UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Fermi-Bose mixture in mixed dimensions

Caracanhas, M.A.; Schreck, F.; Morais Smith, C.

DOI
10.1088/1367-2630/aa8e56

Publication date
2017

Document Version
Final published version

Published in
New Journal of Physics

License
CcCBY

Link to publication

Citation for published version (APA):

Caracanhas, M. A., Schreck, F., & Morais Smith, C. (2017). Fermi-Bose mixture in mixed
dimensions. New Journal of Physics, 19(11), [115011]. https://doi.org/10.1088/1367-
2630/aa8e56

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023


https://doi.org/10.1088/1367-2630/aa8e56
https://dare.uva.nl/personal/pure/en/publications/fermibose-mixture-in-mixed-dimensions(f88da3f9-043d-4064-9792-7eaec2b414a8).html
https://doi.org/10.1088/1367-2630/aa8e56
https://doi.org/10.1088/1367-2630/aa8e56

New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

PAPER » OPEN ACCESS Related content

- Bose polarons in ultracold atoms in one

Fermi—Bose mixture in mixed dimensions dimension; beyond the Frohiich paradiom

Fabian Grusdt, Gregory E Astrakharchik
and Eugene Demler
To cite this article: M A Caracanhas et al 2017 New J. Phys. 19 115011 ) )
- Manipulating novel quantum phenomena

using synthetic gauge fields
Shao-Liang Zhang and Qi Zhou

- Absorption and emission of a collective
View the article online for updates and enhancements. excitation by a fermionic guasiparticle in a
Eermi superfluid
Hadrien Kurkjian and Jacques Tempere

Recent citations

- Spin dependent inelastic collisions
between metastable state two-electron

atoms and ground state alkali-atoms
Florian Schéfer et al

This content was downloaded from IP address 145.18.108.73 on 04/05/2018 at 11:05


https://doi.org/10.1088/1367-2630/aa8e56
http://iopscience.iop.org/article/10.1088/1367-2630/aa8a2e
http://iopscience.iop.org/article/10.1088/1367-2630/aa8a2e
http://iopscience.iop.org/article/10.1088/1361-6455/aa8c5a
http://iopscience.iop.org/article/10.1088/1361-6455/aa8c5a
http://iopscience.iop.org/article/10.1088/1367-2630/aa969b
http://iopscience.iop.org/article/10.1088/1367-2630/aa969b
http://iopscience.iop.org/article/10.1088/1367-2630/aa969b
http://dx.doi.org/10.1088/1367-2630/aa8cec
http://dx.doi.org/10.1088/1367-2630/aa8cec
http://dx.doi.org/10.1088/1367-2630/aa8cec

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
1 June 2017

REVISED
14 September 2017

ACCEPTED FOR PUBLICATION
22 September 2017

PUBLISHED
23 November 2017

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New]. Phys. 19(2017) 115011 https://doi.org/10.1088/1367-2630/aa8e56

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER
Fermi-Bose mixture in mixed dimensions

M A Caracanhas'?, F Schreck’ and C Morais Smith'

! Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC

Utrecht, The Netherlands

% Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, C.P. 369, Sdo Carlos, SP, 13560-970, Brazil

* Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands

E-mail: caracanhas@ifsc.usp.br

Keywords: Fermi—Bose mixture, mediated interaction, p-wave superfluid

Abstract
One of the challenging goals in the studies of many-body physics with ultracold atoms is the creation
ofatopological p. + ip, superfluid for identical fermions in two dimensions (2D). The expectations

of reaching the critical temperature T, through p-wave Feshbach resonance in spin-polarized
fermionic gases have soon faded away because on approaching the resonance, the system becomes
unstable due to inelastic-collision processes. Here, we consider an alternative scenario in which a
single-component degenerate gas of fermions in 2D is paired via phonon-mediated interactions
provided by a 3D BEC background. Within the weak-coupling regime, we calculate the critical
temperature T, for the fermionic pair formation using the Bethe—Salpeter formalism, and show that it
is significantly boosted by higher-order diagrammatic terms, such as phonon dressing and vertex
corrections. We describe in detail an experimental scheme to implement our proposal, and show that
the long-sought p-wave superfluid is at reach with state-of-the-art experiments.

1. Introduction

The quest for the experimental realization of a chiral p, + ip, superconductor in two dimensions (2D) is
gathering increasing attention because this phase exhibits Majorana modes, which are relevant for constructing
fault-tolerant topological quantum computers [1, 2]. Although a chiral p-wave superfluid has been shown to
occur in the A-phase of >He at high pressure [3] and experiments have revealed that Strontium ruthenate
(Sr,RuQy) is a p-wave superconductor [4], the manipulation of the Majorana modes in these systems remains
difficult. Therefore, the prospect to create a p-wave superfluid using ultracold atoms is very appealing because
these systems allow for great control of the degrees of freedom.

Several possibilities to generate chiral superfluids have been proposed in the context of ultracold atoms in optical
lattices: by using orbital degrees of freedom [5, 6], spin—orbit coupling [7, 8] or dipolar interaction [9, 10]. However,
these methods either bring new problems to the experimental implementation, such as heating and ultracold chemical-
reactions, or require a sophisticated optical-lattice setup and further manipulations to populate the p-orbitals.

