shown in Figure 1B, which
demonstrates that even from the native PliaI, present in
single copy on the chromosome, LiaH is the predomin-
ant protein produced under inducing conditions, as has
already been indicated previously by 2D gelectrophoresis
[23]. These features make PliaI a very promising candi-
date for developing a novel protein-expression system
for the Gram-positive model organism B. subtilis, which
is widely used in the biotechnological industry as a pro-
tein production host [1]. To achieve this, the liaI pro-
moter was first sequence-optimized and then integrated
into two expression vectors. Moreover, a set of suitable
expression strains was developed and evaluated to fur-
ther improve the promoter strength while simultan-
eously avoiding the metabolic burden of overexpressing



Figure 1 Activity of the native liaI promoter (PliaI) as monitored
by (A) promoter-reporter gene fusions and (B) SDS-PAGE.
(A) β-Galactosidase reporter assays of a PliaI-lacZ fusion in the wild
type W168 (TMB016) and the corresponding liaF and liaR mutants
(TMB331 and TMB020, respectively) in the presence and absence of
bacitracin (Bac; final concentration 50 μg/ml). The assay was
performed as previously described [21], the promoter activity is
expressed as Miller units (β-galactosidase activity normalized against
cell density). (B) SDS-PAGE of the soluble protein fraction (15 μg/lane)
of the wild type (WT) and isogenic liaF and liaR mutants,
challenge for 30 min with bacitracin as described above. The
position of the band corresponding to the LiaH protein is marked. The
identity of LiaH was verified by mass spectroscopy. M, molecular
weight markers.

Toymentseva et al. Microbial Cell Factories 2012, 11:143 Page 3 of 13
http://www.microbialcellfactories.com/content/11/1/143
the native target proteins of LiaR-dependent gene regu-
lation, LiaI and LiaH [23], as indicated in Figure 1B.

Design and construction of PliaI-based expression vectors
and B. subtilis protein production strains for the LIKE
system
A closer inspection of the liaI promoter sequence
revealed a poorly conserved Shine-Dalgarno sequence
(SD) with a suboptimal spacing to the liaI start codon
(data not shown). As a first step in developing a PliaI-
derived bacitracin-inducible expression system, we
therefore optimized its SD sequence by introducing a
strong B. subtilis ribosome binding site (TAAGGAGG)
with an optimal spacing of seven nucleotides upstream
of the start codon, which was used for all subsequent
constructions and will be referred to as PliaI(opt) from
now on (Figure 2). This optimized SD sequence is well
established for B. subtilis [26,27], and provides optimal
complementarity to the 3’-end of the 16S rRNA, thereby
increasing the ribosome’s affinity to the mRNA and en-
hancing the translation initiation efficiency.
For the construction of new PliaI-derived bacitracin-

inducible gene expression systems, we chose two vectors
as backbones: the E. coli/B. subtilis shuttle vector
pGP380, and pDG1662 for ectopic integration at the
amyE locus of B. subtilis [28,29], thus enabling both ex-
pression from a multi-copy replicative vector, as well as
the stable chromosomal integration at single copy. The
optimized regulatory element PliaI(opt) was amplified by
PCR and cloned into the two vectors (see Materials and
Methods for details) resulting in the expression vectors
pLIKE-rep and pLIKE-int, respectively (Figure 2A/B).
Previous work has demonstrated that the liaIH operon

is the only relevant target of LiaFSR-dependent gene ex-
pression, and that activation of PliaI results in a strong
accumulation of LiaH in the cytosol (Figure 1B) [23].
Based on the organization and expression of genes in
the liaIH-liaGFSR locus, activation of PliaI also leads to
an increased expression of liaGFSR, due to read-through
transcription [22]. Such positive autoregulatory feedback
loops often have beneficial effects on the activity of their
target genes [30]. Hence, it might be desirable to main-
tain this feedback loop. On the other hand, the observed
very strong production of the native LiaFSR-target pro-
teins LiaIH is not desired in a protein production host,
since it depletes the cells of energy, amino acids and
ribosomes required for heterologous protein production.
To account for these two opposing goals, we con-

structed a number of clean deletion mutants as potential
hosts of the LIKE-system. The features of the resulting
strains are summarized in Figure 2C. Strain TMB604
lacks both the liaIH operon including the native liaI
promoter. Hence, no autoregulation can occur under in-
ducing conditions. In contrast, strains TMB1151/
TMB1152, which are also deleted for the liaIH operon,
still maintain PliaI and therefore autoregulation. They
differ in the presence or absence of the weak terminator
located downstream of liaH (Figure 2C).
As a measure for PliaI(opt)-dependent protein produc-

tion in the two expression plasmids, gfpmut1 gene was
used as a reporter gene [31]. Translational fusions of
PliaI(opt) with gfpmut1 were constructed in both pLIKE-
int and pLIKE-rep and subsequently introduced into the
aforementioned B. subtilis strains.
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Figure 2 Vectors and strains of the LIKE system. (A) Vector maps of integrative plasmid pLIKE-int and E. coli/B. subtilis shuttle vector pLIKE-rep.
Abbreviations: PliaI(opt), liaI promoter with optimized SD sequence; bla, ampicilin resistance; erm, erythromycin resistance; cat, chloramphenicol
resistance; ColE1, origin of replication for E. coli; ori1030, origin of replication for B. subtilis. (B) Sequence of the multiple cloning sites for each
plasmid. The optimized SD sequence is indicated in bold, the 7 bp ‘spacer’ is boxed, the first nucleotide of the coding sequence is underlined.
For pLIKE-int, ClaI can be used as restriction enzyme to create an ATG start codon. For pLIKE-rep, XbaI must be used to reconstruct the ATG start
codon. (C) Schematic representation of the liaI operon and genotype of deletion strains constructed in this study. Open reading frames are
depicted as solid arrows. Promoters of the genes indicated by thin arrows, terminators by hairpin symbols.
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Evaluation of the LIKE-system, based on the bacitracin-
induced GFP production
The range of inducers for the envelope-stress responsive
LiaFSR three-component system is well-defined and
includes, amongst others, the cell wall antibiotic bacitracin
[22,25]. As an inducer for protein production in B. subtilis,
this compound has a number of advantages: (i) It is one of
the strongest inducers for the Lia-system and is easily
commercially available. (ii) B. subtilis is highly resistant
against bacitracin, and even above inhibitory antibiotic
concentrations, cellular damage occurs only very slowly
[18,32]. (iii) The maximum PliaI activity occurs well below
the inhibitory concentration, thereby avoiding any damage
to the producing cultures. (iv) In addition to its major in-
hibitory activity on cell wall biosynthesis, bacitracin also
acts as a weak protease inhibitor [33], which can be
viewed as a beneficial side effect of using this inducer. For
all of these reasons, bacitracin will be used as the model
inducer for the subsequently described evaluation of the
LIKE expression system.
Nevertheless, it should be pointed out that a number
of other compounds and conditions can also be consid-
ered as suitable alternative inducers, including antibio-
tics such as vancomycin or nisin, as well as non-
antibiotic conditions such as alkaline shock [34], making
the LIKE-system highly variable even in cases where
bacitracin is not suitable for a given application (for ex-
ample for heterologous protease production).
Initially, we compared the promoter activity of PliaI(opt)

between pLIKE-int and pLIKE-rep in all four different
host strains described above (Figure 2C). For this pur-
pose, the dynamics of expression of recombinant GFP
was determined after bacitracin addition (30 μg mL-1)
over the course of 4 h in growing populations. In all
strains, a swift and strong accumulation of fluorescence
was detected already 30 min after bacitracin induction
(Figure 3A). As expected, gfp expression was signifi-
cantly higher in strains harboring the replicative pLIKE-
rep derivative (multiple copies) compared to strains
with chromosomally integrated pLIKE-int derivatives



Figure 3 Growth, absolute fluorescence (A) and promoter activity (B) of strains carrying translational fusion of PliaI-gfpmut1 and PliaI
(opt)-gfpmut1. Growth profiles are shown without symbols and expression by symbols: (○) (W168), (□) (TMB604), (◊) (TMB1151), (Δ) (TMB1152)
and (●) (TMB408). Vertical dotted line indicates time point of bacitracin addition (final conc. 30 μg mL-1; OD600~0.4-0.5). Fluorescence is expressed
in arbitrary units (AU) (C) Western blot analysis of the cytoplasmic fractions of cells expressing the same fusions probed with LiaH or GFP antisera.
Lanes 1–2, protein expression with native modified PliaI; 3–10, with optimized PliaI(opt) in the absence (−) and presence (+) of bacitracin (final conc.
30 μg mL-1).
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(Figure 3A). In the wild type background of W168, the
fluorescence intensity of the expression strain TMB1172,
harboring the integrated expression plasmid, reached
less than 10% of the activity measured for the other-
wise identical strain TMB1176 with the replicative
construct (Figure 3A).
The benefit of improving the ribosome binding site in

PliaI(opt) compared to the original SD sequence could
also be demonstrated by comparing GFP production in
two strains, TMB1172 and TMB408, respectively, har-
boring integrated expression systems. Our analysis
revealed that the level of GFP expression from the wild
type PliaI promoter in strain TMB408 was significantly
lower compared to PliaI(opt)-mediated expression
(Figure 3A and Figure 3C, lanes 2 and 4). A deletion of
the native PliaI upstream of the liaGFSR operon in strain
TMB604 resulted in an approx. two-fold decreased pro-
moter activity compared to the wild type background,
indicating that the presence of the autoregulatory feed-
back loop is important for full PliaI activity (Figure 3A
and Table 1). On the other hand, deletion of liaH while
maintaining the native PliaI upstream of the liaGFSR



Table 1 Effect of mutations in the liaIH operon on the expression of translational PliaI(opt)-gfp fusions

Strain Relevant genotypea Promoter activity
(fluorescence)bExpression plasmid Strain background

TMB408 amyE:: pSJ5101 (PliaI-gfp) (WT168) PliaIliaIHTerm
+ 264

TMB1172 amyE:: pLIKE-int+gfp (WT168) PliaIliaIHTerm
+ 1440

TMB1174 (TMB604) ΔPliaIliaIH 958

TMB1153 (TMB1151) ΔliaIH 1080

TMB1318 (TMB1152) ΔliaIHTerm 1416

TMB1176 pLIKE-rep+gfp (WT168) PliaIliaIHTerm
+ 9570

TMB1178 (TMB604) ΔPliaIliaIH 3372

TMB1342 (TMB1151) ΔliaIH 10607

TMB1343 (TMB1152) ΔliaIHTerm 10870
a The terminator downstream of liaH is abbreviated “Term”, its presence is indicated by a “+”. b Promoter activities were calculated taking the derivative of the
fluorescence divided by the OD600 (dGFP/dt/OD600) at each time point.
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operon (strains TMB1151/1152) resulted in only a small
increase of PliaI(opt) activity in case of the pLIKE-int
derived expression strain. This effect was more pro-
nounced in case of the pLIKE-rep derived strains, where
the promoter activity even surpassed that of the wild
type (Figure 3A and Table 1). Taken together, these
results demonstrate both the important role of the auto-
regulatory feedback and of improving the SD sequence
for achieving a maximal level of GFP production.
Determination of the PliaI activity revealed that the

window of promoter activity was narrower in case of the
integrated promoter, both for activation and shut-off,
relative to the replicative derivatives (Figure 3B). For the
pLIKE-int derivatives, maximum promoter activity was
reached already 20–30 min after addition of bacitracin
and the total window of activity was less than 60 min. In
contrast, pLIKE-rep derivatives required almost 60 min
to reach maximum promoter activity and the total win-
dow of activity was about 120 min. But in light of the
overall 10-times higher promoter activity in case of the
latter, this result is maybe not too surprising.
All major conclusions drawn above were verified at

the protein level by Western analysis, using antibodies
against GFP and LiaH. Both proteins were not detectable
in uninduced cultures, supporting the previously demon-
strated tight control of PliaI and the absence of any sig-
nificant promoter activity under non-inducing conditions.
Upon addition of bacitracin, both proteins accumulated to
different level, depending on strain background. These
studies demonstrate both the positive effect of improving
the ribosome binding site and the negative effect of delet-
ing the autoregulatory feedback loop at the level of protein
production (Figure 3C).
Taken together, both pLIKE-int and pLIKE-rep were

successfully established as vectors for bacitracin-
dependent protein production in strains that maintain
the positive autoregulatory feedback loop. While
expression based on the replicative vector yields
higher protein amounts, the integrative system has the
advantage of genetic stability and does not require any
selection.

Effect of the inducer (bacitracin) concentration on the
activity of PliaI(opt)
Next, we wanted to investigate the dynamics of PliaI ac-
tivity and the resulting GFP production as a function of
the inducer concentration. It is already well established
that PliaI-mediated gene expression occurs in a dosage-
dependent manner, at least in case of the wild type pro-
moter [22,23,32]. Here, we performed similar experi-
ments, using the pLIKE-int and pLIKE-rep derivatives
pAT6203 and pAT3803, respectively, in the W168 (wild
type) background. The resulting strains TMB1172 and
TMB1176 were inoculated in microtiter plates and
challenged in the mid-exponential growth phase with
increasing concentrations of bacitracin (Figure 4). The
results are in very good agreement with the previous
observations. The promoter activity increases as a func-
tion of the bacitracin concentration, reaching a max-
imum at bacitracin concentrations of about 30 μg mL-1

(Figure 4A/B). At higher concentrations (above 50 μg
mL-1), the ongoing promoter activity after 250 mins
indicates an ongoing bacitracin stress. Especially at the
highest bacitracin concentration, 100 μg mL-1, the GFP
yield is clearly reduced concomitant with a reduced
final cell density, at least in case of the pLIKE-rep
derived strain TMB1176 (Figure 4A). This result was
also confirmed by Western blot analysis (Figure 4C).
To ensure optimal protein production without causing
severe antibiotic stress, our data suggests the use of a
bacitracin concentration of no more than 30 μg mL-1,
although this concentration may have to be optimized
for individual target proteins, especially if toxicity is a
problem.



Figure 4 Concentration-dependent induction of the PliaI(opt) in B. subtilis W168 cultures. (A) Growth, absolute fluorescence and (B)
promoter activity of strains carrying translational fusion of PliaI(opt)-gfpmut1 on plasmids pLIKE-int and pLIKE-rep treated with different
concentration of bacitracin. Growth profiles are shown without symbols and expression by symbols: (◊) 1 μg mL-1, (□) 3 μg mL-1, (■) 10 μg mL-1,
(○) 30 μg mL-1, (●) 50 μg mL-1, (Δ) 100 μg mL-1. Vertical dotted line indicates the point of mid-log phase (OD600~0.4-0.5) when bacitracin was
added. Fluorescence is expressed in arbitrary units (AU) (C) Western blot analysis revealed the amount of GFP produced by cells harboring
pAT6203 (pLIKE-int) and pAT3803 (pLIKE-rep) 90 min post induction.
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Overproduction of YdfG using the LIKE system
To demonstrate the suitability of the LIKE system for
the overexpression of a heterologous protein, we per-
formed an expression experiment using the protein
YdfG of Bacillus licheniformis. This protein is a putative
carboxymuconolactone decarboxylase. We could re-
cently demonstrate that its gene represents the only tar-
get of the extracytoplasmic function σ factor ECF41Bli
[35]. It consists of 148 amino acids and an estimated
molecular weight of 16,6 kDa.
Based on the results shown in Figures 3 and 4, we

used strains TMB1151 and TMB1152 as expression
hosts for the pLIKE-rep+His6-ydfG (pKSLIKEr01) and
pLIKE-int+His6-ydfG (pKSLIKEi01) derivative, respect-
ively. YdfG production was induced in mid-log growing
cultures by addition of 30 μg ml-1 bacitracin. The cells
were harvested 30 min post-induction and disrupted by
sonication. For each sample, 10 μg of total protein was
separated on a 14% tricine gel and subsequently stained
by colloidale Coomassie staining solution. The result is
shown in Figure 5. For both derivatives, a clear add-
itional band can be observed in the induced fractions at
~17 kDa. As expected, the YdfG yield received from the
pLIKE-rep derivative is much higher compared to the
integrative one. To be sure that this band is not a baci-
tracin effect, control samples of the expression host
TMB1151 were treated equally and were also loaded on
the gel. Here, no distinct band can be observed in the
bacitracin-induced sample (Figure 5). By using the
pLIKE-rep derivative, it was possible to achieve a protein



Figure 5 Overproduction of YdfG using the LIKE system. 14%
tricine SDS-PAGE of total proteins (10 μg/lane) of strains TMB1566
(YdfG-rep), TMB1570 (YdfG-int), and TMB1151 (control) treated with
and without 30 μg ml-1 bacitracin for 30 min. The position of the
band corresponding to the protein YdfG is marked. M, molecular
weight marker (in kDa).
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yield comparable to the one shown for LiaH in
bacitracin-induced B. subtilis wild type cells (Figure 1B).

