854 research outputs found
Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic
We perform extensive computational studies of two-dimensional static
bidisperse disk packings using two distinct packing-generation protocols. The
first involves thermally quenching equilibrated liquid configurations to zero
temperature over a range of thermal quench rates and initial packing
fractions followed by compression and decompression in small steps to reach
packing fractions at jamming onset. For the second, we seed the system
with initial configurations that promote micro- and macrophase-separated
packings followed by compression and decompression to . We find that
amorphous, isostatic packings exist over a finite range of packing fractions
from in the large-system limit,
with . In agreement with previous calculations,
we obtain for , where is the rate
above which is insensitive to rate. We further compare the structural
and mechanical properties of isostatic versus hyperstatic packings. The
structural characterizations include the contact number, bond orientational
order, and mixing ratios of the large and small particles. We find that the
isostatic packings are positionally and compositionally disordered, whereas
bond-orientational and compositional order increase with contact number for
hyperstatic packings. In addition, we calculate the static shear modulus and
normal mode frequencies of the static packings to understand the extent to
which the mechanical properties of amorphous, isostatic packings are different
from partially ordered packings. We find that the mechanical properties of the
packings change continuously as the contact number increases from isostatic to
hyperstatic.Comment: 11 pages, 15 figure
Fermi-Bose mixture in mixed dimensions
One of the challenging goals in the studies of many-body physics with
ultracold atoms is the creation of a topological superfluid
for identical fermions in two dimensions (2D). The expectations of reaching the
critical temperature through p-wave Feshbach resonance in spin-polarized
fermionic gases have soon faded away because on approaching the resonance, the
system becomes unstable due to inelastic-collision processes. Here, we consider
an alternative scenario in which a single-component degenerate gas of fermions
in 2D is paired via phonon-mediated interactions provided by a 3D BEC
background. Within the weak-coupling regime, we calculate the critical
temperature for the fermionic pair formation, using Bethe-Salpeter
formalism, and show that it is significantly boosted by higher-order
diagramatic terms, such as phonon dressing and vertex corrections. We describe
in detail an experimental scheme to implement our proposal, and show that the
long-sought p-wave superfluid is at reach with state-of-the-art experiments.Comment: 12 pages, 6 figures, 2 tables and supplementary materia
A high frequency optical trap for atoms using Hermite-Gaussian beams
We present an experimental method to create a single high frequency optical
trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This
trap results in confinement strength similar to that which may be obtained in
an optical lattice. We discuss an optical setup to produce the trapping beam
and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01
trap. Using this method, we have succeeded in producing individual highly
confined lower dimensional condensates.Comment: 9 pages, 5 figure
A quasi-pure Bose-Einstein condensate immersed in a Fermi sea
We report the observation of co-existing Bose-Einstein condensate and Fermi
gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li
condensate is quasi-pure and in thermal contact with a 6Li Fermi gas. The
lowest common temperature is 0.28 muK = 0.2(1) T_C = 0.2(1) T_F where T_C is
the BEC critical temperature and T_F the Fermi temperature. Behaving as an
ideal gas in the radial trap dimension, the condensate is one-dimensional.Comment: 4 pages, 5 figure
Formation of a Matter-Wave Bright Soliton
We report the production of matter-wave solitons in an ultracold lithium 7
gas. The effective interaction between atoms in a Bose-Einstein condensate is
tuned with a Feshbach resonance from repulsive to attractive before release in
a one-dimensional optical waveguide. Propagation of the soliton without
dispersion over a macroscopic distance of 1.1 mm is observed. A simple
theoretical model explains the stability region of the soliton. These
matter-wave solitons open fascinating possibilities for future applications in
coherent atom optics, atom interferometry and atom transport.Comment: 11 pages, 5 figure
Constraints and vibrations in static packings of ellipsoidal particles
We numerically investigate the mechanical properties of static packings of
ellipsoidal particles in 2D and 3D over a range of aspect ratio and compression
. While amorphous packings of spherical particles at jamming onset
() are isostatic and possess the minimum contact number required for them to be collectively jammed, amorphous packings of
ellipsoidal particles generally possess fewer contacts than expected for
collective jamming () from naive counting arguments, which
assume that all contacts give rise to linearly independent constraints on
interparticle separations. To understand this behavior, we decompose the
dynamical matrix for static packings of ellipsoidal particles into two
important components: the stiffness and stress matrices. We find that
the stiffness matrix possesses eigenmodes
with zero eigenvalues even at finite compression, where is the number of
particles. In addition, these modes are nearly eigenvectors of the
dynamical matrix with eigenvalues that scale as , and thus finite
compression stabilizes packings of ellipsoidal particles. At jamming onset, the
harmonic response of static packings of ellipsoidal particles vanishes, and the
total potential energy scales as for perturbations by amplitude
along these `quartic' modes, . These findings illustrate
the significant differences between static packings of spherical and
ellipsoidal particles.Comment: 18 pages, 21 figure
- …