Here, we adopt a completely different, but feasible route to produce p-wave superfluids, which consists of
inducing the pairing among the 2D polarized fermionic atoms through a 3D bath of bosonic excitations. The
dimensional mismatch between the fermions and the excitations that mediate their interaction leads to a huge
increase of the superconducting gap, and consequently of the critical temperature for the observation of the
chiral superfluid. The main advantage of our proposal is that it avoids three-body losses and dynamical
instabilities (phase separation), which constitute major problems in a strongly-interacting Fermi—Bose mixture.

Mixed-dimension mixtures of two-species fermions with weak interaction were investigated previously
[11, 12], with the coupling between polarized fermions in 2D mediated by the particle-hole excitations ofa 3D
Fermi-sea background. In spite of the high stability of the Fermi—Fermi mixture, the Fermi—Bose mixture, with
phonon excitations, provides much higher magnitude for the p-wave coupling between fermions. Recently, a
2D-3D mixture of fermions and bosons was considered, and the Berezinskii—Kosterlitz—Thouless critical

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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temperature was determined accounting for effects of retardation [13]. However, many-body effects were
neglected. We argue here that the proximity between the Fermi and sound velocities requires the inclusion of
many-body corrections, namely the vertex ladder-diagrams and the RPA dressing of the phonon

propagator [14, 15].

We calculate these higher-order contributions, which are usually disregarded in the BCS treatment of
conventional superconductors, and show that they significantly contribute to increase the magnitude of the
anomalous p-wave gap in the Fermi—Bose mixture in mixed dimensions. In this calculation, however, we do not
consider the renormalization of the pole of the Green’s function, nor take into account retardation effects (the
influence of the frequency of the irreducible vertex). The fermions self-energy due to the scattering of the
background excitations can be neglected due to the small value of the Fermi—Bose coupling g5, and retardation
effects should not provide a relevant contribution to the vertex [ 16] because the singularity for pair formation
must come from scattering in the Fermi-surface (Cooper instability [ 14, 17]). The simultaneous analysis of both
these effects, i.e., retardation and high-order vertex correction, is a tremendous task. Since our calculations are
performed in the small momentum limit, if we would consider retardation, it should enhance the positive region
of the vertex because correlation between the fermions leads to an even higher prediction to the critical
temperature for p-wave superfluid formation (T2) [18]. Hence, the very high value of T that we found due to the
vertex correction is actually alower bound, given the approximations performed.

This paper is structured as follows: section 2 presents the system Hamiltonian for bosonic and fermionic
species, whereas in section 3 the interaction between the fermions, mediated by the bosonic excitations, is
characterized. In sections 4 and 5, we build the BCS Hamiltonian for the 2D system and solve the associated gap
equation, respectively. Higher-order corrections for the gap magnitude are evaluated in section 6, and the
experimental feasibility, conclusions and implications of this work are discussed respectively in sections 7 and 8.

2. System Hamiltonian

We start by defining the Hamiltonian H = Hy + Hr + Hpp, where the boson-field operators g?) livein 3D,
whereas the polarized fermions ¥ livein 2D, (assuming 7z = 1)

5 % , ,
Ay = [ dz [ &xd't x, z)[—%+ %ﬁ'(t, % 26t %, 2) — ug]qb(t, X, 2), 1)
g o— (a2 0F v J
Hp = fd x P (1, X)[ 2y /J’F:|w(t’ X), @
Ars = g f dzf x5 (1,08 (¢, %, 261, x, DV, %), 3)

with the mass of the bosonic and fermionic species given by mg and mp, and their chemical potentials by 1 and
fip> respectively. The intra- and interspecies contact repulsive interactions are characterized by the coupling
constants gz and grp, respectively. We can express the boson-field operators in terms of a discrete set of bosonic
modes l;q, with Vthe volume of the 3D space,

- 1 A
t,X,2) = — > €97, (1), 4
o % 2) = — ; a () )
which allows us to rewrite the bosonic part of the Hamiltonian in momentum space,
- q° A S5 N ~f N
Hp(t) =) 2~ s by () bq (1) + v D byygr(Dby g () bg (1) by (1). (5)
q B 99'.9"

To characterize the Bose—Einstein condensate, we now use Bogoliubov theory to deal with the macroscopic

. _— AT . . .
occupation of the zero-momentum state, thatis by = b, = /Ny.Neglecting higher-order fluctuations, we
obtain

. N 2 A AF A A
A1) = gg—v° + Z(q— + ntB)bJ by (1) + EES B 06 (1) + by()b_g (D). )
q

q ZmB 2

After symmetrizing the above expression, with a sum covering half of the momentum space, and performing a

: ) I . N ~ . o
Bogoliubov canonical transformation by = u, 3, — v;8_qand b_q = u,8_q — v, 5, where we select the real

2
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Figure 1. Second-order Feynman diagram for the interaction between two fermions in 2D induced by the Bogoliubov modes of the 3D
BEC.

parameters i, ¥, in order to have diagonal-base operators (3, ﬁ) for Hg, we find

A np N At A 1
Ap) = 820 1 SN GBI — = 3D (€, — wy) @)
2 a(q=0) 2 q(q=0)
with the energy spectrum for the free Bogoliubov-modes excitation w, = lfz — (ggnp)*, where
2
q
= + ng. 8
gq 27’1’13 8B ( )

Applying the same set of transformations for the interspecies-interaction Hamiltonian (Hg), and
considering u, = /§q/wq +1/+/2 and vy = /§q/wq — 1 /32, with(t, x) = (1/\/§)Zp eiP'XﬁP(t),whereS

denotes the 2D surface, we get

A N o A At .
A (t) = gpmsNr + @Z{,MZWP‘ OLBg(®) + B (D) ap-q, (1), )
with
) 1/4
v=—2 | (10)
q° + 4mpgpng

In equation (9), the prime symbol in the sum indicates that q = 0, and we separate the components of
q = (q,, 4,) to account for momentum conservation in the plane.