Conclusions
We have developed a novel and efficient LiaFSR-
dependent gene expression system, which places target
proteins under the control of an optimized bacitracin-
responsive PliaI promoter. The LIKE system offers first a
single-copy, integrative option (pLIKE-int in strain Bsu-
LIKE2), which is genetically stable without selective
pressure, but reaches lower protein production levels.
The second option consists of the replicative vector
pLIKE-rep in combination with strain Bsu-LIKE1 to ob-
tain a maximum gene expression. The LIKE-system has
a number of important features: (i) There is no detect-
able background expression in the non-induced state.
(ii) Using bacitracin as inducer, the promoter has an im-
pressive dynamic range of up to 1,000-fold above back-
ground level that can be titrated as a function of inducer
concentration. (iii) The described range of inducers is
wide, including cell wall antibiotics that function as
strong (bacitracin, nisin, daptomycin) or intermediately
strong (vancomycin) inducers, as well as non-antibiotic
conditions that act as intermediate to weak inducers of
the Lia-system, including pH-upshift, organic solvents,
some detergents, or ethanol [22,25,36-38]. All of these
inducers are well-defined and readily available at low
prices. Moreover, a recent study demonstrated that the
Lia-system can also be induced by the overexpression of
certain heterologous and secreted proteins, especially
the universal shock protein USP45 from Lactococcus lac-
tis and the TEM-1 β-lactamase from E. coli [39]. (iv)
Lastly, an antibiotic-inducible LIKE-expression strain
can easily be converted into a strong constitutive expres-
sion platform by the simple deletion of liaF, encoding
the LiaRS-specific inhibitor protein [21-23]. The effect
of such a deletion is shown in Figure 1, which demon-
strates that a liaF deletion results in a protein produc-
tion that even surpasses that of the fully induced strains,
even in the absence of an inducer.
This flexibility distinguishes the LIKE system from

other available expression systems. Taken together, the
expression vectors and strains described in this report
expand the genetic toolbox already available for protein
production, based on the tight and highly dynamic
bacitracin-inducible promoter PliaI. We hope and believe
that the vectors and strains described in this report will
provide valuable tools for protein expression in
B. subtilis. The LIKE system, consisting of both expres-
sion vectors as well as the host strains Bsu-LIKE1 and
Bsu-LIKE2, is available for the scientific community
through the Bacillus Genetic Stock Center (www.bgsc.
org; accession numbers ECE255, ECE256 for the two
vectors and 1A1070, 1A1071 for the two B. subtilis ex-
pression strains).
Methods
Growth conditions
All bacterial strains (Table 2) were grown in Luria–
Bertani (LB) medium at 37°C with aeration. The cell
density was determined by measuring the OD600 with the
Ultrospec™ 2100 pro UV/visible spectrophotometer (GE
Healthcare). When appropriate, the growth media were
supplemented with chloramphenicol (5 μg mL-1),
erythromycin (1 μg mL-1) plus lincomycin (25 μg mL-1)
for macrolide-lincosamide-streptogramin (MLS) resist-
ance (B. subtilis), or ampicillin (100 μg mL-1; E. coli).
Protein expression was induced by using zinc bacitracin
(Sigma).
DNA manipulations, transformation and PCR
All plasmid constructions were done in E. coli and iso-
lated by alkaline lysis method [40], then used to trans-
form B. subtilis [41]. Procedures for DNA manipulation
and transformation of E. coli were carried out as
described [42]. The primers used in this study are listed
in Table 3. For all PCR reactions the Phusion DNA Poly-
merase (Finnzymes) was used according to the manufac-
turer’s instructions. Sequencing was performed in-house
by the Sequencing Facility of the LMU Biocenter.

http://www.bgsc.org
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Table 2 Bacterial strains used in this study

Strain Relevant genotype Source and/or reference

E. coli DH5α recA1 endA1 gyrA96 thi hsdR17(rK
- mK

+) relA1 supE44 φ80ΔlacZΔM15 Δ(lacZYA-argF)U169 Laboratory stock

Bacillus subtilis

W168 Wild type, trpC2 Laboratory stock

HB0933 W168 attSPβ2Δ2 trpC2, liaR::kan [18]

TMB016 W168 amyE::(cat PliaI-lacZ) [21]

TMB020 HB0933 amyE::(cat PliaI-lacZ) [21]

TMB329 W168 ΔliaF (clean deletion) [23]

TMB331 TMB329 amyE::(cat PliaI-lacZ) This work

TMB408 W168 amyE::pSJ5101 (PliaI-gfp) S. Jordan

TMB604 W168 ΔPliaI-liaIH (clean deletion) [23]

Bsu-LIKE1 (TMB1151) W168 ΔliaIH (clean deletion) This work

Bsu-LIKE2 (TMB1152) W168 ΔliaIH-terminator (clean deletion) This work

TMB1172 W168 amyE::pAT6203 (pLIKE-int PliaI(opt)-gfp) This work

TMB1176 W168 pAT3803 (pLIKE-rep PliaI(opt)-gfp) This work

TMB1174 TMB604 amyE::pAT6203 (pLIKE-int PliaI(opt)-gfp) This work

TMB1178 TMB604 pAT3803 (pLIKE-rep PliaI(opt)-gfp) This work

TMB1153 TMB1151 amyE::pAT6203 (pLIKE-int PliaI(opt)-gfp) This work

TMB1342 TMB1151 pAT3803 (pLIKE-rep PliaI(opt)-gfp) This work

TMB1318 TMB1152 amyE::pAT6203 (pLIKE-int PliaI(opt)-gfp) This work

TMB1343 TMB1152 pAT3803 (pLIKE-rep PliaI(opt)-gfp) This work

TMB1566 TMB1151 pKSLIKEr01 (pLIKE-rep PliaI(opt)-His6-ydfG) This work

TMB1570 TMB1152 pKSLIKEi01 (pLIKE-int PliaI(opt)-His6-ydfG) This work
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Construction of markerless deletion mutant strains
Several markerless deletions of the liaIH operon (includ-
ing its promoter and terminator) were constructed using
the vector pMAD [43]. Genomic regions of approxi-
mately 1 kb up- and downstream of the regions to be
deleted were amplified using the primers listed in
Table 3. The two fragments were fused in a second join-
ing PCR reaction, and the resulting fragment was cloned
into pMAD via BamHI and EcoRI, generating the plas-
mids pAT101 (ΔliaIH) and pAT102 (ΔliaIHTerminator).
For generating the deletion mutants, the procedure
described by Arnaud et al. was applied [43]. In brief, B.
subtilis 168 was transformed with pAT101 or pAT102
(Table 4) and incubated for two days at 30°C on LB agar
plates containing X-Gal (5-bromo-4-chloro-3-indolyl-β-
D-galactopyranoside; 100 μg mL-1) with MLS selection.
Individual blue colonies were selected and incubated for
6 to 8 h at 42°C in LB medium with MLS selection,
resulting in the integration of the plasmids into the
chromosome. Blue colonies were again picked from LB
(X-Gal) plates and incubated at 30°C for 6 h in LB
medium without selection. Subsequently, the liquid cul-
ture was shifted to 42°C for 3 h, and the cells were then
plated on LB (X-Gal) plates, this time without selective
pressure. White colonies that had lost the plasmids were
picked and checked for MLS sensitivity. Finally, strains
TMB1151 (ΔliaIH) and TMB1152 (ΔliaIHTerminator)
were analyzed by PCR and sequencing to confirm the in-
tegrity of the desired genetic modifications.

Plasmid and strain construction
Bacterial strains used in this study are derivates of the
laboratory wild type strain B. subtilis W168 and are
listed in Table 2. Plasmids used in this study are listed in
Table 4. The promoter of the liaIH operon for integra-
tive and replicative vectors was obtained from strain B.
subtilis W168 by PCR, using primers TM2064/TM1980
and TM1991/TM1992 (Table 3), respectively. During the
amplification, bases in the ribosome-binding site (RBS)
were mutated to a strong B. subtilis Shine-Dalgarno
(SD) sequence (TAAGGAGG) [27] to yield the opti-
mized liaI promoter PliaI(opt).
The integrative expression vector pLIKE-int, contain-

ing PliaI with an optimized SD site (PliaI(opt)) was gener-
ated in two steps. First, the B. subtilis integrative vector
pDG1662 was treated with BstBI to remove the spec-
tinomycin resistance gene. The truncated (6141 bp) frag-
ment was self-ligated, yielding vector pAT6200. During
this step, the multiple cloning site (MCS), containing
unique BamHI, HindIII, and EcoRI sites was expanded



Table 3 Oligonucleotides used in this study

Primers Sequence (5' to 3')a Description/position

Plasmid construction

TM2064 CATGGTCTCAGATCTTTAAAACGCCATGCCTCG BsaI; 5' end of PliaI

TM1980 CTTGTTGGATCCATCGATGATCCTCCTTACGTTTTCCTTGTCTTC Strong SD region; BamHI, ClaI; 3' end of PliaI

TM1991 ATCTGAATTCGGTTTTAAAACGCCATGCC EcoRI; 5' end of PliaI

TM1992 ATTTTCTCTAGAATCCTCCTTACGTTTTCCTTGTCTTC Strong SD region; XbaI; 3' end of PliaI

TM1981 TCCTATCGATGAGTAAAGGAGAAGAACTTTTCACTGG ATG start codon; ClaI; 5' end of gfpmut1

TM1982 GGCCAAGCTTGAACTAGTTTCATTTATTTGTAGAGC HindIII; 3' end of gfpmut1

TM1993 TTCCTCTAGATGAGTAAAGGAGAAGAACTTTTC ATG start codon; XbaI; 5' end of gfpmut1

TM1994 GGCCGTCGACGAACTAGTTTCATTTATTTG SalI; 3' end of gfpmut1

TM2535 CCATATCGATGCATCATCATCATCATCACGAAACGAGATTTCTAATGGAAAAAG ATG start codon; ClaI; His6-tag; 5’ end of ydfG

TM2536 CCATAAGCTTTCAATCTGCTGCGGGCATTTTC HindIII; 3’ end of ydfG

TM2545 CCATTCTAGATGCATCATCATCATCATCACGAAACGAGATTTCTAATGGAAAAAG ATG start codon; XbaI; His6-tag; 5’ end of ydfG

Clean deletions

TM2130 GCGGGGATCCTCTTACATTTATTAGTCC BamHI; upstream of PliaI

TM2131 CATTTGCCGCTTTTGTCTGGGCAGATCCTCCTTTCGTTTTC 3' end of PliaI; 3' end of liaH

TM1055 CCAGACAAAAGCGGCAAATG 3' end of liaH

TM1058 CCATGAATTCGAATGCGGACGTCCGTCACGC EcoRI; inside the liaG gene

TM2132 GCGAATTGATACGTGCGGGCAGATCCTCCTTTCGTTTTC upstream of liaI gene; upstream of liaG

TM2133 CCGCACGTATCAATTCGC upstream of liaG

TM2134 GCTAGAATTCTGCCGGCTGTTTTGGAG EcoRI; center of liaG gene
a Relevant restriction sites are shown in italics, complementary regions for joining PCR are underlined. The sequence for optimized SD sequences of the liaI
promoter is indicated by bold type, the start codon is bold italic. The His-tags are in italics and underlined.
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by an additional unique ClaI restriction site, which is
required for introducing genes at the ATG start codon
(see Figure 2 for details): a PCR product encompassing
PliaI(opt) was digested with BsaI and BamHI and cloned
into pAT6200 digested with BamHI, resulting in pLIKE-
int. The ClaI restriction site is recommended to use for
reconstruction of the ATG start codon, but it is not
Table 4 Vectors and plasmids used in this study

Plasmid Genotype/properties a

pDG1662 cat, spc, bla, amyE' . . . 'amyE integrative vector

pGP380 erm, bla, Strep-Tag, PdegQ36, replicative vector

pMAD erm, ori(pE194-Ts), MCS-PclpB-bgaB, ori(pBR322), bla

pSG1151 bla, cat, gfpmut1

pAT6200 pDG1662 derivative; spc gene deleted

pLIKE-int pAT6200 derivative; PliaI(opt); integrative protein expressio

pLIKE-rep pGP380 derivative; PliaI(opt); replicative protein expression

pAT6203 pLIKE-int, PliaI(opt) translationally fused to gfp

pAT3803 pLIKE-rep, PliaI(opt) translationally fused to gfp

pAT101 pMAD ΔliaIH up/down overlap

pAT102 pMAD ΔliaIHTerminator up/down overlap

pKSLIKEr01 pLIKE-rep, PliaI(opt) translationally fused to His6-ydfG

pKSLIKEi01 pLIKE-int, PliaI(opt) translationally fused to His6-ydfG
a Resistance cassettes: erm, erythromycin; bla, ampicillin; cat, chloramphenicol; spc,
strictly necessary. The use of BamHI, HindIII, or EcoRI
has the disadvantage of fusing additional amino acids to
the N-terminus of the target protein which can cause
undesired disabilities.
To construct the replicative expression vector pLIKE-

rep, again harboring PliaI(opt), the promoter fragment
was amplified by PCR using primers TM1991/TM1992
Primer pair(s) used for cloning Reference

[28]

[29]

[43]

[44]

This work

n vector TM2064/TM1980 This work

vector TM1991/TM1992 This work

TM1981/TM1982 This work

TM1993/TM1994 This work

TM2130/ TM2131, TM1055/ TM1058 This work

TM2130/ TM2132, TM2133/ TM2134 This work

TM2545/TM2536 This work

TM2535/TM2536 This work

spectinomycin.
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(Table 3). After digest of the PCR product with EcoRI
and XbaI, the promoter region was ligated into the cor-
responding sites of pGP380, resulting in vector pLIKE-
rep. For cloning of a gene into pLIKE-rep, XbaI must be
used as restriction enzyme to generate the ATG start
codon (see Figure 2).
For the determination of the properties of the two ex-

pression vectors, the genes gfpmut1 and ydfG were used.
The gfpmut1 gene was amplified using primers
TM1981/TM1982 and TM1993/TM1994, respectively
(Table 3), using plasmid pSG1151 as the template. The
720-bp amplicon obtained was cloned into ClaI/HindIII-
digested pLIKE-int or XbaI/SalI-digested pLIKE-rep,
resulting in translational fusions with PliaI(opt) in
pAT6203 and pAT3803, respectively (Table 4). Next, the
B. subtilis strains W168, TMB604, TMB1151, and
TMB1152 (Table 2) were transformed with the pAT6203
integrative plasmid. The resulting strains were desig-
nated TMB1172, TMB1174, TMB1153, TMB1318, re-
spectively (Table 2). Strains bearing the replicative
pAT3803 GFP-expression plasmid were constructed by
transformation of the above strains with plasmid DNA
and selection for MLS resistance, resulting in strains
TMB1176, TMB1178, TMB1342, and TMB1343, respect-
ively. The ydfG gene was amplified from Bacillus licheni-
formis genomic DNA using primers TM2545/TM2536
and TM2535/TM2536, respectively (Table 3). The PCR
product was cloned into ClaI/HindIII digested pLIKE-int
or XbaI/HindIII digested pLIKE-rep, resulting in plas-
mids pKSLIKEi01 and pKSLIKEr01, respectively
(Table 4). Next, the B. subtilis strain TMB1151 was
transformed with pKSLIKEr01 replicative plasmid and
TMB1152 was transformed with the linearized pKSLI-
KEi01 integrative plasmid, resulting in strains TMB1566
and TMB1570 (Table 2).

Activation of PliaI by bacitracin and analysis of gfp gene
expression
For bacitracin-mediated induction of gene expression,
the appropriate B. subtilis strains were inoculated from
overnight LB cultures into a final volume of 150 μL LB
medium in a 96-well plate with optical bottom (Sarstedt)
and were incubated in a Synergy™ 2 multimode micro-
plate reader (Biotek) at 37°C with constant medium
shaking. When the culture reached an OD600 of 0.45,
bacitracin (30 μg mL-1 final concentration) was added to
one half of the wells (induced sample), and the other half
was left untreated (uninduced control). Plates were cov-
ered with lids to prevent evaporation and incubated for
4 h. Growth was monitored by measuring absorbance at
600 nm. Fluorescence readings were taken from the bot-
tom by using a GFP-specific filter pair (excitation 485/20
nm, emission 528/20 nm). Measurements were taken in
10 min intervals. To calculate expression levels, the
natural fluorescence of three cultures of wild type B.
subtilis strain 168 (containing no reporter gene) were
averaged and subtracted from the raw fluorescence value
of each reporter strain at the same OD600 value [45]. De-
termination of PliaI activity was calculated as described
in [45] as the derivative of the fluorescence divided by
the OD600 (dGFP/dt/OD600) for each time point. Expres-
sion values were averaged from three independent sam-
ples of the same time points ((P1+P2+P3)/3). Polynomial
and exponential functions were used to fit the experi-
mental GFP dataset; promoter activities (dGFP/dt/
OD600) were calculated using these functions [45].
Western blotting
Total cytoplasmic proteins were prepared from 15 mL
culture per time point by sonication. Proteins (20 μg per
lane) were separated by SDS-PAGE, according to stand-
ard procedure [42]. After electrophoresis and equilibra-
tion of the gels in transfer buffer [15.2 g Tris; 72.1 g
glycine; 750 mL methanol (100%) in a final volume of
5 L with deionized water] the proteins were blotted to a
PVDF membrane using a mini-trans blot apparatus (Bio-
Rad) according to standard procedure [42]. The LiaH
antibody (polyclonal rabbit antisera raised against puri-
fied His10–LiaH [46]), GFP antibody (rabbit monoclonal
antibody against the green fluorescent protein, Epi-
tomics), and the secondary antibody (anti-rabbit IgG
HRP conjugate, Promega) were diluted 1:20,000, 1:3,000,
and 1:100,000, respectively. For LiaH/GFP detection,
AceGlowTM (PeqLab) was used according to the manu-
facturer’s instructions. Blots were documented on a
QUANTUM-ST4-3026 chemiluminescence documenta-
tion system (PeqLab).
Overproduction of YdfG
For the overexpression of ydfG, strains TMB1566 and
TMB1570 were grown in LB medium at 37°C until they
reached an OD600 of ~0.4-0.5. Cultures were split and
one half was induced with 30 μg ml-1 bacitracin for 30
min. The other half was left untreated. 20 ml of each
culture was harvested by centrifugation and cell pellets
were kept at −80°C until further use. For total protein
preparation, the cell pellets were resuspended in 1 ml of
cold disruption buffer (50 mM Tris–HCl, 100 mM NaCl,
pH 7.5) and cells were disrupted by sonication on ice.
Proteins (10 μg per lane) were separated by 14% tricine
SDS-PAGE, according to standard procedure [47] and
gels were subsequently stained by colloidale Coomassie
staining solution [48].
Competing interests
The authors declare that they have no competing interests.



Toymentseva et al. Microbial Cell Factories 2012, 11:143 Page 12 of 13
http://www.microbialcellfactories.com/content/11/1/143
Authors’ contributions
AAT carried out all experiments with the exception of the overexpression
experiment and those acknowledged below. KS performed the
overexpression experiment with YdfG. AAT, KS, and TM conceived the study
and wrote the manuscript. MRS participated in its design and coordination
and helped to draft the manuscript. All authors read and approved the final
manuscript.

Acknowledgments
The authors are indebted to S. Hübner for invaluable assistance in
establishing the BioTek microplate reader set-up in our laboratory, as well as
with the corresponding data analysis. Moreover, we would like to thank D.
Wolf, and S. Jordan for Bacillus strains used in this study and F. Kalamorz for
the SDS-PAGE picture shown in Figure 1B. This work was supported by grant
MA2837/1-3 from the Deutsche Forschungsgemeinschaft (to TM) and a
Federal grant "Science and teaching program of innovative Russia" for 2009–
2013 (to MRS). AAT was supported by a DAAD research fellowship
“Forschungsstipendien für Doktoranden und Nachwuchswissenschaftler” (325-A/
09/84065).

Author details
1Department of Biology I, Microbiology, Ludwig-Maximilians-University
Munich, Munich, Germany. 2Department of Microbiology, Faculty of Biology
and Soil, Kazan Federal University, Kazan, Russian Federation.

Received: 31 May 2012 Accepted: 15 October 2012
Published: 30 October 2012

References
1. Schallmey M, Singh A, Ward OP: Developments in the use of Bacillus

species for industrial production. Can J Microbiol 2004, 50:1–17.
2. Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D,

Wang T, Moszer I, Medigue C, Danchin A: From a consortium sequence to
a unified sequence: the Bacillus subtilis 168 reference genome a decade
later. Microbiology 2009, 155:1758–1775.

3. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling
B, Kleijn RJ, Le Chat L, Lecointe F, et al: Global network reorganization
during dynamic adaptations of Bacillus subtilis metabolism. Science 2012,
335:1099–1103.

4. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E,
Marchadier E, Hoebeke M, Aymerich S, et al: Condition-dependent
transcriptome reveals high-level regulatory architecture in Bacillus
subtilis. Science 2012, 335:1103–1106.

5. Ling Lin F, Zi Rong X, Wei Fen L, Jiang Bing S, Ping L, Chun Xia H: Protein
secretion pathways in Bacillus subtilis: implication for optimization of
heterologous protein secretion. Biotechnol Adv 2007, 25:1–12.