3. Effective Interaction

As expressed in equation (2), there is no direct interaction between the polarized fermions in Hg, due to the Pauli
exclusion principle. We show here, however, how an indirect interaction between fermions arises from Hpg. For
that, we define the effective coupling constant A from the four-point function

'=T(,p,k, K;e, e, v, v)asfollows

r I1 f dt,»eiaffz<a;(tl)a]j(tz)ap/(t3)akr(t4)e*if deflrp (1))
i=1..4
E[:lE,E/,I/,I// (11)
1.
= Sarbpikpid (e + v — £ = ) Golp DGo(p's £ — @)Golk, NGo(K' v + W),
with Gy corresponding to the free-fermion propagatorand w = ¢ — &/ = v/ — v.
Considering the weak-coupling regime, to second order in the interaction (see figure 1), we obtain

2
n
10 = i8B s b + v — & — )3 VEDy(g, w)
4,
x Go(p, €)Go(p', € — w)Go(k, V)Go(K', v + w), (12)

where Dy(q, w) denotes the free-phonon propagatorand q; = p — p’ = k’ — k. Comparingequations (11)
and (12), we find

2 1/2

q
At = gign foo da:] o =
eff — &pg''B 2 2 2 so”
—o0 2| 4 w* — wi +1i6
00 - + ngnB q

13)

For low-energy processes, where the scattered fermions are kept around the 2D Fermi surface, we can
assume w ~ 0,and equation (13) can be simplified as

3
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1
“ql +q,% + dmpgyng

Aeff = __mBgFB”Bf dq
71' —0
1

= —ZmngBnB .
w/qﬁ + 4mpgynp

Hence, an effective potential A\er = Vs (q, = |p’ — pl) is generated between the fermions, as a function of the
momentum exchange Q between the scattered particles. In 2D real space, with coordinate R, this yields an
attractive Yukawa potential between the fermionic particles in the plane,

(14)

Var(®) = [ Qe (Q)

2
11 2
e ) (15)

g &R

with the range given by the healing length £ = 1 / \2mpgynp of the BEC.

4. BCS Hamiltonian

We consider the generalized BCS-type Hamiltonian in momentum space for the fermions in the plane,

al O R &
= (W{( u)a @iae) + 5 [V

x af(k'/2 + k)a”(k’/Z —kak /2 —-pak'/2+p}, (16)

with amomentum-dependent mediated interaction Vg (p, k)and p = i — npgp,. According to equation (14),
we consider the interaction potential

Vo ! ,
JIp — k| +2¢°2

with Vj = 2g§B ngmg. After symmetrizing the BCS Hamiltonian properly, we apply the Bogoliubov transforma-
tion and find a new basis of operators (see appendix A for details) to build the diagonal form

Vet (p> k) = —

17)

N A2
Ay ZEpd*dp Z{' i [1—2nF(Ep)]+(fp—Ep>}, (18)

with the energy dispersion E, = ./ ff, + |Ap[* and the occupation function rp (Ep) = [exp(BE,) + 117! ofthe
Bogoliubov modes, where 3 = (kg T)™!. As shown in appendix A, now we can also write the gap in terms of the
mean value over this new basis, to obtain

d’k
tp = [ e 0L = 2B (19)

5. GAP equation

To solve the integral equation for a momentum-dependent pairing gap in equation (19), it is convenient to use
the 2D partial-wave expansion of the effective potential [19, 20],

Ver (p, k) = > VER(p, k)cos[£ (0 — ¢)], (20)
14

with 7 i integer, p = Ipl, k = |k|, and where we associated the angles 05 = 6 and 0y = . Because we are
assuming low-energy processes, with the scattered momentum close to the Fermi surface, it is reasonable to
consider p ~ k = kg in the coefficients of equation (20). For £ = 1, considering the even parity of the potential,
we have




10P Publishing

New]. Phys. 19(2017) 115011 M A Caracanhas et al

0.00

-0.05

FIXI/ X

Figure 2. Profile of the function F(X) /X used to estimate the maximum gap in equation (29). Inset: harmonic # = 1 of the effective
potential, i.e. (X) in equation (21), asa function of X = kp&.

1 m — Vocoswcosd
VO (k) = = 0C05¥ dody
i (KF 2 fj:w \/25* + Zk%[l — cos(0 — ¢)]
- % Vo FlkeS), (21)

where

E[—2X?] — (1 + X?) K[—2X?]

FX) = =

(22)

with E[X]the complete elliptic integral, K [X] the complete elliptic integral of the first kind, and X = k& (see
the inset of figure 2). Since in the weak-coupling limit one expects that the mixing of different angular
momentum £ will be small, we are in a position to solve the gap equation by applying the pure £-type ansatz
Ap = N9 e in equation (19). That gives

. d2k NO) o160
KO eitts = — it (py 1) =1 — 2 (E
e f(z ® Vett (p> k) o, [ nr (Ep)]
. kdkdgﬁ @ lf( -0
1=-f Gy o Ve (kr)cosl10 - PN 1 = 2 () (23)

Analytical solutions for AM®* and T, can be obtained in two limiting cases: (1) T — 0, where we have the
maximum gap value, and (2) T — T, where the gap goes to zero. For the first limit, we find

Ep = ei + | XD and np(E;) — 0. Then, applying the orthogonality condition given by the angular integral
of equation (23), we eliminate the sum in #’ to obtain

1
1=— V(é)(kp)fkdki
(2m )2 : Jei 1140
1 A 1
1= ——Ve(?(kp)zﬂf de—, (24)
2w 421 Jo g2 4+ |AD)2

where we can identify the density of states in the Fermi surface p,;, = my /27 and the cut-off energy scale given
by the Fermi energy of the 2D system A, ~ k? /2my. Since we consider the small-momentum regime, the
fermions are scattered to states around the Fermilevel. As can be seen from table 1 in the experimental section,
krpis very close to the healing length (£~1), which characterizes the range of the interaction potential.

One can show that the induced attraction equation (17) is strongest in the p-wave channel. That means that
the dominant pairing instability is in the channel with orbital angular momentum # = 1, and the most stable
low-temperature phase, or with highest critical temperature, has p, + ip, symmetry [11, 19]. We can then solve
equation (24) for the maximum gap

MM — A1 = A, exp (+] -
Pap Vesr (ke)

with Vi (k) = VO (ks) /8.

The vertex renormalization for two particles in vacuum allows us to express the bare coupling parameter as
&g — —2mac //mptpp [23], with the reduced mass mpg = mgmy /(mp + mp) and the effective two-body
scattering length a.g for a2D-3D scattering. The latter will be a function of the original 3D scattering length arp
and of the axial confinement. That gives
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~(1) npag &
Verr (k) = 232 m—<> F(kg €). (26)
Mgp
Considering kr = J4mnp and £ = 1/./87mngag, we get the variable
1 ng
krp = — . 27
ke 7\ o (27)

Thus, we estimate the gap in equation (25) using

(1)

2
pZDVeff (kF) = ﬁﬂmw'

(28)
8w Mmrgg dap k}:f

For ap n};/3 ~ 0.01and acgkp ~ 0.1, we consider the maximum value for p, | Ve(flf)(kp) |with F(X)/X ~ —0.15,
restricting X in the interval [0.5—1.5] (see figure 2), to determine”

MMax . 0.01A.. (29)

6. Higher order correction to the effective 2D-3D interaction

The previous section shows how to optimize the gap value by manipulating the condensate density, which
controls the magnitude and range of the induced potential. In addition, the importance of choosing an
appropriate combination of the fermion and boson atomic masses (lighter bosonic species) to maximize the gap
became clear. This issue will be further explored in section 7.

By choosing the Fermi wavelength and the healing length such that kr ~ 1, the Bogoliubov-sound (¢,) and
the Fermi velocities (vp) will also have close values. That requires the inclusion of higher-order diagrammatic
terms in our ultracold-atoms model, which are usually disregarded in BCS studies.

In the following, we calculate the four-point function to 4th order in the interaction constant gz

T'({k;, ﬁ})==-<7}&h(ﬁ)ﬁb(n)ﬁé(ﬁ)ﬁg(roej;dﬂ%m“j>- (30)

We start with the interaction between the fermions in 2D and the ‘phonons’ of the BEC in 3D as given by
equations (9) and (10). Using the finite temperature formalism with the Matsubara Green’s functions, the
effective interaction between the fermions in 2D is given by

Feff({kb Vi}) = )\Cff§6k1+k2,k3+k46V1+1/2,V3+V4 H gO(ki: Vi)) (31)
i=1..4

with the free-fermion propagator G. As seen before, the second-order expansion in the coupling gz provides
rodk; v}) = égfg 180k +kapks+ks Ovitva,vstn

—2g2 Nngmpg
< S V2Dy(ay 1 — ) [T Gtk ) = 5 b Sionmnins T Golks )

—————— bk tkpkstky
4, i=1..4 JIki — kg2 +2¢72 S i=1..4

(32)

where q = (k; — ky, q,) and we applied the static limit to the Bogoliubov-mode propagator D,,.
Within a higher-order expansion, we obtain the self-energy bubble diagram (see the details of the calculation
in appendix B)

4 2 2
4gFBanB nF(fp) - nF(prrk‘rkl)
lk; — kyl* 4+ 2672 p U= Vit 6 — Epik,—k

Tia({ks, vih) =
X ﬁé 6 Gok;, v; 33
E ki+ky,ks+ky Ovi+vp,vs+1y H 0( [3) l/z)a ( )

i=1..4

where we identify the static polarization-bubble diagram in 2D

3 np(ep) — np(epri,—ky)

%mxozé (34)

p €p — Cptki—k

For |k; — ky| < 2kg, i.e., the external momenta in the Fermi surface, we can easily calculate the RPA series,
which yields