6. Westers L, Westers H, Quax WJ: Bacillus subtilis as cell factory for
pharmaceutical proteins: a biotechnological approach to optimize the
host organism. Biochim Biophys Acta 2004, 1694:299–310.

7. Schumann W: Production of recombinant proteins in Bacillus subtilis.
Adv Appl Microbiol 2007, 62:137–189.

8. Bhavsar AP, Zhao X, Brown ED: Development and characterization of a
xylose-dependent system for expression of cloned genes in Bacillus
subtilis: conditional complementation of a teichoic acid mutant.
Appl Environ Microbiol 2001, 67:403–410.

9. Bongers RS, Veening J-W, Van Wieringen M, Kuipers OP, Kleerebezem M:
Development and characterization of a subtilin-regulated expression
system in Bacillus subtilis: strict control of gene expression by addition of
subtilin. Appl Environ Microbiol 2005, 71:8818–8824.

10. Conrad B, Savchenko RS, Breves R, Hofemeister J: A T7 promoter-specific,
inducible protein expression system for Bacillus subtilis. Mol Gen Genet
1996, 250:230–236.

11. Lee SJ, Pan JG, Park SH, Choi SK: Development of a stationary phase-
specific autoinducible expression system in Bacillus subtilis. J Biotechnol
2010, 149:16–20.

12. Liu HB, Chui KS, Chan CL, Tsang CW, Leung YC: An efficient heat-inducible
Bacillus subtilis bacteriophage 105 expression and secretion system for
the production of the Streptomyces clavuligerus beta-lactamase
inhibitory protein (BLIP). J Biotechnol 2004, 108:207–217.

13. Le Thuy AT, Schumann W: A novel cold-inducible expression system for
Bacillus subtilis. Protein Expr Purif 2007, 53:264–269.
14. Wenzel M, Müller A, Siemann-Herzberg M, Altenbuchner J: Self-inducible
Bacillus subtilis expression system for reliable and inexpensive protein
production by high-cell-density fermentation. Appl Environ Microbiol 2011,
77:6419–6425.

15. Mierau I, Kleerebezem M: 10 years of the nisin-controlled gene expression
system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 2005, 68:705–717.

16. Wu CM, Lin CF, Chang YC, Chung TC: Construction and characterization of
nisin-controlled expression vectors for use in Lactobacillus reuteri. Biosci
Biotechnol Biochem 2006, 70:757–767.

17. Vavrova L, Muchova K, Barak I: Comparison of different Bacillus subtilis
expression systems. Res Microbiol 2010, 161:791–797.

18. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD: Cell wall stress
responses in Bacillus subtilis: the regulatory network of the bacitracin
stimulon. Mol Microbiol 2003, 50:1591–1604.

19. Jordan S, Hutchings MI, Mascher T: Cell envelope stress response in Gram-
positive bacteria. FEMS Microbiol Rev 2008, 32:107–146.

20. Schrecke K, Staroń A, Mascher T: Two-component signaling in the Gram-
positive envelope stress response: intramembrane-sensing histidine
kinases and accessory membrane proteins. In Two component systems in
bacteria. Edited by Gross R, Beier D, Hethersett N. UK: Horizon Scientific
Press; 2012.

21. Jordan S, Junker A, Helmann JD, Mascher T: Regulation of LiaRS-
dependent gene expression in Bacillus subtilis: Identification of inhibitor
proteins, regulator binding sites and target genes of a conserved cell
envelope stress-sensing two-component system. J Bacteriol 2006,
188:5153–5166.

22. Mascher T, Zimmer SL, Smith TA, Helmann JD: Antibiotic-inducible
promoter regulated by the cell envelope stress-sensing two-component
system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 2004,
48:2888–2896.

23. Wolf D, Kalamorz F, Wecke T, Juszczak A, Mader U, Homuth G, Jordan S,
Kirstein J, Hoppert M, Voigt B, et al: In-depth profiling of the LiaR response
of Bacillus subtilis. J Bacteriol 2010, 192:4680–4693.

24. Burkard M, Stein T: Microtiter plate bioassay to monitor the interference
of antibiotics with the lipid II cycle essential for peptidoglycan
biosynthesis. J Microbiol Methods 2008, 75:70–74.

25. Staroń A, Finkeisen DE, Mascher T: Peptide antibiotic sensing and
detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother
2011, 55:515–525.

26. Ma J, Campbell A, Karlin S: Correlations between Shine-Dalgarno
sequences and gene features such as predicted expression levels and
operon structures. J Bacteriol 2002, 184:5733–5745.

27. Vellanoweth RL, Rabinowitz JC: The influence of ribosome-binding-site
elements on translational efficiency in Bacillus subtilis and Escherichia coli
in vivo. Mol Microbiol 1992, 6:1105–1114.

28. Guerout-Fleury AM, Frandsen N, Stragier P: Plasmids for ectopic
integration in Bacillus subtilis. Gene 1996, 180:57–61.

29. Herzberg C, Weidinger LA, Dörrbecker B, Hübner S, Stülke J, Commichau
FM: SPINE: a method for the rapid detection and analysis of protein-
protein interactions in vivo. Proteomics 2007, 7:4032–4035.

30. Mitrophanov AY, Groisman EA: Positive feedback in cellular control
systems. BioEssays 2008, 30:542–555.

31. Cormack BP, Valdivia RH, Falkow S: FACS-optimized mutants of the green
fluorescent protein (GFP). Gene 1996, 173:33–38.

32. Rietkötter E, Hoyer D, Mascher T: Bacitracin sensing in Bacillus subtilis. Mol
Microbiol 2008, 68:768–785.

33. Ming LJ: Structure and function of "metalloantibiotics". Med Res Rev 2003,
23:697–762.

34. Wiegert T, Homuth G, Versteeg S, Schumann W: Alkaline shock induces
the Bacillus subtilis σW regulon. Mol Microbiol 2001, 41:59–71.

35. Wecke T, Halang P, Staroń A, Dufour YS, Donohue TJ, Mascher T:
Extracytoplasmic function sigma factors of the widely distributed group
ECF41 contain a fused regulatory domain. Microbiology Open 2012,
1:194–213.

36. Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M: Global
analysis of the general stress response of Bacillus subtilis. J Bacteriol 2001,
183:5617–5631.

37. Pietiäinen M, Gardemeister M, Mecklin M, Leskela S, Sarvas M, Kontinen VP:
Cationic antimicrobial peptides elicit a complex stress response in
Bacillus subtilis that involves ECF-type sigma factors and two-component
signal transduction systems. Microbiology 2005, 151:1577–1592.



Toymentseva et al. Microbial Cell Factories 2012, 11:143 Page 13 of 13
http://www.microbialcellfactories.com/content/11/1/143
38. le Tam T, Eymann C, Albrecht D, Sietmann R, Schauer F, Hecker M, Antelmann H:
Differential gene expression in response to phenol and catechol reveals
different metabolic activities for the degradation of aromatic compounds in
Bacillus subtilis. Environ Microbiol 2006, 8:1408–1427.

39. Marciniak BC, Trip H, Kuipers OP, Van-der Veek PJ: Comparative
transcriptional analysis of Bacillus subtilis cells overproducing either
secreted proteins, lipoproteins or membrane proteins. Microb Cell Fact
2012, 11:66.

40. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening
recombinant plasmid DNA. Nucleic Acids Res 1979, 7:1513–1523.

41. Harwood CR, Cutting SM: Molecular Biological Methods for Bacillus.
Chichester: John Wiley & Sons; 1990.

42. Sambrook J, Russell DW: Molecular Cloning - a laboratory manual. Cold
Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001.

43. Arnaud M, Chastanet A, Debarbouille M: New vector for efficient allelic
replacement in naturally nontransformable, low-GC-content, gram-positive
bacteria. Appl Environ Microbiol 2004, 70:6887–6891.

44. Lewis PJ, Marston AL: GFP vectors for controlled expression and dual
labelling of protein fusions in Bacillus subtilis. Gene 1999, 227:101–110.

45. Botella E, Fogg M, Jules M, Piersma S, Doherty G, Hansen A, Denham EL, Le
Chat L, Veiga P, Bailey K, et al: pBaSysBioII: an integrative plasmid
generating gfp transcriptional fusions for high-throughput analysis of
gene expression in Bacillus subtilis. Microbiology 2010, 156:1600–1608.

46. Jordan S, Rietkötter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD,
Mascher T: LiaRS-dependent gene expression is embedded in transition
state regulation in Bacillus subtilis. Microbiology 2007, 153:2530–2540.

47. Schägger H, von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide
gel electrophoresis for the separation of proteins in the range from 1 to
100 kDa. Anal Biochem 1987, 166:368–379.

48. Neuhoff V, Arold N, Taube D, Ehrhardt W: Improved staining of proteins in
polyacrylamide gels including isoelectric focusing gels with clear
background at nanogram sensitivity using Coomassie Brilliant Blue G-250
and R-250. Electrophoresis 1988, 9:255–262.

doi:10.1186/1475-2859-11-143
Cite this article as: Toymentseva et al.: The LIKE system, a novel protein
expression toolbox for Bacillus subtilis based on the liaI promoter.
Microbial Cell Factories 2012 11:143.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit



 

56 
 

	

	

	

	

4 Discussion	
	

	

	

	

Parts	of	this	chapter	have	been	adapted	from:		

Schrecke,	K.*,	 Staroń,	A.*,	Mascher,	T.	 (2012).	Two‐component	systems	 in	bacteria.	Chapter	
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4	Discussion	

The	LiaFSR	system	orchestrates	a	general	cell	envelope	stress	response	of	Firmicutes	bacteria	

(Jordan	et	al.,	2008).	While	 the	 inducer	spectrum	of	 this	2CS,	 the	LiaR‐binding	site,	and	the	

transition	 state	 induction	 of	 PliaI	 without	 external	 stimuli	 were	 already	 known	 at	 the	

beginning	of	this	thesis	(Hachmann	et	al.,	2009,	Hyyryläinen	et	al.,	2005,	Jordan	et	al.,	2006,	

Jordan	et	al.,	2007,	Mascher	et	al.,	2004,	Petersohn	et	al.,	2001,	Pietiäinen	et	al.,	2005,	Tam	le	

et	al.,	2006,	Wecke	et	al.,	2009,	Wiegert	et	al.,	2001),	the	mechanism	of	stimulus	perception	

and	 signal	 transduction	 of	 the	 LiaFSR	 system	 in	 B.	 subtilis	 was	 less	 clear.	 In	 contrast	 to	

classical	2CSs,	the	HK	LiaS	and	the	RR	LiaR	require	a	third	protein,	LiaF,	a	specific	inhibitor	of	

the	system	(Jordan	et	al.,	2006).	However,	 the	exact	mode	of	 (inter‐)action	of	and	between	

the	three	proteins	was	unclear.	It	was	the	aim	of	this	thesis	to	shed	some	light	on	these	Lia‐

dependent	signaling	processes.	

In	 the	 first	 results	 chapter	of	 this	 thesis,	 it	was	 shown	 that	 the	LiaFSR	system	of	B.	 subtilis	

possesses	 significant	differences	 to	 other	 classical	2CSs	with	 regard	 to	 stimulus	perception	

and	 robustness	 (CHAPTER	 2).	 First,	 the	 cellular	 ratios	 of	 LiaF,	 LiaS,	 and	 LiaR	 were	

determined	genetically	and	by	quantitative	Western	blot	analyses	to	be	18:4:1,	respectively.	

Maintaining	 this	 stoichiometry	 is	 crucial	 for	 a	proper	 response	 to	 cell	 envelope	 stress.	The	

overproduction	 of	 either	 LiaS	 or	 LiaR	 disrupted	 the	 functionality	 of	 the	 LiaFSR	 system	 by	

resulting	 in	 a	 constitutive	 activation	 of	 the	 liaI	 promoter.	 Second,	 we	 provided	 genetic	

evidence	 that	 LiaS	 is	 a	 bifunctional	 HK,	 which	 possesses	 both	 a	 kinase	 and	 phosphatase	

activity,	based	on	mutating	a	critical	motif	crucial	for	the	phosphatase	activity	of	NarX/Q‐like	

HKs	 (Huynh	 et	 al.,	 2010).	 Third,	 we	 investigated	 a	 potential	 role	 of	 HK‐independent	

phosphorylation	 of	 LiaR	 by	 acetyl	 phosphate	 in	 vivo.	 Our	 data	 indicates	 that	 a	measurable	

non‐catalyzed	phosphorylation	only	occurs	in	the	case	that	the	amount	of	LiaR	exceeds	that	

of	 LiaS.	 In	 light	 of	 these	 findings,	we	will	 discuss	 the	 role	 of	 protein	 stoichiometry	 on	 the	

robustness	 of	 2CS‐dependent	 signal	 transduction	 (4.1).	 Moreover,	 we	 will	 provide	 and	

discuss	 a	 model	 for	 the	 mechanism	 of	 LiaFSR‐mediated	 stimulus	 perception	 and	 signal	

transduction	(4.2).	

The	second	chapter	of	the	results	describes	a	novel	protein	expression	system	for	B.	subtilis,	

which	is	based	on	the	promoter	PliaI	(CHAPTER	3).	A	toolbox	consisting	of	expression	vectors	

and	 expression	 hosts	 was	 developed	 and	 proved	 to	 be	 successful	 for	 a	 heterologous	

overexpression	 of	 soluble	 proteins.	 The	 advantages	 and	 potential	 limitations	 of	 this	

expression	 system	 will	 be	 discussed	 and	 compared	 to	 existing	 expression	 systems	 for	

Firmicutes	bacteria.	
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4.1 Stoichiometry	and	robustness	of	2CSs	
 
A	regulatory	system	is	called	robust	if	it	is	insensitive	to	any	perturbations	to	the	intra‐	and	

extracellular	 environment	 that	 would	 otherwise	 disrupt	 its	 function	 (Goulian,	 2004).	

Bacterial	2CSs	are	well	investigated	in	this	respect	and	in	general	are	known	to	be	robust	to	

changes	of	their	cellular	protein	ratios	(Goulian,	2004).	This	means	that	the	output	of	a	2CS,	

the	concentration	of	phosphorylated	RR,	is	not	significantly	influenced	by	fluctuations	of	the	

concentrations	of	HK	and	RR	proteins	in	the	cell	(Shinar	et	al.,	2007,	Steuer	et	al.,	2011).	This	

robustness	 is	 important	 to	 maintain	 an	 adequate	 response	 to	 specific	 stimuli	 despite	

stochastic	fluctuations	in	protein	numbers.	

The	LiaFSR	system	is	the	first	described	example	of	a	2CS	that	does	not	seem	to	feature	this	

characteristic	of	 robustness.	The	 functionality	of	 this	 system	 is	only	ensured	as	 long	as	 the	

molecule	numbers	of	LiaF	exceed	 those	of	LiaS,	and	 the	molecule	numbers	of	LiaS	 likewise	

exceed	those	of	LiaR.	All	other	examples	of	2CSs	investigated	so	far	are	characterized	by	an	

excess	 of	 RR	 molecules	 over	 their	 HKs	 within	 the	 cell.	 In	 the	 first	 part	 of	 this	 section	 an	

overview	 of	 the	 findings	 about	 the	 stoichiometry	 and	 robustness	 of	 different	 signal	

transduction	systems	as	well	as	the	differences	to	the	LiaFSR	system	are	presented.	

	

4.1.1 Stoichiometry	and	robustness	of	other	signal	transduction	pathways	
 
In	spite	of	 the	 fact	 that	2CSs	are	 the	best‐studied	systems	of	 robust	signaling	(Steuer	et	al.,	

2011),	 only	 a	 few	 of	 them	 were	 experimentally	 investigated	 regarding	 their	 protein	

stoichiometry	 and	 even	 less	 regarding	 their	 robustness.	 Two	 of	 them	 were	 already	

mentioned	in	CHAPTER	2,	the	EnvZ/OmpR	2CS	of	E.	coli	(Cai	&	Inouye,	2002)	and	the	WalRK	

2CS	of	S.	pneumoniae	 (Wayne	et	al.,	 2010).	 In	 contrast	 to	 the	LiaFSR	 system,	both	 systems	

possess	 an	 excess	 of	 RR	molecules	 over	 their	 cognate	 HKs	 (see	 Table	 4.1).	 Moreover,	 the	

expression	of	EnvZ/OmpR	target	genes	seems	not	to	be	influenced	after	changing	the	protein	

amounts	of	EnvZ	or	OmpR	below	and	above	wild	type	levels	in	a	range	where	EnvZ	does	not	

exceed	OmpR	amounts.	They	 identified	that	 this	principal	 is	based	on	the	bifunctionality	of	

the	HK	EnvZ,	which	controls	 the	concentration	of	phosphorylated	OmpR,	 the	output	of	 this	

2CS	(Batchelor	&	Goulian,	2003).	

Beside	these	two	2CSs,	the	stoichiometry	and	robustness	of	other	more	complex	regulatory	

systems	involving	HK	and	RR	proteins	were	explored,	 including	the	chemotaxis	system	and	

the	endospore	formation	phosphorelay.	
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The	 stoichiometry	 of	 the	 chemotaxis	 system	 was	 investigated	 in	 E.	 coli	 (Li	 &	 Hazelbauer,	

2004)	 and	B.	 subtilis	 (Cannistraro	 et	 al.,	 2011).	 Chemotaxis	 describes	 the	 ability	 of	 motile	

organisms	to	move	towards	specific	attractants	and	away	from	repellents	by	modulating	the	

direction	of	 their	 flagellar	rotation	(Eisenbach,	1996,	Falke	et	al.,	1997,	Scharf	et	al.,	1998).	

The	 composition	 of	 chemosensory	 proteins	 differs	 between	 species,	 but	 the	 core	 complex	

always	 consists	 of	 membrane‐anchored	 chemoreceptors,	 the	 HK	 CheA,	 and	 the	 coupling	

protein	 CheW	 (Falke	 et	 al.,	 1997,	 Szurmant	 &	 Ordal,	 2004).	 In	 E.	 coli,	 the	 presence	 of	

repellents	 leads	 to	an	autophosphorylation	of	 the	HK	CheA,	 followed	by	 the	 transfer	of	 the	

phosphoryl	group	to	the	RR	CheY.	Phosphorylated	CheY	(CheY~P)	interacts	with	the	flagellar	

motor	and	induces	tumbling	by	enhancing	clock	wise	(CW)	rotation.	The	dephosphorylation	

of	 CheY~P	 is	 catalyzed	 by	 CheZ	 (Eisenbach,	 1996,	 Falke	 et	 al.,	 1997,	 Scharf	 et	 al.,	 1998).	

Binding	of	attractants	to	the	chemoreceptors	or	removal	of	repellents	decreases	CheA	activity	

and	 thus	 CheY	 phosphorylation,	 which	 leads	 to	 counter	 clock	 wise	 (CCW)	 rotation	 of	 the	

flagellar	and	consequently	reduced	tumbling	frequencies.	This	causes	extended	runs	in	order	

to	move	towards	favorable	directions	(Eisenbach,	1996,	Scharf	et	al.,	1998).	In	contrast	to	E.	

coli,	 the	chemosensory	system	of	B.	subtilis	operates	conversely	with	the	same	result	 in	the	

end:	binding	of	attractants	–	not	repellents	‐	to	the	B.	subtilis	chemoreceptors	enhances	CheA	

activity,	which	leads	to	increasing	amounts	of	CheY~P.	This	results	in	CCW	flagellar	rotation	

and	thus	less	tumbling	(Szurmant	&	Ordal,	2004).	