We considered the Fermi—Bose mixtures ®’Sr—"Liand "' Yb-"Li, assuming ag ~ 20a, and with the density of Li limited to n ~

10'* atoms cm ™.
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Mg = Ao + AGPo + AgPs + ...
= N[l + APy + NiP§ + .1, (35)

where we defined )\, = fVo/\/Ikl — ky? + 26 and Py = —myp /27 = —p,p. For A\gPy < 1,we find

A Vi
ARPA — . _ — 2 : (36)
1 — AoPo \/|k1 — ky* + 2672 — Vopyp

Replacing equation (17) by the effective potential coming from the RPA correction in equation (36), we obtain
an increase in the gap magnitude, as predicted by equation (25) (see also appendix B and figure 3). Since we
consider APy smaller than one, we do not expect any phase instability driven by a divergence of \X2* caused by
the vanishing of the denominator of equation (36).

The critical condition given by equation (25) can be obtained alternatively through the singularity in the
effective interaction, which appears when the total vertex function is calculated in the Fermi surface, considering
small total momentum of the colliding particles [17, 20, 24]. In this case, the #th harmonic in the exponent of
equation (25) will be associated with the irreducible part of the vertex. Here, we determined its # = 1 projection
solving the Bethe—Salpeter integral equation for the ladder-series contribution. To build the series, we start with
the 4th-order vertex-correction, which reads

Zg;B ﬂé mpg 1 q

=>
VIki — kg + 2672V .2 g + 2672
y l 1 4ng(ep)wq

(Wq + Ep)(Wq + 6p+k4—k1) (fp - 6p+k47k1)(wé - 612))

TP ((k;, v} =

X €6k1+k2,k3+k461/1+1/2,1/3+1/4 H gO(ki) Vi)> (37)
i=1..4

with wg = 2ng‘/ q* + 26 ?and q = (k3 — p, q,). The first term of equation (37) is related to single-particle
behavior, i.e., the scattering of real phonons, whereas the second term corresponds to virtual phonon processes.
Only the latter will be relevant in our calculation, which deals with the many-body effects with the 2D
momentum integration performed near the Fermi surface.

To evaluate the irreducible-vertex part around the Fermi surface, perturbation theory turns out to be insufficient
and we must sum the whole ladder series of diagrams, with terms proportional to the ratio ¢, /vg. The resulting self-
consistent vertex equation is presented and solved in the appendix B, after performing a partial expansion of the
effective interaction \'; in terms of the angular components A |k, — k|) = S, XD (kg)cos[£ (6, — 61)][20,24],
which breaks the integral equation for the total pairing vertex to a set of decoupled algebraic equations for its partial
components. Finally, we obtain the vertex correction for the component 7 = 1

Vi (ke)
A (k) = —— L e — (38)
1+ v Qke) py —2I__
4V eft VEIPaD e e
— 2 _ 1 _ 2 _ 1
where we defined J[X] = (1 + 2X )E[l 1+2X2] 1+X )K[l 1+2X2]' Remarkably,
ﬁfﬁ = 1!Including the correction given by equation (38) into the gap equation, according to
equation (25), we get
A%\//lax =2A, exp [L(l) + 2)
P2 Ve
~ 7.4 AN, (39)

This is the main result of this paper: the inclusion of higher-order diagrams, usually neglected due to their
complexity, actually increases the p-wave gap by one order of magnitude and brings it to the verge of
experimental possibilities.

7. Experimental implementation

We now discuss the experimental feasibility of our proposal. We first examine which quantum gas mixtures are
suitable to implement it, then present a scheme for a mixed-dimensional trap, and finally we summarize the
experimental proposals to detect a p-wave superfluid.

7
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Figure 3. RPA correction to the # = 1 component of the effective potential, according to equations (21) and (B17).

Table 1. Parameters of 17%173Yb—"Li mixture. The elastic
scattering rate [ p is given for thermal atoms ata
temperature of T = T? colliding with a BEC at density 7.
D.body, 5 = —Np/Np is the initial 3-body loss rate of the

BEC[21,22].

ng 6 x 10" atoms cm >

ag 8 ag

arp 200 ag

Aeff Nmg/mep apg = 204 ag

« VE/Cs = 1.5 Qay = 0.22

Yerc agny’® = 0.004

A/eff aeffi’lllg/3 =0.1

£ 1//8mngag = 0.4 um

X kp = &Jamny = 3.8

VE Jikg /mp = 0.4 cm s

Cs Jnegz/mp = 1.6 cm s

Tus 21 st

T3 _body, 5 0.002 s~

TR gz = kg x 221 nK =h x 4.6 kHz
TEEC 16.4 uK

ng 720 atoms/(10 pm)>

Er kg x 130 nK=h x 2.7 kHz = 0.6 jiyp
fi4 0.07 Tr = 5 x 1074 TPEC = 9,5 nK
Tt 0.09 Tr = 12 nK

7.1. Mixture choice

The most important criterion to choose the mixture is that the critical temperature for p-wave superfluidity 7%
has to be experimentally reachable [25]. As guidance, we note that BECs have been evaporatively cooled to

T = 0.02TPEC = 1nK [26]and Fermi gases with T/ Ty < 0.05 have been reached [27]. We maximize

TP /Ty = yAY™ /Ty [14] under constraints imposed by the validity of our theory and experimental constraints
(: Euler’s constant ~0.57). The static approximation requires that « = v /¢; < 1[15, 28]. In addition, since
the effective potential has been obtained within a perturbative treatment, it is necessary that 'yiff < (87r'yBEc)1/ 2,
Hence, the boundaries of validity of our theoretical studies request ;- = ag n};/ 3 >1073[13]and

Voip = Qeft n}g/ > < (SWWBEC)I/ * 22 0.4. To be in the superfluid regime we finally require T < Tir, where Ty is
the Kosterlitz-Thouless transition temperature [29, 30]. Since T / Tz = 8.42 exp(—1 / |20 Ve(flf) |) increases

monotonicallywith Y = |p,, Ve(flf) | it is sufficient to maximize Y, which can be expressed as

1 mF) Vi
Y=—|1 4+ — | ———|FX)|, (40)
V47T( mg ) JVBEC

with X = a(mg/mg) /~/2 . Forlarge Y, a high mass ratio 1 /mj should be selected, provided that o is chosen
close to aupex = 3.56 g /my, which maximizes | F(X)|. Since T = (27/2/kg) (mg/mg) n§/3a2’yBEC o a?,we
chose in the following a slightly higher value, & = 1.5 Qay, which barely decreases | F(X) |, but more than
doubles Tr. Furthermore, alow value of ;- is desired and we chose a value close to its minimum. Finally, a
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high value of -, has to be achieved. In order to increase -, we opt for the rather high value of 1z = 6 x

10 atoms cm ° and the relatively low value of a. = 204 ag, where a, is the Bohr radius. The motivation for
choosing alarge density is that Trincreases with #g. On the other hand, low values of a.¢ are more likely available
in experiments than large values, and they can be reached without Feshbach or confinement induced resonances.
Far from the resonances, the scattering length is given approximately by a.g ~ /mp/mgp agp[23,31,32].

Further limitations arise from experimental constraints. In our scheme, a few thousand fermions will be
sympathetically cooled by a much larger bath of evaporatively cooled bosons. To effectively implement
evaporative and sympathetic cooling, a sufficient rate of elastic collisions and low rates of heating and loss are
required. These conditions limit the range of suitable interaction properties, the gas densities, and the trap
designs. An upper limit on n; is imposed by the requirement to keep the BEC in the 3D regime for the finite
number of bosons available. A lower limit on ag is imposed by the requirement of a sufficient elastic collision rate
between bosons I} 5 o ngaj. Together, these requirements lead to an additional, experimental, lower limit on
Vgec- Attention has also to be given to the rate of 3-body losses involving one fermion and two bosons
(Trp o< njapg [33, 34]), even considering the important role played by the mixed dimensionality in inhibiting
the interspecies molecular formation [11].

We now discuss possible choices of elements for the mixture. Since 1 /mp should be large, we limit our
choice of bosons to the lightweight isotopes that have been Bose condensed, ‘He*, ’Li, and *’Na. Among those,
“Lihas the great advantage of possessing a broad Feshbach resonance, with which a can be tuned
[21,22, 35, 36]. Feshbach resonances in “He* and **Na are expected or known to be accompanied by strong
losses [37—41]. In the following, we use the triplet-scattering length for *He* and **Na [42, 43]. Considering BEC
densities for which inelastic collisions limit the BEC lifetime to 10s [44—46], fermion masses up to the mass of the
heaviest naturally occurring fermionic isotope (**>U) and a.g = 600 ag, we find that T? /T < 102 for these
bosons. Only larger values of a.¢ might make them suitable for our purposes.

We therefore limit our considerations to "Li. This choice makes it possible to decrease ag and thereby
increase T? / Tr. To choose the fermionic element we plot in figure 4(a) Tf / Tr and T? as a fuction of m.
Fermionic isotopes that have been cooled to quantum degeneracy and for which the experimentally relevant
regime T? /Ty > 0.05 can be reached are '71173Yb, '*' Dy, and '*’Er [47-52]. A drawback of having to choose
such heavy elements could be that they are not well sympathetically cooled by the lightweight Li because during
each elastic collision, the energy transfer from the fermion to the boson is suppressed by
dmpmg /(mp + mp)? ~ 0.15[53]. A benefit of Dy and Er compared to Yb is that several interspecies Feshbach
resonances will likely be available across the broad “Li Feshbach resonance, making it possible to tune az and agp
somewhat independently and to access large values of apg, which would also make tuning of a.¢ by confinement
induced resonances possible.

Nevertheless, since '7>!74Yb—°Li mixtures are already available in the lab [54, 55], we concentrate our
discussion now on '7'73Yb—"Li. Adapting the existing machines to operate with ’Li instead of °Li should be
straightforward. There are two fermionic Yb isotopes readily available, each providing a chance of possessing
suitable interspecies interaction properties with ’Li. Figure 4(b) shows the dependence of T /T and T% on n
and a.g. Choosing ag = 84, leads to the system parameters given in table 1. The dotted lines in figure 4 are an
estimation of the Kosterlitz—Thouless transition temperature, which is given by [29, 56]

2
Ixr = 47rf—n In~! [ln(%)], (41)

m na

where m and n are the mass and density of the superfluid species, while a characterizes the range of the
interaction. In particular, for our case of fermionic-pair formation, the interaction between fermions that will
form the Cooper pairs is proportional to azp, with m = 2mgp and n ~ np /2. Equation (41) is valid for small
interaction parameters ap and app—the first makes the range of the potential long enough, such that the
superfluid fraction achieves its maximum value [12, 13].