Beside	the	fact	that	both	systems	participate	in	chemosensory	functions,	the	overall	numbers	

of	 involved	 proteins	 differ	 significantly	 between	 both	 species,	 especially	 those	 for	 the	

chemoreceptor	 molecules	 (Cannistraro	 et	 al.,	 2011,	 Li	 &	 Hazelbauer,	 2004).	 However,	 the	

protein	ratios	of	the	HK	CheA	and	the	RR	CheY	appeared	to	be	1:2.7	in	B.	subtilis	and	1:1.2	in	

E.	coli	(Table	4.1).	Again,	this	is	an	opposite	result	compared	to	LiaS	and	LiaR.	Observations	

concerning	 the	 robustness	 of	 the	 E.	 coli	 chemotaxis	 system	 were	 made	 during	 the	

quantification	 experiments	 (Li	 &	 Hazelbauer,	 2004).	 The	 authors	 demonstrated	 that	 the	

cellular	amounts	of	chemotaxis	proteins	varied	up	to	10‐fold	between	different	E.	coli	strains	

and	 growth	 media,	 but	 the	 ratios	 between	 proteins	 were	 always	 maintained	 similar.	 This	

observation	would	 infer	 that	 the	 chemosensory	 system	 is	 robust	within	 a	 certain	 range	 of	

absolute	protein	amounts	(Li	&	Hazelbauer,	2004).	The	robust	behavior	to	variations	of	the	

relative	protein	amounts	was	shown	already	seven	years	earlier:	a	theoretical	model	for	the	

robust	 behavior	 of	 chemosensory	 adaptation	 in	E.	coli	was	provided	by	Barkai	 and	Leibler	

(Barkai	&	Leibler,	1997).	Practical	confirmation	of	this	phenomenon	followed	two	years	later	

by	a	different	group	 (Alon	et	al.,	 1999).	These	authors	 tested	experimentally	how	sensitive	

the	exact	adaptation	 in	chemotaxis	was	 to	variations	 in	 the	concentration	of	 the	regulatory	

proteins	involved.	Exact	adaptation	is	an	important	characteristic	of	chemotaxis:	alterations	
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of	the	concentration	of	a	chemical	stimulant	lead	to	a	fast	change	in	the	tumbling	frequency	of	

bacteria,	 which	 is	 successively	 set	 back	 to	 its	 pre‐stimulus	 state	 even	 though	 the	

concentration	of	the	stimulant	stays	unchanged	(Berg	&	Tedesco,	1975,	Macnab	&	Koshland,	

1972).	 The	 results	 demonstrate	 a	 robust	 behavior	 of	 the	 exact	 adaptation,	 whereas	

characteristics	 like	 adaptation	 time	 and	 steady‐state	 tumbling	 frequency	 are	 sensitive	 to	

variations	in	protein	stoichiometry.	The	authors	concluded	that	exact	adaptation	seems	to	be	

a	critical	property	to	the	functioning	of	the	chemotaxis	network,	which	is	not	dependent	on	

precise	 values	 of	 the	 steady‐state	 tumbling	 frequency	 and	 the	 adaptation	 time	 (Alon	 et	al.,	

1999).	

	

Table	4.1:	Molecule	number,	stoichiometry,	and	robustness	of	different	regulatory	systems.	

System	 Organism	

Protein	amounts	
[monomers/cell]	

	 Protein	
ratio	 Robust‐

nessa	 References	
HK	 RR	 HK	 RR	

LiaS/LiaR	 B.	subtilis	 150 20 8 1 no	 This	work

EnvZ/OmpR	 E.	coli	 100 3500 1 35 yes	 (Batchelor	&	
Goulian,	
2003,	Cai	&	
Inouye,	2002)	

WalK/WalR	 S.	pneumo‐
niae	

920 6200 1 7 n.a.	 (Wayne et	al.,	
2010)	

Chemotaxis	
(CheA/CheY) 

E.	colib	 6700 8200 1 1.2 yes	 (Alon	et	al.,	
1999,	Barkai	
&	Leibler,	
1997,	Li	&	
Hazelbauer,	
2004)	

	 B.	subtilis	 2600 7100 1 2.7 n.a.	 (Cannistraro	
et	al.,	2011)	

Sporulation	
(KinA/Spo0A) 

B.	subtilisc	 4.4×105‐
24.1×105	

94.6×105‐
500×105	

1 21 n.a.	 (Eswaramoor
thy	et	al.,	
2010)	

a	 Robustness	 of	 the	 functionality	 of	 the	 respective	 system	 after	 changing	 the	 stoichiometry	 of	 the	
proteins	involved.	n.a.,	not	available	
b	Values	based	on	strain	RP437	grown	in	rich	medium.	
c	 Values	 for	 protein	 amounts	 are	 indicated	 in	 a	 range	 from	 early	 to	 late	 stationary	 phase	 (0	 to	 150	
minutes	after	sporulation).	
	

In	B.	subtilis,	proteins	that	participate	in	the	complex	phosphorelay	orchestrating	endospore	

formation	were	 also	 quantified	 recently	 (Eswaramoorthy	 et	al.,	 2010).	B.	 subtilis	 is	 able	 to	

outlast	 hostile	 conditions	 by	 developing	 extremely	 resistant	 endospores	 (Abecasis	 et	 al.,	

2013,	 Errington,	 2003).	 Initiation	 of	 sporulation	 requires	 a	 signal	 transduction	 network	
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consisting	of	the	major	sensor	kinase	KinA	(one	of	five	HKs	that	provide	the	sensory	input	of	

the	 phosphorelay),	 two	 phosphotransferases	 Spo0F	 and	 Spo0B,	 as	 well	 as	 the	 RR	 Spo0A	

(Burbulys	et	al.,	1991,	Hoch,	1993,	Stephenson	&	Hoch,	2002).	Upon	nutrient	limitation,	the	

HK	 KinA	 gets	 autophosphorylated.	 The	 phosphoryl	 groups	 are	 then	 transferred	 through	

sequential	 phosphotransfer	 reactions	 to	 Spo0A,	 the	master	 regulator	 of	 sporulation,	which	

becomes	 gradually	 activated	 via	 phosphorylation	 (Burbulys	 et	 al.,	 1991,	 Grossman,	 1995,	

Hoch,	1993).	To	ensure	a	 successful	 initiation	of	 sporulation,	 all	 phosphorelay	 components	

have	 to	 be	 synthesized	 in	 sufficient	 amounts	 in	 the	 cell.	 During	 early	 to	 late	 sporulation	

phase,	 the	molecule	numbers	of	KinA,	 Spo0F,	 Spo0B,	 and	Spo0A	 increase	 about	 10‐fold.	At	

any	time,	 the	molar	ratio	between	the	HK	KinA	and	the	RR	Spo0A	favors	 the	 latter	with	an	

average	 ratio	 of	 1:21	 (Eswaramoorthy	 et	 al.,	 2010)	 (Table	 4.1).	 Unfortunately,	 no	 data	

regarding	the	robustness	of	the	phosphorelay	is	available	so	far.	

Because	these	complex	networks	consisting	of	many	different	regulatory	proteins	are	more	

complicated	 than	 classical	 2CSs,	 their	 comparison	 to	 the	 LiaFSR	 system	must	 be	 regarded	

with	caution.	However,	all	 these	systems	show	an	excess	of	RR	proteins	over	 their	 cognate	

sensor	HKs,	which	 stands	 in	 contrast	 to	 the	 values	 obtained	 for	 the	 LiaFSR	 system	 in	 this	

thesis.	

	

4.1.2 Stoichiometry	and	robustness	of	LiaFSR	–	revolutionary	or	only	one	of	many?	
 
From	the	knowledge	that	we	gained	during	the	course	of	this	thesis,	some	questions	arise:	Is	

it	a	unique	feature	of	the	LiaFSR	system	to	possess	such	an	unusual	stoichiometry	and	non‐

robustness,	or	is	it	only	one	out	of	many	systems	that	has	this	characteristic,	but	none	of	the	

other	systems	have	been	 identified	yet?	This	question	cannot	be	answered	until	more	2CSs	

are	studied	 in	 this	 respect,	 especially	 those	of	 the	NarXQ/NarL‐type.	While	chemotaxis	and	

the	 endospore	phosphorelay	 are	 different	 because	 of	 their	 complexity,	 as	 discussed	 above,	

the	other	 “normal”	2CSs	(EnvZ/OmpR	and	WalRK)	belong	 to	a	different	2CS	group,	namely	

the	EnvZ/OmpR‐type.	The	most	obvious	difference	of	 these	two	2CS	groups	 is	 their	operon	

structure,	 which	 might	 cause	 differences	 in	 protein	 ratios	 and	 robustness,	 as	 already	

discussed	 in	 CHAPTER	 2.	 Investigations	 of	 more	 NarXQ/NarL‐like	 2CSs	 regarding	 their	

protein	 ratios	 and	 robustness	 would	 explain	 whether	 the	 unusual	 stoichiometry	 and	 the	

obviously	 linked	 non‐robustness	 might	 be	 common	 features	 of	 NarXQ/NarL‐like	 2CSs	 or	

perhaps	even	more	specific	of	LiaFSR‐like	2CSs.	

Why	 has	 such	 a	 seemingly	 fragile	 system	 evolved?	 Answers	 to	 this	 question	 would	 be	

definitely	 too	 speculative	 at	 this	 moment,	 but	 we	 favor	 a	 simple	 hypothesis.	 The	 unusual	
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native	 stoichiometry	 of	 LiaFSR	 ensures	 stimulus	 perception	 and	 specificity	 of	 the	 LiaFSR	

system:	 an	 excess	 of	 LiaF	 over	 LiaS	 is	 necessary	 to	 fix	 LiaS	 in	 its	 phosphatase	 state	 in	 the	

absence	 of	 a	 stimulus.	 An	 excess	 of	 LiaS	 over	 LiaR	 is	 necessary	 to	 prevent	 undesirable	

stimulus‐independent	 phosphorylation	 of	 LiaR	 by	 acetyl	 phosphate	 and	 other	 phosphoryl	

group‐donors.	Overproduction	of	either	LiaS	or	LiaR	severely	disturbs	the	functionality	of	the	

Lia	system	in	terms	of	a	constitutive	activation	of	the	target	promoter	PliaI,	irrespective	of	the	

presence	or	absence	of	a	stimulus.	This	means	that	the	phosphatase	activity	of	LiaS	seems	to	

be	 weak	 (in	 comparison	 to	 other	 bifunctional	 HKs)	 and	 the	 affinity	 of	 LiaR	 to	 acetyl	

phosphate	seems	stronger	regarding	other	well‐known	RRs.	The	importance	to	maintain	the	

specific	protein	ratio	indicates	a	possible	sensory/regulatory	complex	between	LiaF	and	LiaS,	

which	assumes	physical	interaction,	as	has	been	already	discussed	in	CHAPTER	2.	

From	these	findings	we	can	draw	hypotheses	of	how	the	mechanism	of	stimulus	perception	

and	signal	transduction	may	work	within	the	LiaFSR	system.	

	

	

4.2 Mechanistic	 insights	 of	 stimulus	 perception	 and	 signal	 transduction	 of	
LiaFSR‐like	systems	

 

4.2.1 Stimulus	perception	by	LiaS	and	LiaF	
 
The	details	of	the	mechanism	of	stimulus	perception	of	the	Lia	system	are	mostly	unknown.	

Based	on	 the	available	data,	 it	 is	most	 likely	 that	 two	proteins	are	required	 for	sensing	 the	

stimulus:	the	HK	LiaS	and	the	accessory	protein	LiaF.	

Without	exception,	LiaF	homologous	proteins	are	always	encoded	directly	upstream	of	liaSR	

in	all	species	harboring	lia‐like	genes,	but	just	a	few	of	them	have	been	characterized	so	far.	In	

B.	subtilis,	S.	mutans,	and	L.	monocytogenes,	LiaF	was	identified	to	act	as	a	specific	inhibitor	of	

the	 LiaR‐dependent	 gene	 expression	 in	 the	 absence	 of	 inducing	 conditions	 (Fritsch	 et	 al.,	

2011,	 Jordan	 et	 al.,	 2006,	 Suntharalingam	 et	 al.,	 2009).	 Accordingly,	 disruption	 of	 the	

respective	genes	 leads	 to	high	expression	 levels	of	LiaR	 target	genes	even	without	external	

stimuli.	 Here,	 the	 LiaSR	 system	 shows	 a	 “locked‐ON”	 phenotype.	 The	 only	 example	 of	 a	

putative	positive	modulation	of	the	Lia	system	by	LiaF	was	recently	described	for	YvqF,	the	

LiaF	homolog	of	S.	aureus	(McCallum	et	al.,	2011).	Its	deletion	leads	to	a	loss	of	induction	of	

the	VraSR	system	even	in	vancomycin‐induced	cultures	and	is	comparable	to	the	phenotypes	

observed	for	vraS	or	vraR	null	mutants.	Therefore,	YvqF	seems	to	be	essential	for	responding	

to	cell	envelope	stress	and	resulting	antibiotic	tolerance	in	S.	aureus	(McCallum	et	al.,	2011).	
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No	 further	mechanistic	 insight	beyond	 the	 regulatory	behavior	of	 liaF	mutants	 is	 currently	

available.	Preliminary	studies	of	B.	subtilis	indicate	that	the	negative	function	of	LiaF	resides	

in	 the	 cytoplasmic	 C‐terminal	 domain,	 but	membrane	 localization	 is	 necessary	 for	 the	 full	

inhibitory	activity	(Jordan,	unpublished).	

The	mechanism	of	how	LiaFSR‐like	systems	sense	their	respective	stimuli	is	so	far	unknown.	

Typical	 HKs	 harbor	 an	 extracellular	 sensing	 domain	 located	 between	 two	 transmembrane	

helices,	which	 is	postulated	to	bind	and/or	detect	suitable	stimuli	(Wolanin	et	al.,	2002).	 In	

contrast,	LiaS	homologs	are	IM‐HKs,	possessing	only	a	small	extracellular	 loop	between	the	

two	transmembrane	regions,	which	is	too	small	for	ligand	binding.	It	was	initially	proposed	

that	these	HKs	detect	the	stimuli	directly	at	the	surface	or	within	the	cytoplasmic	membrane	

(Mascher,	2006,	Mascher	et	al.,	2006,	Mascher	et	al.,	2003).	

But	recent	evidence	indicates	that	LiaS	alone	does	not	seem	to	be	sufficient	to	coordinate	a	

controlled	response	to	its	stimuli.	Instead,	the	accessory	protein	LiaF	seems	to	be	involved	in	

the	stimulus	sensing	process,	based	on	the	behavior	of	liaF	mutants	described	above.	A	direct	

interaction	 between	 LiaS	 and	 LiaF	 has	 not	 been	 proven	 so	 far,	 but	 seems	 likely	 based	 on	

initial	 data	 from	S.	aureus	 (McCallum	 et	al.,	 2011).	 Three	 possible	mechanisms	 of	 stimulus	

perception	by	LiaS	and	LiaF	can	be	envisioned	(Fig.	4.1).	First,	a	LiaF/LiaS‐sensory	complex	is	

conceivable,	 in	which	both	proteins	participate	 in	stimulus	perception	 (Fig.	4.1B).	Thereby,	

LiaF	modulates	the	kinase/phosphatase	activity	of	LiaS	according	to	the	presence	or	absence	

of	a	stimulus.	If	LiaF	is	disrupted,	this	interaction	is	lost	and	LiaS	activates	LiaR	constitutively.	

Second,	 LiaF	may	 act	 as	 a	 repressor	 and	 stabilizes	 the	 phosphatase	 activity	 of	 LiaS	 in	 the	

absence	of	a	suitable	stimulus,	thereby	keeping	the	system	silent	(Fig.	4.1C).	In	the	presence	

of	 a	 stimulus,	 LiaF	 may	 then	 act	 as	 a	 sensor	 and	 releases	 LiaS	 from	 repression,	 allowing	

phosphorylation	 of	 LiaR	 and	 subsequent	 activation	 of	 gene	 expression.	 Third,	 LiaF	 may	

function	just	as	a	repressor	in	the	absence	of	a	stimulus	and	LiaS	acts	as	a	sensor	(Fig.	4.1D).	

In	the	presence	of	a	stimulus,	LiaS	undergoes	a	conformational	change	leading	to	a	disruption	

of	the	direct	interaction	with	LiaF	and	a	subsequent	activation	of	LiaR.	This	possibility	is	by	

far	the	most	unlikely,	because	of	the	absence	of	extracytoplasmic	sensor	domains	in	LiaS‐like	

HKs,	but	cannot	be	ruled	out	due	to	the	lack	of	experimental	data.	

For	all	three	alternatives,	the	repressive	function	of	LiaF	is	only	ensured	if	LiaF	is	present	in	

excess	over	LiaS.	This	is	at	least	true	for	B.	subtilis,	based	on	the	data	of	CHAPTER	2.	

In	S.	aureus,	the	LiaF	homolog	YvqF	seems	to	play	a	positive	function	on	LiaS	activity.	Here,	

disruption	 of	 yvqF	 could	 result	 in	 a	 total	 loss	 of	 kinase	 activity.	 In	 contrast	 to	B.	 subtilis,	 a	

direct	 interaction	 between	 YyqF	 and	 VraS	 has	 been	 demonstrated,	 as	 mentioned	 above	
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(McCallum	 et	al.,	 2011).	 Accordingly,	 the	 authors	 concluded	 that	 YyqF	may	 be	 involved	 in	

sensing	the	stimulus	and	is	thereby	responsible	for	regulating	signal	transduction.	

	

	

Figure	4.1:	Proposed	mechanisms	of	 stimulus	perception	by	LiaF‐	and	LiaS‐like	proteins.	 (A)	
System	 in	 uninduced	 state.	 LiaF	 has	 a	 negative	 function	 on	 LiaS	 activity.	 (B)	 A	 LiaF‐LiaS	 sensor	
complex	is	shown	in	which	both	proteins	participate	in	stimulus	perception.	(C)	LiaF	acts	as	the	sensor	
protein	 and	 releases	 LiaS	 from	 its	 repression	 in	 the	 presence	 of	 a	 stimulus.	 (D)	 LiaS	 is	 the	 sensor	
protein	 and	undergoes	 a	postulated	 conformational	 change	 after	 sensing	 the	 stimulus.	This,	 in	 turn,	
leads	to	a	disruption	of	the	LiaF‐dependent	inhibition.	See	text	for	details.	