The critical temperature T = 0.07 Tr = 9.5 nKis in the regime of temperatures that have already been
achieved experimentally, albeit in systems with larger elastic scattering length. However, T / TPE¢ = 5 x 10~
is more than one order of magnitude lower than what has been reached so far. To enhance evaporative cooling, it
might be useful to first evaporate at a scattering length above 100 g, and to tune the scattering length to a lower
value only when approaching the required low temperature, while compressing the gas at the same time. In
doing so, one could even profit from a Li 3-body recombination minimum at ag = 119 a4 [22].

7.2. Trap configuration

Next, we consider suitable trap configurations for the mixture. Whereas the bosons explore a 3D trap, the
fermions have to be effectively confined in 2D by a harmonic trap of frequency v, r, which requires

hv, p — Ep > kg T.The sample should be as homogeneous as possible to avoid inhomogeneous broadening of
p-wave superfluidity signals, especially because the number of fermions will be low. Efficient evaporative cooling
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Figure 4. Maximum p-wave superfluid critical temperature T/ / Tz (upper panels, solid lines) and T¥ (lower panels, solid lines) for
fermions immersed in bosonic ’Li, as well as Tyt /Ty (upper panels, dotted lines) and Tyt (lower panels, dotted lines). (a) Dependence
on the mass of the fermions mp. Here ng = d x 10" atoms cm >, ag = 8 ay, aer = 200 ag (corresponding to g, = 0.002 d'/3
and 4,z = 0.05 d'/?),and o = 1.5 qp. Fermionic isotopes of elements that have been cooled to quantum degeneracy are marked by
vertical lines. (b) Dependence on a. for the fermion 7" Yb, with all other parameters as before. The dashed lines in the upper panels
mark the experimentally achieved T/ Tr. The stars mark the example detailed in table 1.

of the bosons should be possible in order to reach low temperatures. We now take these requirements into
account to design an optical dipole trap for the mixture, where we orient the 2D plane of the fermions in the
horizontal direction, see figure 5(a).

The bosonic lithium surrounds the fermions and can be confined by a Gauss-beam dipole trap using a
wavelength of 1064 nm. To reach a temperature T by evaporation, the trap depth in the vertical direction U, 5
should be pippc + 1k T, where pigp is the chemical potential of the BEC, and 7 ~ 5[59]. In order to provide a
homogeneous vertical trap frequency across the cloud, the horizontal waist should be much larger than the
cloud and the vertical Rayleigh length zz much longer than the horizontal sample size. The latter requirement
and the additional requirement hv| g << [ipg are only fulfilled if the vertical waist is larger than a minimum
size. At the same time, the vertical waist should not be too large in order to limit the size of the i sample in the
vertical direction, thereby reducing the required number of “Li atoms. Gravitational sag of the bosonic cloud is
compensated by placing the focus of the Gauss beam slightly above the plane of the fermions. The Gaussian-
beam trap creates a nearly constant potential on the fermions, since they explore only a small region in the center
of the trap. A constant potential offset is irrelevant and we can therefore ignore the influence of the Gauss-beam
dipole trap on the fermions.

To provide homogeneous confinement for bosons and fermions in the horizontal plane, repulsive dipole
trap walls can be erected around the sample using vertically propagating Gauss beams [60, 61]. Four such beams
can form a rectangular box with a size of ~10 pum around the sample, if the waist of the beams is elongated along
the sides of the rectangle (wy, | of afew 10 zm) and is narrow orthogonal to that direction (wyp, | ~ 2 pm). This
rectangular potential box also serves to select the most homogeneous central region of the traps that are used to
confine bosons and fermions vertically. The sample density can easily be changed by moving the vertical walls
towards each other, which is useful to do while ap is reduced to a low value. If in further studies a cylindrically
symmetric system is required, for example to enable the creation of vortices [62], a Laguerre—Gaussian beam can
be used to confine the atoms horizontally [61, 63, 64].

The confinement of the fermions in quasi-2D is most conveniently done using optical lattices. In
comparison to other trap configurations, such as a Hermite—Gaussian beam [60, 65], it is easier to create a more
homogeneous confinement in the 2D plane by increasing the diameter of the lattice beams. In order to populate
only a single plane of the lattice with fermions, one can use the techniques of [66—69].