	

	

4.2.2 Catalytic	activity	of	LiaS‐like	HKs	and	phosphotransfer	to	LiaR	
 
The	 unusual	 function	 of	 LiaF	 during	 the	 stimulus	 perception	 process	 points	 towards	 a	

possible	default	activity	of	LiaS‐like	HKs:	either	“kinase‐ON”	or	“phosphatase‐ON”.	In	the	case	

of	B.	subtilis,	both	the	deletion	of	liaF	and	the	strong	overexpression	of	liaS	in	the	presence	of	

LiaF	show	a	distinct	output	resulting	in	a	constitutive	activation	of	PliaI	(CHAPTER	2).	Such	a	

behavior	indicates	a	default	setting	of	LiaS	activity,	which	would	be	“kinase‐ON”.	This	default	

activity	 is	 only	 inhibited	 by	 the	 presence	 of	 sufficient	 amounts	 of	 LiaF	 in	 the	 absence	 of	 a	

suitable	trigger.	It	seems	that	LiaS	needs	LiaF	as	an	interaction	partner	to	be	stabilized	in	its	

phosphatase	mode.	Free	LiaS	molecules	would	be	active	as	kinase,	which	would	result	in	an	

activation	of	PliaI,	as	can	be	observed	after	LiaS	overproduction.	The	only	described	example	

that	shows	similarities	is	VraS	of	S.	aureus.	As	described	above,	the	LiaF	homolog	YvqF	seems	

to	be	necessary	for	the	activation	of	the	HK	VraS	in	the	presence	of	a	stimulus	(McCallum	et	

al.,	2011).	Therefore,	the	default	activity	of	VraS	may	be	“phosphatase‐ON”,	which	then	may	

need	YvqF	 for	 its	own	activation	and/or	stimulus	perception.	This	mode	of	action	might	be	

specific	 for	HisKA_3‐like	 or	 just	 LiaS‐like	HKs,	 since	 no	 other	 example	 can	 be	 found	 in	 the	

literature	to	date.	

The	 signal	 transduction	 process	 of	 LiaFSR‐like	 systems	 might	 occur	 as	 follows:	 in	 the	

presence	of	a	suitable	stimulus,	LiaS	is	released	from	LiaF	repression	and	autophosphorylates	

in	an	ATP‐dependent	manner,	which	may	occur	as	a	cis	or	trans	reaction.	Until	recently,	trans‐
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autophosphorylation	of	a	HK	dimer,	where	one	HK	monomer	catalyzes	the	phosphorylation	

of	 the	 second	monomer,	was	 the	 only	 reaction	 described	 (Cai	&	 Inouye,	 2003,	Ninfa	 et	al.,	

1993,	 Stock	 et	 al.,	 2000,	 Trajtenberg	 et	 al.,	 2010)	 and	 therefore	 thought	 to	 be	 a	 general	

characteristic	 of	 HKs.	 However,	 recent	 studies	 show	 that	 cis‐autophosphorylation	 (HK	

monomer	phosphorylates	 itself)	can	also	commonly	occur	(Casino	et	al.,	2009,	Casino	et	al.,	

2010,	Pena‐Sandoval	&	Georgellis,	2010,	Dago	et	al.,	2012).	The	well‐studied	HK	DesK	of	B.	

subtilis	was	 described	 to	 autophosphorylate	 in	 trans	 (Trajtenberg	 et	 al.,	 2010).	 Since	 LiaS	

belongs	to	the	same	HK	family	like	DesK	(histidine	protein	kinase	(HPK)	family	7)	(Grebe	&	

Stock,	1999),	a	trans‐autophosphorylation	mechanism	can	be	postulated	for	LiaS	as	well.	

For	LiaS‐like	HKs,	bifunctional	activities	composed	of	kinase	and	phosphatase	activity	were	

postulated	and	experimentally	proven	for	VraS	of	S.	aureus	(Belcheva	&	Golemi‐Kotra,	2008)	

and	 LiaSLm	 of	 L.	 monocytogenes	 (Fritsch	 et	 al.,	 2011).	 A	 truncated	 version	 of	 VraS	 only	

consisting	 of	 the	 soluble	 C‐terminal	 part	 was	 used	 to	 show	 an	 increasing	 VraS	

autophosphorylation	 over	 20	minutes	 after	 incubation	with	 ATP.	 A	 rapid	 phosphotransfer	

between	 VraS	 and	 VraR	 occurred	 within	 30	 seconds	 with	 about	 70%	 of	 the	 phosphate	

residues	 being	 transferred	 (Belcheva	 &	 Golemi‐Kotra,	 2008).	 VraR~P	 can	 only	 be	

dephosphorylated	in	the	presence	of	VraS,	clearly	demonstrating	the	phosphatase	activity	of	

this	protein.	The	kinetics	of	VraS	autophosphorylation	and	phosphotransfer	indicate	a	rapid	

in	 vivo	 response	 to	 cell	 wall	 damage	 (Belcheva	 &	 Golemi‐Kotra,	 2008).	 LiaSLm	

autophosphorylation	was	shown	to	occur	within	15	minutes	after	ATP	treatment.	A	LiaSLm‐

dependent	 phosphotransfer	 to	 the	 cognate	 RR	 LiaRLm	 was	 also	 observed,	 in	 which	

phosphorylated	 LiaRLm	 protein	 could	 only	 be	 detected	 within	 the	 first	 90	 seconds	 of	

incubation	with	LiaSLm~P,	indicating	a	rapid	hydrolysis	of	LiaRLm~P	due	to	the	phosphatase	

activity	 of	 LiaSLm	 (Fritsch	 et	 al.,	 2011).	 For	 LiaS	 of	 B.	 subtilis,	 no	 in	 vitro	 phosphorylation	

studies	 are	 currently	 available,	 but	 a	 probable	 phosphatase	 activity	 was	 proven	 in	 vivo	

(CHAPTER	2).	Moreover,	recent	in	vivo	studies	demonstrate	an	almost	immediate	activation	

of	LiaR	in	the	presence	of	bacitracin	(Kesel	et	al.,	2013).	

	

4.2.3 LiaS‐independent	activation	of	LiaR	
 
A	LiaS‐independent	 activation	of	LiaR	via	phosphorylation	by	acetyl	phosphate	was	 shown	

for	 B.	 subtilis	 in	 CHAPTER	 2.	 Likewise,	 this	 HK‐independent	 phosphorylation	 was	 also	

observed	 during	 in	 vitro	 studies	 with	 VraR	 of	 S.	 aureus	 and	 in	 vivo	 for	 LiaRLm	 of	 L.	

monocytogenes	 (Belcheva	 &	 Golemi‐Kotra,	 2008,	 Fritsch	 et	 al.,	 2011).	 We	 determined	 a	

stimulus‐independent	activation	of	B.	subtilis	PliaI	through	LiaR~P	after	overproduction	of	this	

RR,	irrespective	of	the	presence	or	absence	of	LiaS.	This	phenomenon	could	be	attributed	to	
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the	phosphorylation	of	LiaR	by	acetyl	phosphate.	It	seems	that	LiaS	is	only	able	to	keep	LiaR	

inactive	by	dephosphorylation	as	long	as	LiaS	is	present	in	excess	over	LiaR.	This	observation	

suggests	that	LiaS	seems	to	have	a	rather	inefficient	phosphatase	activity	in	contrast	to	other	

HKs,	such	as	EnvZ	of	E.	coli	(Forst	&	Roberts,	1994,	 Inouye	&	Dutta,	2003).	 It	 is	 interesting	

that	RRs	of	other	2CSs	are	more	abundant	than	their	cognate	HKs,	but	these	HKs	are	usually	

very	well	able	to	control	RRs	activity	by	dephosphorylation.	While	a	physiological	relevance	

of	the	LiaR	activation	by	acetyl	phosphate	has	not	yet	been	demonstrated,	it	can	also	not	be	

ruled	out	at	the	present	time.	It	is	imaginable	that	acetyl	phosphate	plays	a	role	in	fine‐tuning	

the	 response	 to	 cell	 envelope	 stress,	 as	has	 been	 recently	 shown	 for	 another	 cell	 envelope	

stress‐sensing	2CS,	CpxAR	of	E.	coli	(Lima	et	al.,	2012).	

	

Taken	 together,	 the	Lia	 system	 is	a	 sensitive,	 fast,	 and	highly	dynamic	cell	envelope	stress‐

sensing	2CS	that	shows	an	unusual	stoichiometry	of	its	regulatory	components	LiaF,	LiaS,	and	

LiaR	with	 a	 relative	 ratio	 of	 18	 to	 4	 to	 1.	 This	 characteristic	 protein	 ratio	 allows	 stimulus	

perception	 and	 specificity	 of	 the	 Lia	 system,	 whose	 function	 is	 highly	 sensitive	 to	

perturbations	of	this	stoichiometry.	Therefore,	preservation	of	the	relative	protein	amounts	

to	each	other	is	crucial	to	allow	a	precise	signal	transduction	process.	

	

	

4.3 Development	of	a	new	protein	expression	system	for	B.	subtilis	
 
The	 second	 part	 of	 this	 thesis	 dealt	 with	 the	 establishment	 of	 a	 novel	 protein	 expression	

system,	the	LIKE	system,	which	is	based	on	the	promoter	PliaI	(CHAPTER	3).	

Despite	 the	 number	 of	 protein	 expression	 systems	 available,	 there	 is	 nevertheless	 an	

undiminished	need	for	reliable	homo‐	and	heterologous	protein	expression	systems.	Hence,	it	

is	important	to	develop	novel	or	improved	systems,	which	are	adjusted	to	the	respective	host	

in	order	to	have	the	best	possible	option	for	expression	of	proteins	of	interest.	A	simple	and	

fast	handling	as	well	 as	 the	availability	of	 inexpensive	 inducers	 is	 critical.	A	 lot	of	different	

expression	systems	are	available,	most	of	them	were	created	for	E.	coli.		

In	 this	 section,	we	will	 first	present	an	overview	of	 the	most	 significant	protein	expression	

systems	for	the	Gram‐negative	bacterium	E.	coli	and	the	Gram‐positive	bacterium	B.	subtilis	

(see	 also	 Table	 4.2).	 A	 detailed	 description	 of	 all	 expression	 systems	 can	 be	 found	 in	 the	

Supplemental	Material.	Subsequently,	advantages	and	disadvantages	of	the	LIKE	system	will	

be	discussed.	
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4.3.1 Protein	expression	in	the	Gram‐negative	bacterium	E.	coli	
 
E.	coli	is	the	most	common	expression	host	for	the	production	of	recombinant	proteins.	This	

is	 not	 surprising,	 since	 this	 bacterium	possesses	 the	 ability	 to	 grow	 fast	 and	 to	 a	 high	 cell	

density	on	 inexpensive	 substrates.	 In	 addition,	 its	 genetics	 and	molecular	biology	are	well‐

characterized	and	a	large	number	of	expression	vectors	and	mutant	host	strains	are	available	

(Baneyx,	 1999,	 Hannig	 &	 Makrides,	 1998,	 Jonasson	 et	 al.,	 2002,	 Makrides,	 1996).	 All	

expression	systems	are	based	on	inducible	promoters,	which	should	be	strong	to	be	able	to	

produce	 the	 protein	 of	 interest	 in	 excess	 of	 10	 to	 30%	 of	 the	 total	 cellular	 protein.	 The	

promoter	 should	 be	 efficiently	 repressed	 under	 non‐inducing	 conditions,	 especially	 if	 the	

target	protein	is	toxic	to	the	host	strain,	and	it	should	be	simply	inducible	in	an	inexpensive	

manner	(Baneyx,	1999,	Hannig	&	Makrides,	1998,	Jonasson	et	al.,	2002,	Makrides,	1996).	

Expression	systems	based	on	the	lac	promoter	are	commonly	used	in	E.	coli	for	many	years.	

The	lac	promoter	is	chemically	inducible	by	isopropyl‐β‐D‐thiogalactopyranoside	(IPTG)	and	

negatively	 regulated	 by	 the	 lac	 repressor	 protein	 LacI	 (Lehninger	 et	 al.,	 1994).	 Different	

synthetic	 lac‐derived	 promoters	 have	 been	 developed,	 which	 are	 all	 constructed	 with	 the	

purpose	 to	 reach	high	protein	 levels	 (Brosius	et	al.,	 1985,	 de	Boer	et	al.,	 1983).	The	major	

disadvantage	 of	 lac‐derived	 promoters	 is	 their	 leakiness	 in	 the	 absence	 of	 the	 inducer	

molecule.	Hence,	 they	are	 inappropriate	 for	 the	expression	of	 toxic	proteins	(Baneyx,	1999,	

Jonasson	et	al.,	2002).	

The	 pET	 vector	 system	 is	 another	 IPTG‐inducible	 system	 used	 in	 E.	 coli,	 which	 is	 tighter	

regulated	 (Dubendorff	 &	 Studier,	 1991b,	 Dubendorff	 &	 Studier,	 1991a,	 Studier	 &	 Moffatt,	

1986,	 Studier	 et	 al.,	 1990)	 (Table	 4.2).	 It	 is	 based	 on	 a	 vector‐located	 T7	 promoter‐lac	

operator	sequence,	which	controls	the	expression	of	a	target	gene.	This	plasmid	is	integrated	

into	 an	E.	coli	 host	 strain	possessing	 the	T7	RNA	polymerase	 gene	 controlled	by	 the	 IPTG‐

inducible	lac	promoter.	Upon	induction,	the	T7	RNA	polymerase	is	synthesized	leading	to	the	

expression	of	target	proteins	up	to	50%	of	the	total	cellular	proteins	(Baneyx,	1999).	The	pET	

system	 becomes	 tightly	 regulated	 under	 non‐inducing	 conditions	 by	 the	 use	 of	 host	 cells	

containing	 a	 plasmid‐encoded	 T7	 lysozyme,	 which	 represses	 the	 T7	 RNA	 polymerase	 via	

direct	binding	(Studier,	1991).	Thus,	the	tolerance	to	toxic	target	proteins	is	enhanced.	

For	the	expression	of	certain	protein,	a	massive	overproduction	is	sometimes	not	desired	due	

to	the	possible	formation	of	inclusion	bodies.	For	this	purpose,	the	araBAD	system	has	been	

developed	(Guzman	et	al.,	1995)	(Table	4.2).	This	system	consists	of	the	arabinose‐inducible	

promoter	PBAD,	which	 is	positively	and	negatively	regulated	by	AraC	(Carra	&	Schleif,	1993,	

Lobell	&	Schleif,	1990).	The	addition	of	L‐arabinose	leads	to	a	moderate	expression	of	target	

genes,	which	was	proven	 to	be	2.5‐	 to	4.5‐times	 lower	 compared	 to	Plac‐derived	promoters	
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(Guzman	et	al.,	1995).	Furthermore,	PBAD	shows	no	significant	basal	expression	level	so	that	

this	system	can	be	used	to	produce	toxic	proteins	(Guzman	et	al.,	1995).	

	

The	mentioned	expression	systems	are	well	established,	but	cannot	be	directly	transferred	to	

Gram‐positive	bacteria.	The	major	reasons	are	the	individual	codon	usage	and	more	stringent	

requirements	for	promoter	application	in	Gram‐positive	bacteria	compared	to	E.	coli	(Moran	

et	al.,	1982,	Morrison	&	Jaurin,	1990).	Furthermore,	unique	requirements	for	the	regulation	

of	inducible	promoters	in	Gram‐positive	bacteria	are	not	part	of	existing	expression	systems,	

e.g.	 specific	 sigma	 factors	 and	 regulators	 (Haldenwang,	 1995).	 However,	 a	 lot	 of	 different	

tools	for	the	expression	of	homo‐	and	heterologous	proteins	in	Gram‐positive	bacteria	have	

been	 developed.	 Some	 of	 them	 are	 discussed	 in	 the	 following	 section	 –	 with	 the	 focus	 on	

expression	systems	developed	for	B.	subtilis.	

	

4.3.2 Protein	expression	in	the	Gram‐positive	bacterium	B.	subtilis	
 
Among	Gram‐positive	bacteria,	B.	subtilis	is	a	widely	used	protein	production	host.	Similar	to	

E.	coli,	B.	subtilis	possesses	the	advantage	to	grow	fast	to	high	cell	density	and	its	genetics	is	

established.	 Advantages	 of	B.	 subtilis	 over	E.	 coli	 are	 the	 possible	 use	 of	 integrative	 vector	

systems,	which	are	more	stable	compared	to	replicative	vectors.	Moreover,	B.	subtilis	carries	

powerful	secretory	systems,	which	allow	the	secretion	of	produced	proteins	(e.g.	proteases,	

lipases,	and	amylases)	into	the	culture	medium.	These	features	as	well	as	its	GRAS	(generally	

recognized	 as	 safe)	 status	 are	 amongst	 the	 reasons	 for	 the	 great	 industrial	 and	 clinical	

interest	for	this	bacterium	(Ling	Lin	et	al.,	2007,	Schallmey	et	al.,	2004,	Schumann,	2007,	van	

Dijl	&	Hecker,	2013,	Westers	et	al.,	2004).	

The	first	described	expression	system	for	B.	subtilis	consists	of	an	IPTG‐inducible	promoter,	

named	Pspac	(Yansura	&	Henner,	1984)	(Table	4.2).	It	correlates	to	the	lac	promoter	system	of	

E.	coli,	since	Pspac	was	created	by	fusing	the	E.	coli	lac	operator	and	lac	repressor	gene	to	the	

SPO‐1	promoter	sequence	derived	from	a	B.	subtilis	phage.	This	system	is	strongly	induced	up	

to	 100‐fold	 after	 the	 addition	 of	 IPTG,	 but	 shows	 significant	 basal	 expression	 levels	 under	

non‐inducing	conditions	(Bhavsar	et	al.,	2001,	Vavrova	et	al.,	2010,	Yansura	&	Henner,	1984).	

Another	 widely	 used	 expression	 system	 for	 B.	 subtilis	 is	 based	 on	 a	 xylose‐inducible	

promoter,	PxylA	(Bhavsar	et	al.,	2001,	Kim	et	al.,	1996)	(Table	4.2).	Two	different	vectors	were	

constructed,	 pX	 and	pSWEET,	which	 consist	 of	 PxylA	 and	 the	 xylose	 repressor	 gene	 xylR	 for	

negative	regulation	of	the	xylA	promoter	in	the	absence	of	xylose.	The	vector	pSWEET	is	an	
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improved	version	of	pX	because	it	possesses	a	cis‐acting	CRE	(catabolite‐responsive	element)	

site,	 allowing	 a	 tighter	 transcriptional	 regulation	 by	 catabolite	 repression	 (Bhavsar	 et	 al.,	

2001).	Upon	induction,	both	expression	vectors	showed	200‐fold	expression	levels	as	well	as	

a	 tight	 regulation	without	 induction	 (Bhavsar	 et	al.,	 2001,	 Kim	 et	al.,	 1996,	 Vavrova	 et	al.,	

2010).	

	

Table	4.2:	Strengths	and	weaknesses	of	protein	expression	systems	of	E.	coli	and	B.	subtilis.	

Expression	
system/	
promoter	

Regu‐
lation	 Inducer	 Strengths	 Weaknessesa	 References	

E.	coli	 	 	 	

Plac	 LacI IPTG	 strong	inducible,	
inducer	commercially	
available	

leaky (Baneyx,	1999,	
Jonasson	et	al.,	
2002,	Lehnin‐
ger	et	al.,	1994)	

pET/	PT7lac	 LacI IPTG	 tight,	strong	
inducible,	inducer	
commercially	
available	

problems	due	to	
hyperexpression	
possible,	e.g.	
inclusion	bodies	

(Dubendorff	&	
Studier,	1991b,	
Dubendorff	&	
Studier,	1991a,	
Studier	&	
Moffatt,	1986,	
Studier	et	al.,	
1990)	

araBAD/	PBAD	 AraC	 L‐arabi‐
nose	

tight,	inducer	
commercially	
available	

moderately	strong	
inducible	

(Guzman	et	al.,	
1995)	

B.	subtilis	 	 	 	

Pspac	 LacI IPTG	 single‐plasmid	based,
inducer	commercially	
available	

leaky,	moderately	
strong	inducible	
(up	to	100‐fold)	

(Bhavsar	et	al.,	
2001,	Yansura	
&	Henner,	
1984)	

pX,	pSWEET/	
PxylA	

XylR D‐xylose	 strong	inducible	(200‐
fold),	tight,	single‐
plasmid	based,	
inducer	commercially	
available	

n.	a. (Bhavsar	et	al.,	
2001,	Kim	et	
al.,	1996,	
Vavrova	et	al.,	
2010)	

SURE/	PspaS	 SpaRK	 subtilin	 strong	inducible	(100‐
fold),	single‐plasmid	
based	

leaky,	inducer	not	
commercially	
available	

(Bongers	et	al.,	
2005,	Vavrova	
et	al.,	2010)	

NICE/	PnisA	 NisRK	 nisin	 tight,	inducer	
commercially	
available	

weakly	inducible	
(10‐fold),	dual‐
plasmid	based	

(Eichenbaum	
et	al.,	1998)	

a	n.	a.,	not	available.	
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Protein	 expression	 systems,	 which	 are	 inducible	 by	 peptide	 antibiotics,	 have	 also	 been	

developed	 for	 the	 use	 in	 B.	 subtilis.	 The	 most	 prominent	 examples	 are	 the	 NICE	 (nisin‐

controlled	gene	expression)	system,	which	was	originally	developed	for	L.	lactis	(de	Ruyter	et	

al.,	1996b,	Kuipers	et	al.,	1995)	and	then	transferred	to	B.	subtilis	(Eichenbaum	et	al.,	1998),	

and	the	SURE	(subtilin‐regulated	gene	expression)	system	(Bongers	et	al.,	2005)	(Table	4.2).	

Both	systems	are	regulated	by	a	2CS,	which	is	induced	by	nisin	(NisRK)	or	subtilin	(SpaRK),	

respectively,	leading	to	the	activation	of	the	target	promoters	PnisA	or	PspaS.	The	great	strength	

of	the	SURE	system	is	the	high	induction	level	up	to	100‐fold	in	response	to	subtilin,	reaching	

significantly	 higher	 protein	 yields	 compared	 to	 the	 xyl	 expression	 system	 (Bongers	 et	 al.,	

2005,	Vavrova	et	al.,	2010).	Unfortunately,	expression	from	the	spaS	promoter	is	leaky,	which	

makes	it	not	suitable	for	the	expression	of	toxic	proteins	(Vavrova	et	al.,	2010).	Moreover,	the	

inducer	 molecule	 subtilin	 is	 not	 commercially	 available.	 Instead,	 culture	 supernatant	 of	 a	

subtilin	 producer	 strain	must	 be	 used	 for	 induction	 that	might	 cause	 variations	 in	 subtilin	

concentration	and	quality	(Bongers	et	al.,	2005).	In	contrast,	PnisA	of	the	NICE	system	is	tightly	

regulated	under	non‐inducing	conditions,	but	reaches	only	low	induction	levels	in	B.	subtilis	

up	 to	 10‐fold.	 Additionally,	 the	 NICE	 system	 is	 based	 on	 a	 dual‐plasmid	 platform	

(Eichenbaum	et	al.,	1998),	which	is	known	to	be	more	unstable	compared	to	single‐plasmid	

systems.	

	

4.3.3 The	LIKE	system	–	pros	and	cons	
 
The	LIKE	system	is	a	novel	protein	expression	system	for	B.	subtilis,	which	was	developed	in	

the	present	thesis	(CHAPTER	3).	It	features	similar	characteristics	as	the	SURE	and	the	NICE	

systems.	 It	 is	 also	 regulated	 by	 a	 2CS,	 LiaSR,	 and	 it	 is	 induced	 by	 peptide	 antibiotics,	 e.g.	

bacitracin,	vancomycin,	or	ramoplanin	leading	to	the	induction	of	a	target	promoter,	PliaI,	by	

binding	of	the	activated	RR.	The	LIKE	system	combines	all	advantages	from	the	SURE	and	the	

NICE	systems.	Similar	to	the	NICE	system,	it	offers	a	tightly	regulated	promoter,	PliaI,	which	is	

induced	 by	 commercially	 available	 substrates	 in	 a	 concentration‐dependent	 manner.	 It	

possesses	a	great	 induction	strength	 (up	 to	1000‐fold)	comparable	 to	 the	SURE	and	higher	

than	 the	NICE	 systems	 and	 it	 is	 a	 stable	 single‐plasmid‐based	 expression	platform	 like	 the	

SURE	system.	The	LIKE	system	represents	an	improvement	regarding	its	 inducer	spectrum,	

since	 a	 number	 of	 different	 and	 commercially	 available	 inducers	 exist	 (not	 only	 peptide	

antibiotics,	 but	 also	 e.g.	 organic	 solvents	 or	 induction	 by	 alkaline	 shock).	 Another	

improvement	 is	 its	 fast	 response	 already	 5	 to	 10	 minutes	 after	 addition	 of	 the	 inducer	

molecule,	reaching	a	maximum	after	30	minutes	(CHAPTER	3;	Kesel	et	al.,	2013).	In	contrast,	
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maximum	expression	 levels	 achieved	 from	 the	NICE	 system	were	observed	only	90	 to	120	

minutes	after	the	addition	of	nisin	(de	Ruyter	et	al.,	1996b).	

The	great	strength	of	the	LIKE	system	is	the	choice	of	two	different	options:	(i)	an	integrative	

expression	 plasmid	 (pLIKE‐int),	 which	 is	 stable	 without	 antibiotic	 pressure,	 but	 reaches	

lower	 protein	 yields,	 or	 (ii)	 a	 replicative	 expression	 plasmid	 (pLIKE‐rep)	 that	 is	 more	

unstable	 and	 needs	 selective	 pressure,	 but	 shows	 higher	 protein	 yields.	 Furthermore,	

different	 host	 strains	 were	 constructed,	 which	 were	 optimized	 in	 combination	 with	 the	

integrative	or	replicative	option.	However,	these	strains	are	intended	for	the	use	of	the	LIKE	

system,	alternatives	are	imaginable,	e.g.	the	use	of	a	liaF	deletion	mutant,	which	provides	the	

possibility	of	a	strong	constitutive	production	of	 recombinant	proteins.	This	might	 increase	

the	 protein	 yield	 further	 and	 seems	 to	 be	 appropriate	 whenever	 high	 amounts	 of	 target	

protein	are	needed.	

The	successful	overproduction	of	the	soluble	proteins	GFP	and	YdfG	by	the	LIKE	system	has	

been	 proven	 in	 this	 study.	 Thus,	 membrane	 proteins,	 secretion	 proteins,	 as	 well	 as	 toxic	

proteins	 are	 also	 supposed	 to	 be	 expressed	 by	 the	 LIKE	 system,	 although	 not	 tried	 so	 far.	

Further	 practical	 experience	 is	 necessary	 to	 prove	 these	 applications.	 Because	 of	 its	 tight	

regulation,	the	NICE	system	was	extensively	used	to	express	and	analyze	toxic	and	essential	

proteins,	such	as	cell	wall	lytic	enzymes	(de	Ruyter	et	al.,	1997,	Hickey	et	al.,	2004)	and	the	

H+‐ATPase	of	L.	 lactis	 (Koebmann	et	al.,	 2000).	This	 capability	might	be	 transferable	 to	 the	

LIKE	system,	since	it	also	offers	the	tight	regulation	during	exponential	growth.	

	

Taken	 together,	 the	LIKE	system	provides	a	novel	protein	expression	 toolbox	 for	B.	subtilis	

with	 the	 improvement	 over	 preexisting	 protein	 expression	 systems	 in	 terms	 of	 inducer	

spectrum	and	 the	 choice	of	different	 vector	 systems	 (integrative	or	 replicative).	 In	 general,	

the	development	of	novel	or	improved	protein	expression	systems	is	always	welcome/useful	

to	circumvent	mentioned	issues	of	existing	expression	systems.	

	

	

4.4 Conclusions/outlook	
 
The	present	 thesis	dealt	with	 the	regulatory	mechanism	of	 the	LiaFSR	system	of	B.	subtilis.	

Phenotypes	 of	 different	 lia	 mutants	 and	 investigations	 of	 the	 native	 stoichiometry	 of	 the	

proteins	LiaF,	LiaS,	and	LiaR	revealed	significant	differences	in	terms	of	stimulus	perception,	

signal	transduction,	and	robustness	to	other	well‐characterized	2CS,	e.g.	the	EnvZ/OmpR	2CS	
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of	E.	coli.	The	LiaFSR	system	is	the	first	2CS	that	requires	an	excess	of	the	HK	over	its	cognate	

RR.	 This	 unusual	 protein	 ratio	 seems	 to	 be	 the	 reason	 for	 the	 non‐robust	 behavior	 after	

changing	the	stoichiometry.	

Nevertheless,	a	number	of	important	questions	concerning	the	exact	mechanism	of	stimulus	

perception	and	signal	transduction	are	still	unaddressed:	How	is	the	stimulus	sensed?	What	

is	the	mechanism	of	autophosphorylation	of	LiaS	–	trans	or	cis?	How	is	the	signal	transduced?	

How	does	LiaF	execute	its	inhibitory	function	‐	in	complex	with	LiaS	or	LiaR?	For	the	latter,	

protein	 interaction	studies	will	be	necessary.	 Initial	analyses	using	the	bacterial	 two‐hybrid	

system	 (Karimova	 et	 al.,	 1998)	 revealed	 the	 expected	 interactions	 between	 LiaS	 and	 LiaR	

molecules	 itself	 (homodimerization),	 and	between	LiaS	and	LiaR.	But	 so	 far,	 no	 interaction	

was	 observed	 between	 LiaS	 and	 LiaF	 or	 LiaR	 and	 LiaF,	 respectively	 (Robyn	 Emmins,	

unpublished).	However,	 it	 is	known	that	 this	 type	of	 interaction	study	often	generates	 false	

positive	 results,	 leading	 to	 the	 need	 of	 further	 studies	 using	 different	 types	 of	methods	 to	

confirm	 or	 disprove	 this	 data.	 For	 this	 purpose,	 techniques	 like	 SPINE	 (Strep‐protein	

interaction	 experiment)	 (Herzberg	 et	 al.,	 2007),	 FRET	 (Förster	 (fluorescent)	 resonance	

energy	transfer)	(Förster,	1948,	Pollok	&	Heim,	1999),	 in	vitro	pull‐down	assays	(e.g.	based	

on	 activated	 N‐hydroxysuccinimide	 (NHS)	 sepharose	 (GE	 Healthcare)),	 or	 biacore	 systems	

based	 on	 SPR	 (surface	plasmon	 resonance)	 (Biacore	 life	 sciences,	 GE	Healthcare)	 could	 be	

used.	From	these	studies	we	expect	to	 learn	whether	our	 favored	hypothesis	of	a	LiaF/LiaS	

sensory	complex	might	be	true.	

Moreover,	biochemical	 studies	with	 the	proteins	LiaFSR	are	 the	next	 step.	Phosphorylation	

experiments	using	 radioactively	 labeled	ATP	and	acetyl	phosphate	 should	be	performed	 to	

investigate	the	LiaS	autophosphorylation,	the	phosphotransfer	between	LiaS	and	LiaR,	as	well	

as	the	phosphatase	activity	of	LiaS	in	vitro.	The	role	of	LiaF	can	be	studied	by	the	addition	of	

this	protein	to	the	respective	phosphorylation	steps.	Such	experiments	with	LiaFSR	were	so	

far	hampered	by	overexpression/purification	problems	or	inactivity	of	proteins:	all	attempts	

to	(over‐)express	and	purify	LiaF	were	unsuccessful	so	far,	most	likely	due	to	toxic	effects	in	

E.	coli.	Similar	to	in	vitro	phosphorylation	studies	of	VraSR	of	S.	aureus	(Belcheva	&	Golemi‐

Kotra,	 2008),	 the	 cytoplasmic	 C‐terminal	 part	 of	 LiaS	 was	 fused	 to	 a	 GST	 (glutathione	 S‐

transferase)	 tag	 and	 purified,	 resulting	 in	 only	 little	 amounts	 of	 soluble	 LiaS	 protein	 with	

many	impurities.	Initial	autophosphorylation	experiments	using	this	LiaS/impurities	mixture	

failed	 probably	 because	 of	 LiaS	 inactivity.	 In	 contrast,	 the	 purification	 of	 tag‐less	 LiaR	 has	

been	successfully	done	by	 ion	exchange	chromatography,	but	LiaR	seemed	 to	be	physically	

instable	 leading	 to	 a	 rapid	 degradation.	 Subsequent	 purification	 attempts	 with	 His‐tagged	

LiaR	delivered	very	high	protein	yields,	which	were	physically	stable,	but	this	time	instable	in	
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LiaR	activity.	EMSA	(electrophoretic	mobility	shift	assay)	experiments	indicated	a	rapid	loss	

of	LiaR	function	within	a	few	days.	

A	future	aim	would	be	the	reconstruction	of	the	LiaFSR	system	in	liposomes	to	investigate	the	

mechanism	 of	 stimulus	 perception	 and	 signal	 transduction	 separated	 from	 other	 cellular	

influences.	This	has	been	successfully	done	for	the	YycFG	2CS	of	S.	aureus	(Türck	&	Bierbaum,	

2012),	 the	KdpDE	2CS	of	E.	coli	 (Jung	et	al.,	1997),	 the	DcuSR	2CS	of	E.	coli	 (Janausch	et	al.,	

2002),	and	the	MtrBA	2CS	of	Corynebacterium	glutamicum	(Möker	et	al.,	2007).	
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5 Supplemental	Material	–	CHAPTER	2	
 

Additional	tables	and	figures	for	CHAPTER	2	

Table	S1:	Oligonucleotides	used	in	this	study.	
 

Primer no. (primer name) Sequence (5’→3’) 

  

Oligonucleotides for cloning a  

   Stoichiometry analysis of LiaFSRb  
     0579 (PliaG-fwdopt(SmaI)) CCATCCCGGGTCCCTTCCGCACTTGACAATTCGCAAGCTTTTCTGTTATAATAGAATG 
     0580 (liaFexpr (BamHI)) AGCCGGATCCATTCCTGGTGTCCGCCTCC 
     0581 (liaSexpr (BamHI)) AGCCGGATCCATACGTACTTCACATCCACATC 
     0582 (liaRexpr (BamHI)) AGCCGGATCCACGTTCGTTCTCTCCTTTTTCTTCC 
     0856 (Pveg-fwd2 (SmaI)) 
 

GACTCCCGGGTAAATTTTATTTGACAAAAATGGGCTCGTGTTGTACAATAAATGTAGT
GA

     0857 (liaF-SDrev2 (BamHI)) GATCGGATCCATTCCTGGTGTCCGCCTCCTTTCTCACTACATTTATTGTACAACACGA 
     0898 (liaS-SDrev3 (BamHI)) GATCGGATCCATACGTACTTCACATCCACATCATCACTACATTTATTGTACAACACGA 
     0899 (liaR-SDrev3 (BamHI)) GATCGGATCCACGTTCGTTCTCTCCTTTTTCTTTCACTACATTTATTGTACAACACGA 
     0900 (liaG-SDrev (BamHI)) GATCGGATCCATTCGGTTTCATCCTTCTCATTCTCACTACATTTATTGTACAACACGA 
     0901 (liaG-SDrev) CATTCGGTTTCATCCTTCTCATTCTCACTACATTTATTGTACAACACGA 
     0902 (liaG-fwd) GAATGAGAAGGATGAAACCG 
     0903 (liaF-SDrev4 (BamHI)) GATCGGATCCATTCCTGGTGTCCGCCTCC 
     0904 (liaS-SDrev4 (BamHI)) GATCGGATCCATACGTACTTCACATCCACATC 
     0905 (liaR-SDrev4 (BamHI)) GATCGGATCCACGTTCGTTCTCTCCTTTTTC 
     0906 (Pveg-kontrrev (BamHI)) GATCGGATCCATAGGACCACAGGCGGAGGAAAGTCACTACATTTATTGTACAACACG

A
  
   Complementation experiments with liaSc  
     0454 (liaS-fwd (BamHI)) ACGGGATCCCGGTGATGTGGATGTGAAGTACG 
     0958 (liaS-fwd (BamHI)) ACGGGATCCATGAGAAAAAAAATGCTTGCCAGCC 
     0959 (liaS-rev (SphI)) AGTCGCATGCTCATCAATCAATAATACTCGAATCACG 
     0960 (FLAG3-fwd) GATTATAAGGATCATGATGGTG 
     0961 (FLAG3-rev (HindIII)) ACGAAGCTTCTTGTCGTCATCGTCTTTGTAG 
     0962 (liaS FLAG-rev) CACCATCATGATCCTTATAATCATCAATAATACTCGAATCACGTTCG 
  
   Overexpression of liaFSR  
     0035 (liaF-fwd (HindIII)) AGGAAGCTTAGAAAGGAGGCGGACACCAGG 
     0036 (liaF-rev (EcoRI)) TCCGAATTCTTTCTCATACGTACTTCACATCC 
     0046 (liaS-rev (HindIII)) ACGAAGCTTTCATCAATCAATAATACTCGAATCACG 
     0454 (liaS-fwd (BamHI)) ACGGGATCCCGGTGATGTGGATGTGAAGTACG 
     0893 (liaR-rev (BsaI-EcoRI)) AGTCGGTCTCGAATTCGACTACCGGGTCAATGTGATTG 
     1068 (liaR-fwd (BamHI)) ACGGGATCCCCGGAAGAAAAAGGAGAGAACG 
     1106 (liaR-rev (HindIII)) ATCGAAGCTTCTAATTCACGAGATGATTTCG 
  
   Purification of LiaSRc  
     0958 (liaS-fwd (BamHI)) ACGGGATCCATGAGAAAAAAAATGCTTGCCAGCC 
     0960 (FLAG3-fwd) GATTATAAGGATCATGATGGTG 
     0962 (liaS FLAG3-rev) CACCATCATGATCCTTATAATCATCAATAATACTCGAATCACGTTCG 
     1161 (FLAG3-rev (HindIII)) ACGAAGCTTTCACTTGTCGTCATCGTCTTTGTAG 
     1164 (liaR FLAG3-rev) CACCATCATGATCCTTATAATCATTCACGAGATGATTTCGGTGTGC 
     1530 (liaR-fwd (NdeI)) ACGCATATGATTCGAGTATTATTGATTGATG 
  
   Quantification of LiaFSRd  
     1950 (liaF-upfwd (BamHI)) ACGGGATCCGGCATTTCAGGAGACTCAGG 
     1951 (liaF-uprev-FLAG3) CTTGTCGTCATCGTCTTTGTAGTCGATATCATGATCCTTATAATCACCATCATGATCCT

TATAATCCATTCCTGGTGTCCGCCTCCTTTC 
     1952 (liaF-fwd-Flag3) CGACTACAAAGACGATGACGACAAGATGACAAAAAAACAGCTTCTCGG 
     1953 (liaF-rev (NcoI)) ACGCCATGGTACATAAATATCAACGTTACC 
     1958 (liaS-fwd (BamHI)) ACGGGATCCGTCGGTTATCTCAGAAGAACGC 
     1959 (liaS-rev-FLAG3) CTTGTCGTCATCGTCTTTGTAGTCGATATCATGATCCTTATAATCACCATCATGATCCT

TATAATCCGGAAAAATCGGGACCTTCAC 
     1960 (liaS-dofwd-FLAG3) CGACTACAAAGACGATGACGACAAGGAAGAAAAAGGAGAGAACGAACG 
     1961 (liaS-dorev (NcoI)) ACGCCATGGTCACTGACATCCAGCTTTG 
     2041 (liaR-uprev-FLAG3) CTTGTCGTCATCGTCTTTGTAGTCGATATCATGATCCTTATAATCACCATCATGATCCT

TATAATCCACGTTCGTTCTCTCCTTTTTCTTCC 
     2042 (liaR-fwd-FLAG3) CGACTACAAAGACGATGACGACAAGATTCGAGTATTATTGATTGATGATC 
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Table S1: Continued. 
 

Oligonucleotides for CCR and LFH-PCRe  
     0029 (liaS-upfwd) GCTTTATCAGCAAGCGGTGACG 
     0030 (liaS-uprev (kan)) CCTATCACCTCAAATGGTTCGCTGTCCCGTTGTCATGCGGATGGC 
     0047 (liaS-dofwd (kan)) CGAGCGCCTACGAGGAATTTGTATCGGGCACTCAAATCGAAGTGAAGG 
     0048 (liaS-dorev) AACCGGGCTGGGAAACGAGGTC 
     0147 (kan-checkrev) CTGCCTCCTCATCCTCTTCATCC 
     0139 (mls-fwd) CAGCGAACCATTTGAGGTGATAGGGATCCTTTAACTCTGGCAACCCTC 
     0140 (mls-rev) CGATACAAATTCCTCGTAGGCGCTCGGGCCGACTGCGCAAAAGACATAATCG 
     0148 (mls-checkrev) GTTTTGGTCGTAGAGCACACGG 
     0322 (ackA-upfwd) GGAACTGACCATTCTTGATCCAGC 
     0323 (ackA-uprev (kan)) CCTATCACCTCAAATGGTTCGCTGCCATTTAAACATTGTCATGTCGG 
     0324 (ackA-dofwd (kan)) CGAGCGCCTACGAGGAATTTGTATCGCGACTGATGAAGAAGTCATGATTGCG 
     0325 (ackA-dorev) CGACGGAAGTATCAAGACCTCC 
     0143 (tc-fwd) CAGCGAACCATTTGAGGTGATAGGTCTTGCAATGGTGCAGGTTGTTCTC 
     0145 (tc-rev) CGATACAAATTCCTCGTAGGCGCTCGGGAACTCTCTCCCAAAGTTGATCCC 
     0150 (tc-checkrev) CATCGGTCATAAAATCCGTAATGC 
     0326 (pta-upfwd) GCTCTACCACTGATACGTAGG 
     0327 (pta-uprev (tet)) CCTATCACCTCAAATGGTTCGCTGGCGTTCTACGAATGCTTGTACAAGG 
     0328 (pta-dofwd (tet)) CGAGCGCCTACGAGGAATTTGTATCGCGCTGAAGATGTTTACAATCTCGC 
     0329 (pta-dorev) CGCTTCCTTTACACCTTGATTGC 
     0508 (LiaR-D54A)f CATTTTAATGGCCCTTGTCATGGAGGG 
  
Oligonucleotides for LiaS mutagenesisf  
     2374 (LiaS Q164A-fwd) CATGATGCGGTCAGCGCGCAGCTCTTTGCC 
     2375 (LiaS Q164A-rev) GGCAAAGAGCTGCGCGCTGACCGCATCATG 
  
Oligonucleotides for Northern  
     0031 (liaG-up fwd) TTGTCGTCGGAATCGCATTGGC 
     0108 (liaS-dofwdEP) GAAGGTCCCGATTTTTCCGG 
     0496 (liaR-T7rev) CTAATACGACTCACTATAGGGAGAGTCTTTCCTTCTGCGATCAGGC 
     0497 (liaIH-T7rev) CTAATACGACTCACTATAGGGAGAGCGTCAAATGCGAGCTGTGCC 
  
Oligonucleotides for real-time RT-PCR  
     0093 (liaR-RT fwd) ATTGAAGTCATCGGCGAAGC 
     0094 (liaR-RT rev) AAAGCTCCCGGCAAATTTGC 
     0156 (rpsJ-RTfwd) GAAACGGCAAAACGTTCTGG 
     0157 (rpsJ-Rtrev) GTGTTGGGTTCACAATGTCG 
     0158 (rpsE-RTfwd) GCGTCGTATTGACCCAAGC 
     0159 (rpsE-Rtrev) TACCAGTACCGAATCCTACG 
     0628 (liaS-RT-fwd) ACAACGGGAATCAGCCTGC 
     0629 (liaS-RT-rev) GGTCACGCTGATCAGAAGC 
     0630 (liaF-RT-fwd) TGCAAATTATCGGAATAGGCG 
     0631 (liaF-RT-rev) TTAAAGGTGATGCTGAAGAGG 

 

a	Restriction	sites	for	cloning	are	highlighted	in	bold	italics.	
b	Sequences	underlined	are	inverse	and	complementary	to	the	3’	end	of	Pveg	(=	#0856).	
c	The	underlined	sequences	are	inverse	and	complementary	to	the	FLAG3	tag	(=	#0960).	
d	 The	 underlined	 sequences	 of	 #1951,	 #1959,	 and	 #2041	 represent	 the	 entire	 FLAG3	 sequence	 (reverse	 and	
complementary).	 Underlined	 sequences	 of	 #1952,	 #1960,	 and	 #2042	 are	 complementary	 to	 the	 3’	 end	 of	 the	
FLAG3	tag.		
e	Oligonucleotide	names	refer	to	the	fragments	flanking	the	gene	to	be	deleted.	Sequences	underlined	are	inverse	
and	 complementary	 to	 the	 5’	 (up‐rev)	 and	 3’	 (do‐fwd)	 ends	 of	 the	 kanamycin,	 mls,	 or	 tetracycline	 cassette,	
respectively.	
f	 The	 bold	 underlined	 nucleotides	 indicate	 the	 base	 substitutions	 leading	 to	 the	 amino	 acid	 exchanges	D54A	 or	
Q164A,	respectively.	
g	 Sequences	 underlined	 represent	 the	 T7	 promoter	 necessary	 for	 the	 construction	 of	 RNA	 probes	 by	 in	 vitro	
transcription.	
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Table	S2:	PliaI	activities	in	different	lia	mutants.	
 

Strain 
β-galactosidase activity [Miller units]a 

- Bac + Bac 

WT 0.3 ± 0.1 41 ± 18 

liaS::kan 50 ± 11 57 ± 5 

ΔliaS 0.6 ± 0.1 0.7 ± 0.1 

liaF::kan 718 ± 43 884 ± 41 

ΔliaF 65 ± 3 65 ± 7 

liaS::kan, 
LiaR D54A 

0.3 ± 0.1 0.3 ± 0.1 

liaR::kan 0.3 ± 0.1 0.3 ± 0.1 
 

a	Miller	units	are	based	on	the	data	shown	in	Fig.	1.	
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Figure	S1:	Sequence,	secondary	structure,	and	free	energy	of	the	stem	loop	structures	located	at	
the	3’	end	of	liaS.	
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Figure	 S2:	Verification	 of	 the	PliaI	 activity	 after	 introducing	 the	 FLAG3‐tag	 sequence	 into	 the	
native	lia	locus.	Shown	are	the	PliaI	activities	of	strains	TMB488	(wild	type),	TMB1156	(FLAG3‐liaF),	
TMB1146	(LiaS‐FLAG3),	and	TMB1171	(FLAG3‐LiaR).	Experimental	conditions	and	labeling	of	the	bars	
are	as	described	in	Fig.	1.	
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6 Supplemental	Material	–	CHAPTER	4	
 

Detailed	description	of	 existing	protein	 expression	 systems	of	Gram‐negative	

and	Gram‐positive	bacteria	

	

6.1 Protein	expression	systems	for	E.	coli	
 
The	lac	promoter,	which	is	part	of	the	lactose	utilization	operon,	was	used	for	many	years	as	

the	paradigmatic	promoter	to	drive	recombinant	gene	expression.	It	 is	chemically‐inducible	

by	the	lactose	analogon	isopropyl‐β‐D‐thiogalactopyranoside	(IPTG)	and	negatively	regulated	

by	 the	 lac	 repressor	 protein	 LacI.	 In	 the	 absence	 of	 IPTG,	 the	 repressor	 LacI	 binds	 to	 the	

operator	 region	 of	 the	 lac	 operon	 and	 thus	 blocks	 the	 transcription	 of	 target	 genes.	 The	

presence	of	IPTG	causes	derepression	by	direct	binding	of	IPTG	to	the	repressor,	which	leads	

to	the	dissociation	of	LacI	from	the	operator	due	to	conformational	changes	and	subsequent	

transcription	(Lehninger	et	al.,	1994).	Additionally,	positive	regulation	of	the	lac	promoter	is	

mediated	 by	 a	 catabolite	 activator	 protein	 (CAP),	 whose	 activity	 is	 dependent	 on	 the	

intracellular	cAMP	concentration.	cAMP	activates	CAP,	which	then	binds	to	the	lac	promoter	

supporting	its	activity	(Lehninger	et	al.,	1994).	

Synthetic	promoters	like	Ptac	and	Ptrc	were	also	developed,	which	consist	of	the	‐35	region	of	

Ptrp	(induced	by	tryptophane	starvation	or	addition	of	β‐indoleacrylic	acid)	and	the	‐10	region	

of	 the	 lacUV5	 promoter	 (mutated	 derivative	 of	 Plac,	 which	 is	 less	 sensitive	 to	 cellular	

concentrations	of	cAMP)	(de	Boer	et	al.,	1983).	Thus,	both	Ptac	and	Ptrc	possess	consensus	‐35	

and	‐10	sequences	that	lead	to	approximately	11‐times	stronger	expression	levels	compared	

to	the	parental	promoter	PlacUV5	(Brosius	et	al.,	1985,	de	Boer	et	al.,	1983).	A	disadvantage	of	

lac‐derived	 promoters	 is	 their	 leakiness.	 Despite	 the	 use	 of	 host	 strains	 that	 carry	 the	 lac	

repressor	LacI,	repression	can	be	improved	but	leakiness	is	not	completely	abolished	under	

non‐inducing	conditions	(Baneyx,	1999,	Jonasson	et	al.,	2002).	This	makes	them	not	suitable	

for	the	production	of	proteins,	which	are	toxic	or	detrimental	to	the	growth	of	the	host	cell.	

Large‐scale	 protein	 production	 with	 IPTG‐inducible	 promoters	 is	 widely	 used	 for	 basic	

research,	 but	 it	 is	 not	 appropriate	 for	 large‐scale	 induction	 of	 human	 therapeutic	 proteins	

due	 to	 the	 toxicity	 and	 high	 costs	 of	 IPTG	 (Hannig	&	Makrides,	 1998,	Makrides,	 1996).	 An	

alternative	 could	 be	 the	 induction	 of	 lac‐derived	 promoters	 by	 lactose	 or	 the	 choice	 of	

temperature‐sensitive	promoters	like	lac(TS),	which	is	based	on	a	mutant	lacI	gene,	encoding	

a	thermosensitive	lac	repressor	that	allows	induction	by	a	temperature	upshift	(Bukrinsky	et	
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al.,	 1988,	 Hasan	 &	 Szybalski,	 1995).	 Other	 heat‐induced	 promoters	 used	 in	 E.	 coli	 are	

bacteriophage	lambda‐derived	PL	(λ)	(Bernard	et	al.,	1979)	and	PR	(λ)	(Elvin	et	al.,	1990).	But	

thermal	 induction	could	be	a	disadvantage	due	to	the	simultaneous	induction	of	heat‐shock	

proteins	including	certain	proteases	that	could	lead	to	enhanced	protein	degradation	(Hannig	

&	Makrides,	1998,	Jonasson	et	al.,	2002).	

The	pET	system	is	the	most	popular	protein	expression	platform	used	in	E.	coli	(commercially	

available	 from	 Novagen,	 Madison).	 It	 is	 based	 on	 a	 plasmid‐located	 bacteriophage	 T7	

promoter	fused	to	the	lac	operator	sequence.	This	T7lac	promoter	controls	the	expression	of	

target	 genes	 and	 is	 repressed	 under	 non‐inducing	 conditions	 by	 LacI.	 The	 T7	 promoter	 is	

specifically	recognized	by	the	T7	RNA	polymerase.	The	host	cell	contains	a	prophage	called	

DE3,	 which	 encodes	 the	 gene	 for	 the	 T7	 RNA	 polymerase	 under	 the	 control	 of	 the	 IPTG‐

inducible	lacUV5	promoter‐operator	sequence.	In	the	presence	of	IPTG,	repression	by	LacI	is	

abolished	and	the	T7	RNA	polymerase	is	expressed	by	the	induction	of	PlacUV5.	Simultaneously,	

the	 T7	 promoter	 is	 derepressed,	 which	 allows	 the	 transcription	 of	 target	 genes	 by	 the	

synthesized	T7	RNA	polymerase	(Dubendorff	&	Studier,	1991b,	Dubendorff	&	Studier,	1991a,	

Studier	 &	 Moffatt,	 1986,	 Studier	 et	 al.,	 1990).	 Thus,	 a	 massive	 overproduction	 of	 target	

protein	up	 to	50%	of	 total	cellular	proteins	 is	achievable	 (Baneyx,	1999).	But	nevertheless,	

this	 system	 is	 also	 not	 fully	 repressed	 in	 the	 absence	 of	 IPTG	 because	 of	 increasing	 cAMP	

concentrations	during	the	stationary	growth	phase,	which	lead	to	the	activation	of	CAP.	The	

presence	 of	 T7	 lysozyme	 can	decrease	basal	 expression	 levels	due	 to	 inhibition	of	 T7	RNA	

polymerase	 by	 direct	 binding.	 Therefore,	 host	 cells	 containing	 a	 plasmid‐encoded	 T7	

lysozyme	 (pLys)	 are	 often	 used	 as	 expression	 hosts	 (Studier,	 1991).	 This	 tight	 repression	

under	non‐inducing	conditions	increases	the	tolerance	to	toxic	target	proteins.	

All	 so	 far	 described	 Plac‐derived	 promoters	 were	 constructed	 with	 the	 purpose	 to	 achieve	

high	levels	of	protein	production.	But	a	massive	overproduction	is	not	always	beneficial	and	

often	 results	 in	 the	 formation	 of	 inclusion	 bodies,	which	 contain	 aggregated	 target	 protein	

(Wilkinson	&	Harrison,	1991).	The	araBAD	system	is	another	widely	used	expression	system	

in	E.	coli	 that	was	developed	 to	escape	 this	disadvantage	(Guzman	et	al.,	1995).	Expression	

vectors	 named	 pBAD	were	 constructed,	which	 contain	 the	 PBAD	 promoter	 of	 the	 arabinose	

operon	and	the	regulatory	gene	araC.	AraC	regulates	the	expression	from	PBAD	positively	and	

negatively	and	negatively	autoregulates	its	own	transcription	(Carra	&	Schleif,	1993,	Lobell	&	

Schleif,	1990).	Upon	induction,	the	inducer	molecule	L‐arabinose	binds	to	AraC	leading	to	the	

expression	 of	 PBAD‐controlled	 target	 genes	 (Guzman	 et	 al.,	 1995).	 The	 expression	 level	 is	

lower	 compared	 to	 Plac‐derived	 promoters.	 A	 comparison	 of	 the	 promoters	 Ptac	 and	 PBAD	

resulted	 in	 a	 2.5	 to	 4.5	 stronger	 activity	 of	 Ptac	 (Guzman	 et	 al.,	 1995).	 Therefore,	 this	

moderately	high	expression	level	of	the	araBAD	system	is	suitable	to	overcome	problems	due	
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to	hyperexpression.	Under	non‐inducing	conditions,	PBAD	 is	 rapidly	 repressed	showing	only	

very	low	levels	of	basal	expression.	Since	the	PBAD	promoter	is	subject	to	catabolite	repression	

(Miyada	et	al.,	1984),	glucose‐containing	media	further	prevent	background	expression.	Thus,	

this	system	is	also	used	to	produce	toxic	target	proteins	(Guzman	et	al.,	1995).	

	

6.2 Protein	expression	in	Gram‐positive	bacteria	
 

6.2.1 Protein	expression	systems	for	B.	subtilis	
 
Many	 different	 protein	 expression	 systems	 have	 been	 developed	 for	 B.	 subtilis.	 The	 first	

system	was	described	by	Yansura	and	Henner	(Yansura	&	Henner,	1984).	They	 transferred	

the	 lac	 repressor‐operator	 system	 from	 E.	 coli	 into	 B.	 subtilis	 by	 the	 creation	 of	 hybrid	

promoter	elements,	in	which	either	the	promoter	of	the	penicillinase	gene	of	B.	licheniformis	

or	 the	 SPO‐1	 promoter	 of	 a	 B.	 subtilis	 phage	 were	 fused	 to	 the	 lac	 operator	 and	 the	 lac	

repressor	 gene	 from	 E.	 coli	 (referred	 to	 as	 Ppac‐I	 or	 Pspac‐I,	 respectively),	 allowing	 IPTG‐

mediated	 induction.	Protein	production	was	tested	by	B.	 licheniformis	penicillinase	 fused	to	

Ppac‐I	and	human	leucocyte	interferon	A	fused	to	Pspac‐I.	Upon	IPTG	induction,	both	expression	

systems	 showed	 significantly	 increased	 expression	 levels	 up	 to	 100‐fold	 of	 both	 target	

proteins	(Yansura	&	Henner,	1984).	

Different	xylose‐inducible	protein	expression	systems	have	also	been	developed	for	the	use	

in	 B.	 subtilis	 (Bhavsar	 et	 al.,	 2001,	 Kim	 et	 al.,	 1996).	 These	 systems	 are	 based	 on	 xylose	

regulatory	 sequences,	 which	 originally	 orchestrate	 xylose	 utilization	 (Dahl	 et	 al.,	 1994,	

Gärtner	 et	al.,	 1992,	 Kreuzer	 et	al.,	 1989).	 Kim	 and	 co‐workers	 established	 the	 expression	

vector	 pX,	 which	 consists	 of	 xylose‐regulatory	 elements	 of	 B.	 megaterium	 ‐	 the	 xylose	

repressor	gene	xylR	and	the	xylose‐inducible	promoter	PxylA	‐	as	well	as	5’	and	3’	parts	of	the	

gene	amyE	to	allow	the	integration	of	the	vector	into	the	B.	subtilis	chromosome.	For	reason	

of	tightness,	PxylA	 is	under	the	control	of	XylR	to	reduce	basal	expression	levels.	They	tested	

the	 expression	 of	 three	 different	 heat‐shock	 proteins	 (GrpE,	 DnaK,	 DnaJ)	 as	 well	 as	 the	

thermostable	β‐galactosidase	BgaB	from	B.	stearothermophilus.	Depending	on	the	heat‐shock	

protein	analyzed,	3‐	 to	16‐fold	 induction	was	observed	upon	the	addition	of	xylose.	For	the	

bgaB	gene,	a	200‐fold	expression	level	was	achieved.	Moreover,	the	xylA	promoter	seems	to	

be	very	 tight	under	non‐inducing	conditions	due	 to	efficient	repression	by	XylR	(Kim	et	al.,	

1996).	 Another	 expression	 vector	 consisting	 of	 a	 xylose‐inducible	 promoter	 is	 pSWEET	

(Bhavsar	 et	 al.,	 2001).	 In	 contrast	 to	 pX,	 pSWEET	 contains	 the	 xylR	 gene	 and	 the	 xylA	

promoter	from	B.	subtilis	strain	W23,	and	possesses	additionally	the	5’	area	of	the	gene	xylA	

containing	 an	 optimized	 cis‐acting	 CRE	 (catabolite‐responsive	 element)	 site.	 Therefore,	
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transcription	from	pSWEET	is	subject	to	catabolite	repression	(Jacob	et	al.,	1991,	Kraus	et	al.,	

1994).	 Expression	 levels	 were	 also	 determined	 by	 using	 bgaB	 as	 reporter.	 In	 minimal	

medium,	 the	 addition	of	 2%	xylose	 resulted	 in	 a	 246‐fold	 induction	of	bgaB	 expression.	 In	

contrast,	growth	in	minimal	medium	supplemented	with	0.2%	glucose	only	yielded	a	52‐fold	

induction	 of	 bgaB	 expression	 levels	 due	 to	 glucose‐mediated	 catabolite	 repression.	

Furthermore,	 expression	 levels	are	modulated	 in	 the	presence	of	 various	 concentrations	of	

inducer	 molecule	 (0.0002‐0.63%	 of	 xylose)	 showing	 varying	 amounts	 of	 BgaB	 leading	 to	

activities	 from	30	 to	 11000	Miller	 units	 (Bhavsar	 et	al.,	 2001).	 The	 authors	 compared	 this	

expression	system	with	the	IPTG‐inducible	spac	system	(Yansura	&	Henner,	1984)	regarding	

efficiency	 and	 modulation	 of	 expression.	 In	 each	 case,	 the	 xyl	 expression	 system	

outperformed	the	spac	system	(Bhavsar	et	al.,	2001).	

The	 SURE	 (subtilin‐regulated	 gene	expression)	 system	 (Bongers	 et	al.,	 2005)	 is	 one	 of	 the	

most	efficient	expression	systems	in	B.	subtilis	regarding	the	achievable	yield	of	synthesized	

target	protein.	Recombinant	protein	production	in	this	system	is	based	on	the	subtilin	gene	

cluster	 (spa)	 of	 the	 subtilin	 producer	 strain	B.	 subtilis	 ATCC	 6633	 (Klein	 et	al.,	 1992).	 The	

synthesis	of	the	lantibiotic	subtilin	as	well	as	its	immunity	is	controlled	by	the	2CS	SpaRK	via	

a	quorum‐sensing	mechanism.	At	the	onset	of	stationary	phase,	subtilin	acts	as	autoinducer	

and	is	sensed	by	the	HK	SpaK.	SpaK	undergoes	autophosphorylation	followed	by	the	transfer	

of	the	phosphoryl	group	to	the	RR	SpaR.	Phosphorylated	SpaR	binds	to	specific	spa	boxes	in	

order	 to	activate	 the	promoters	PspaS,	PspaB,	 and	PspaI,	 leading	 to	 the	 transcription	of	 the	2CS	

genes,	 the	 subtilin‐biosynthesis	 genes,	 as	 well	 as	 the	 immunity	 genes	 (Chakicherla	 et	 al.,	

2009,	Kleerebezem	et	al.,	2004,	Stein	et	al.,	2002,	Stein	et	al.,	2003).	For	the	SURE	system,	a	B.	

subtilis	W168	expression	host	was	developed,	in	which	the	spaRK	genes	were	integrated	into	

the	amyE	locus	by	an	integrating	plasmid.	Additionally,	expression	vectors	were	constructed	

containing	 the	subtilin‐inducible	 spaS	promoter	 region	 (Bongers	et	al.,	2005).	To	prove	 the	

efficiency	of	this	system,	two	different	reporter	genes,	gusA	(encoding	E.	coli	β‐glucuronidase)	

and	gfp,	were	translationally	fused	to	PspaS.	Expression	levels	of	the	respective	reporter	genes	

were	 monitored	 by	 β‐glucuronidase	 activity	 or	 fluorescence,	 respectively.	 Upon	 subtilin	

induction,	100‐fold	increases	in	GusA	activity	and	fluorescence	units	were	observed	(Bongers	

et	 al.,	 2005).	 Unfortunately,	 the	 promoter	 PspaS	 is	 not	 completely	 tight	 in	 the	 absence	 of	

inducer	 (Vavrova	 et	 al.,	 2010).	 Furthermore,	 the	 most	 obvious	 disadvantage	 of	 the	 SURE	

system	 is	 the	 inducer	 molecule	 itself:	 subtilin	 is	 not	 commercially	 available.	 Culture	

supernatant	of	the	subtilin	producer	strain	ATCC	6633	has	to	be	used	for	induction	(Bongers	

et	al.,	2005).	That	might	 implicate	variations	 in	subtilin	quality	and	concentration,	although	

the	 potency	 of	 subtilin‐containing	 supernatant	 can	 be	 measured.	 However,	 this	 fact	 is	 a	
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considerable	 disadvantage	 in	 terms	 of	 the	 use	 in	 industrial	 protein	 production,	 where	

standardized	conditions	are	absolutely	necessary.	

In	 a	 recent	 study,	 the	 commonly	 used	 xylose‐	 and	 IPTG‐inducible	 systems	were	 compared	

with	the	SURE	system	(Vavrova	et	al.,	2010).	For	this	purpose,	the	protein	complex	SpoIISA‐

SpoIISB	as	well	as	the	 lacZ	gene	were	expressed	under	the	control	of	Pxyl,	Phyper‐spank,	or	PspaS,	

respectively.	 The	 promoter	 Phyper‐spank	 is	 a	 mutated	 derivative	 of	 the	 IPTG‐inducible	 Pspac	

containing	 a	 single	 base	 exchange	 at	 position	 ‐1	 (Quisel	 et	 al.,	 2001).	 Under	 inducing	

conditions,	 expression	 levels	 obtained	 from	 the	 xyl	 system	were	 slightly	 higher	 than	 those	

from	 the	 hyper‐spank	 system,	 whereas	 the	 basal	 expression	 levels	 determined	 for	 the	 xyl	

system	 were	 significantly	 lower	 (Vavrova	 et	 al.,	 2010).	 These	 results	 confirmed	 prior	

observations	 made	 by	 Bhavsar	 and	 co‐workers	 (Bhavsar	 et	 al.,	 2001).	 Protein	 amounts	

received	from	the	induced	SURE	system	were	clearly	higher	than	those	obtained	from	Pxyl	or	

Phyper‐spank,	 although	 expression	 levels	 under	 non‐inducing	 conditions	were	 remarkably	 high	

(Vavrova	et	al.,	2010).	These	differences	are	probably	caused	by	the	different	copy	numbers	

present	in	the	host	cell:	only	one	copy	of	the	target	gene	under	control	of	Pxyl	or	Phyper‐spank	is	

present	in	B.	subtilis	due	to	amyE	integration.	In	contrast,	the	expression	plasmid	in	the	SURE	

system	 is	 replicative	 and	 therefore	 present	 in	 multiple	 copy	 numbers.	 Interestingly,	 a	

comparison	of	the	SURE	system	with	the	E.	coli	arabinose‐inducible	PBAD	system	(Guzman	et	

al.,	1995)	showed	that	similar	protein	amounts	were	achieved	upon	induction,	although	the	

promoter	PspaS	 is	much	more	 leaky	 than	PBAD	 (Vavrova	et	al.,	2010).	Taken	 together,	among	

the	 three	expression	systems	 tested,	 the	SURE	system	 is	 the	most	productive	system	 for	B.	

subtilis,	but	the	expression	of	target	proteins	is	not	tightly	enough	regulated	(Vavrova	et	al.,	

2010),	making	this	system	problematic	for	toxic	protein	production.	

	

Since	the	IPTG‐	and	xylose‐inducible	systems	are	the	most	widely	used	expression	platforms	

in	B.	 subtilis,	 a	 lot	 of	 other	 different	 expression	 systems	 have	 developed.	 In	 the	 following,	

some	examples	are	cited	briefly.	

A	 phosphate‐inducible	 expression	 system	 was	 established,	 which	 is	 based	 on	 the	 alkaline	

phosphatase	 I	 (APase	 I)	 promoter	 of	 B.	 licheniformis	 (Lee	 et	 al.,	 1991).	 This	 promoter	 is	

strongly	 induced	 by	 phosphate	 starvation.	 Jan	 and	 co‐workers	 developed	 a	 protein	

expression	system,	which	is	induced	at	the	end	of	exponential	growth	phase	(Jan	et	al.,	2001).	

Here,	 the	aprE	 promoter	was	optimized	and	used	 to	overexpress	 target	proteins.	The	aprE	

gene	encodes	the	extracellular	protease	subtilisin,	whose	expression	 is	naturally	 induced	at	

the	onset	of	stationary	phase.	Recombinant	protein	production	by	the	aprE	promoter	leads	to	

high	 yields	 of	 about	 10%	 of	 the	 total	 protein	 (Jan	 et	 al.,	 2001).	 The	 starch‐inducible	
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expression	system	is	another	possibility	to	produce	recombinant	proteins	(Airaksinen	et	al.,	

2003,	Ho	&	Lim,	2003).	This	system	is	based	on	the	B.	amyloliquefaciens	α‐amylase	promoter,	

which	 is	 constitutively	 expressed,	but	 shows	 significant	higher	protein	expression	 levels	 in	

the	presence	of	starch	(Ho	&	Lim,	2003).	Furthermore,	a	glycine‐inducible	protein	expression	

system	was	developed	(Phan	&	Schumann,	2007).	The	gcv	operon	(glycine	degrading	operon)	

is	 transcriptionally	 regulated	 by	 a	 tandem	 riboswitch.	 In	 the	 absence	 of	 glycine,	 a	 short	

transcript	 of	 about	 200	 bases	 is	 synthesized	 including	 the	 5’	 untranslated	 region	 due	 to	

transcription	 attenuation,	 whereas	 the	 full‐length	 mRNA	 is	 observed	 at	 glycine	

concentrations	 of	 10	 mM	 due	 to	 direct	 binding	 of	 glycin	 to	 the	 riboswitch	 that	 initiates	

transcription	(Mandal	et	al.,	2004).	To	create	an	expression‐secretion	system,	the	riboswitch	

and	 the	 gcv	 promoter	 were	 used	 to	 build	 expression	 vectors	 capable	 of	 target	 protein	

expression	 leading	 to	protein	 yields	 comparable	 to	 the	 IPTG‐	 and	 xylose‐inducible	 systems	

(Phan	 &	 Schumann,	 2007).	 Thuy	 Le	 and	 Schumann	 generated	 a	 cold‐inducible	 expression	

system	for	the	use	in	B.	subtilis	(Thuy	Le	&	Schumann,	2007).	This	system	is	based	on	the	des	

promoter,	which	is	normally	controlled	by	the	DesKR	2CS	(Aguilar	et	al.,	2001).	The	HK	DesK	

senses	a	temperature	downshift	and	autophosphorylates	itself.	Phosphorylated	DesK	serves	

as	phosphoryl	group‐donor	for	the	RR	DesR	leading	to	the	phosphorylation	and	subsequent	

activation	 of	 DesR.	 DesR~P	 binds	 to	 its	 specific	 DNA‐binding	 site	 and	 activates	 the	

transcription	 of	 the	 des	 gene.	 This	 gene	 codes	 for	 the	 Δ5‐desaturase,	 which	 controls	

membrane	 lipid	 fluidity	 (Cybulski	 et	al.,	 2004).	 The	 use	 of	 the	des	promoter	 as	 expression	

system	 for	 recombinant	 proteins	 can	 yield	 high	 protein	 amounts	 up	 to	 10%	 of	 the	 total	

cellular	proteins.	The	protein	expression	at	low	temperatures	(25°C)	is	also	beneficial	to	the	

correct	 folding	 of	 the	 target	 protein	 (Schein	&	Noteborn,	 1988).	 Proteins,	which	 aggregate	

during	 its	 production	 at	 higher	 temperatures	 (e.g.	 37°C)	might	be	overproduced	 in	 soluble	

form	by	using	the	cold‐inducible	expression	system	(Thuy	Le	&	Schumann,	2007).	

6.2.2 Protein	expression	systems	for	other	Firmicutes	bacteria	
 
Expression	 systems	 developed	 for	 other	 Gram‐positive	 bacteria	 are	 also	 described.	 One	

popular	example	is	the	NICE	(nisin‐controlled	gene	expression)	system	originally	developed	

for	Lactococcus	 lactis	(de	Ruyter	et	al.,	1996b,	Kuipers	et	al.,	1995).	This	system	is	based	on	

the	lactococcal	nisA	promoter,	which	is	activated	by	the	peptide	antibiotic	nisin	through	the	

regulation	 of	 the	 2CS	 NisRK.	 The	 HK	 NisK	 senses	 extracellular	 nisin	 and	 undergoes	

autophosphorylation.	Subsequent	transfer	of	the	phosphoryl	group	to	the	RR	NisR	leads	to	its	

activation.	NisR~P	activates	two	of	three	promoters	within	the	nis	operon,	PnisA	and	PnisF,	so	

that	 transcription	 of	 genes	 for	 nisin	 biosynthesis	 and	 immunity	 can	 occur.	 The	 promoter	

controlling	nisRK	 is	constitutive	and	therefore	not	affected	by	nisin	(Kleerebezem,	2004,	de	

Ruyter	et	al.,	1996a,	Kuipers	et	al.,	1995).	Expression	vectors	for	driving	recombinant	protein	
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expression	 were	 constructed,	 in	 which	 desired	 target	 genes	 can	 be	 transcriptionally	 or	

translationally	 fused	 to	 the	 nisA	 promoter.	 Different	 expression	 hosts	were	 generated;	 the	

most	commonly	used	one	is	a	nisRK	null	mutant,	in	which	the	regulatory	genes	are	integrated	

into	the	pepN	(aminopeptidase)	gene	by	an	integrative	plasmid	(de	Ruyter	et	al.,	1996b).	By	

using	gusA	of	E.	coli	as	reporter	gene,	the	β‐glucuronidase	activity	increased	with	increasing	

nisin	 concentrations,	 reaching	 a	 maximum	 induction	 factor	 of	 1000‐fold.	 Moreover,	 tight	

regulation	 of	 the	 nisA	 promoter	was	 observed	 in	 the	 absence	 of	 the	 inducer	molecule	 (de	

Ruyter	et	al.,	1996a,	de	Ruyter	et	al.,	1996b,	Kleerebezem	et	al.,	1997).	The	NICE	system	has	

successfully	 been	 converted	 for	 the	 use	 in	 many	 other	 Gram‐positive	 bacteria,	 e.g.	

Leuconostoc	 lactis,	 Lactobacillus	 helveticus	 (Kleerebezem	 et	 al.,	 1997),	 Lactobacillus	 reuteri	

(Wu	et	al.,	2006),	Streptococcus	pyogenes,	S.	agalactiae,	S.	pneumoniae,	Enterococcus	faecalis,	

as	well	as	Bacillus	subtilis	 (Eichenbaum	et	al.,	1998).	The	establishment	of	 the	NICE	system	

within	 these	 bacteria	 requires	 a	 so‐called	 dual‐plasmid	 expression	 platform,	 in	which	 two	

replicative	 plasmids	 ‐	 one	 plasmid	 that	 carries	 the	 regulatory	 genes	 nisRK,	 the	 other	

possesses	 the	 target	 gene	 under	 control	 of	 PnisA	 ‐	 are	 necessary.	 In	 contrast	 to	 L.	 lactis,	

significant	 lower	 expression	 levels	 of	 10‐	 to	 60‐fold	 were	 observed	 in	 these	 species	

(Eichenbaum	et	al.,	1998).	A	broad	overview	of	different	host	strains,	expression	vectors,	and	

applications	of	the	NICE	system	is	provided	in	a	comprehensive	review	article	on	this	topic	

(Mierau	&	Kleerebezem,	2005).	

The	 concepts	 of	 the	 aforementioned	 SURE	 system	 and	 the	 NICE	 system	 are	 very	 similar.	

Therefore,	 the	 great	 industrial	 applications	 described	 for	 the	 NICE	 system	 (Mierau	 &	

Kleerebezem,	2005)	might	allow	similar	potential	for	the	B.	subtilis	SURE	system.	In	question	

of	the	most	favorable	expression	host	 in	 large‐scale	protein	production,	B.	subtilis	would	be	

the	 bacterium	 of	 choice	 because	 it	 is	 growing	 to	 higher	 cell	 densities	 than	 L.	 lactis	 and	 it	

possesses	more	efficient	secretory	systems,	allowing	the	secretion	of	several	grams	of	protein	

per	 liter	 (Mierau	 &	 Kleerebezem,	 2005,	 Schallmey	 et	 al.,	 2004,	 van	 Dijl	 &	 Hecker,	 2013).	

Moreover,	when	used	 in	B.	subtilis,	 the	SURE	system	depends	on	a	 single‐plasmid,	which	 is	

known	 to	 be	 more	 stable	 in	 contrast	 to	 the	 dual‐plasmid	 expression	 of	 the	 NICE	 system	

(Bongers	et	al.,	2005,	Eichenbaum	et	al.,	1998).	For	induction	of	PspaS,	less	amounts	of	inducer	

molecule	is	needed	with	regard	to	the	nisin‐inducible	nisA	promoter	and	maximal	expression	

levels	reached	from	the	SURE	system	are	higher	compared	to	those	achieved	from	the	NICE	

system	(Bongers	et	al.,	2005).	However,	despite	the	advantages	of	B.	subtilis	as	host	itself,	the	

above	mentioned	need	of	subtilin‐containing	culture	supernatant	to	induce	the	SURE	system	

(Bongers	et	al.,	2005)	as	well	as	the	observed	leakiness	of	the	spaS	promoter	(Vavrova	et	al.,	

2010)	are	prejudicial	to	specified	industrial	requirements.	
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