The deep dipole potential used to confine the fermions in 2D may only have a negligible effect on the bosons.
The parasitic potential on the bosons Ulyyice, g must be much smaller than figg. This challenge has been met by
species-specific dipole traps using a ‘tune-out’ wavelength, for which the AC polarizability of one species is zero
[31,32,70, 71]. Unfortunately, this technique does not work for Libecause its ‘tune-out’ wavelength is too close
to an atomic transition, leading to detrimental off-resonant scattering for the required trap depths [70]. Another
option is to use a ‘tune-in’ wavelength, close to an Yb transition and far detuned from any Li transition [70]. In
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Figure 5. Mixed-dimensional optical dipole trap. (a) Beam configuration. Ytterbium is confined in a 2D plane of an optical lattice
formed by two standing waves created by laser beam pairs L1a,b and L2a,b. Both standing waves have the same intensity profile near
the trap center and are attractive for Yb, but generate opposite potentials for Li. Lithium is confined vertically by an elliptical Gaussian
beam (Lv), elongated in the out-of-plane direction. Both elements are horizontally confined by four repulsive dipole-trap walls (Lha,b,
¢,d), forming a rectangular box. The inset shows the region around the trap center, with Lha,b in cross section and the lattice intensity
profile. (b) Dipole potential and scattering rate for Liand Yb, as a function of the wavelength [57, 58]. The arrows above the

graph indicate the wavelengths of the dipole-trap beams. Two choices are possible for Lh.

this situation, the potential on Yb Ul,yice ¢ can exceed the potential on Li many times. This technique is suitable
for our situation, but will limit the lifetime of the fermionic cloud to a few seconds by off-resonant scattering. If
this limit is significant depends on the other factors limiting the lifetime of the system, especially the unknown
3-body loss rate T'gpp.

Ifthe lifetime limit imposed by a ‘tune-in’ lattice is too severe, a bichromatic dipole trap can be used,
consisting of two optical lattices that both confine Yb, but compensate each other for Li. This technique
overcomes the possibly excessive off-resonant scattering and replaces it by the technical challenge of creating
two lattices with very well controlled intensity profiles. We will explore this scheme in the following. We chose
optical lattices with wavelengths 0of 470 and 1064 nm, which are both attractive for Yb. In contrast, for Li only the
1064 nm lattice is attractive, the other is repulsive, see figure 5(b). In order for the lattice potentials to add up for
Yb and cancel sufficiently for Li, the intensity profile of both lattices need to be nearly identical in the region of
the atomic clouds. The lattice-well spacing must be the same, and the intensity maxima need to overlap. The
lattice spacing can be adjusted by the angle between the two lattice beams of each wavelength. Using an angle of
60° between the two beams forming the 1064 nm lattice leads to a lattice spacing of 1064 nm. The same spacing is
reached for the 470 nm lattice if the two corresponding beams intersect at an angle of 25.5°, see figure 5(a). The
position of the intensity maxima along the lattice direction (the vertical direction) depends on the phase
difference between the two beams forming a lattice. This phase difference has to be stabilized interferometrically
for each lattice to a common reference, combining methods from [72, 73]. In order for the two lattice potentials
to cancel for the bosons, the intensity of the 470 nm lattice beams has to be 1.8 times the intensity of the 1064 nm
lattice beams. For Yb the two lattice potentials add up, giving a total potential that is 1.2 times larger than the
potential of the 470 nm lattice alone. This total potential needs to confine Yb in quasi-2D and be also deep
enough to suppress tunneling of Yb to neighboring lattice planes, see figure 6. The cancelation of the lattice
potential for the bosons will not be perfect because of intensity and phase fluctuations leading to deviations from
the ideal configuration. Phase fluctuations of 90 mrad or intensity imbalances of 9% lead to a residual potential
on the order of 10% of fiyy. This parasitic potential would be tolerable if the timescale of fluctuations is large
enough to avoid heating of the sample. In principle, we could have chosen a wavelength for L2 that is further
away from the Yb transition, e.g. 532 nm, which would reduce off-resonant scattering and simplify phase
locking of the laser sources used for L1 and L2. All the same, we chose 470 nm because at that wavelength we are
profiting from less parasitic potential of L2 on Li, reducing the amount of compensation needed from L1. Asa
result, the overall parasitic potential created for a given intensity or phase mismatch between L1 and L2 is
reduced.

Example parameters for the bichromatic dipole trap and important results of using this trap for the Li-Yb
mixture are given in table 2. The 7Liatom number available in current experiments (3 x 10°atoms [36]) is
sufficient for a square sample of 10 um size. A sample of this size contains about 700 fermions. If this proposal is
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Figure 6. Optical dipole trap potential. A lattice confines Yb in 2D, whereas Liis levitated against gravity by a Gaussian beam. The
potential experienced by thermal atoms Uy thermal consists of the dipole potential and twice the BEC mean-field potential [74]. A phase
fluctuation of a lattice beam by 0.1rad leads to the modulated Li potential shown around the ideal potential.

Table 2. Optical dipole trap configuration. \j; is the wavelength of
dipole-trap beam Li, withi = 1, 2. ware the 1/e beam radii. The
vertical trap depth for "Li, U, p, takes the effect of gravity into
account. «vy; is the angle between lattice beams Lia and Lib. Az is
the lattice spacing. n,p, g is the density of bosons integrated over
the vertical direction. 75 r = 1/, I} p r are limits to the lifetimes
of bosons and fermions, where I p r is the off-resonant scattering
rate of photons calculated at peak intensity of dipole trap beam Li,
with i running over all beams [25, 57, 75].

ALy 1064 nm Wiy 6 um
ZR 100 pm

U.p kg x 0.27 uX V| B 1.1 kHz
ALh 300 nm or 554 nm

Wih, L 2 pm Wik, 200 pum
L1 1064 nm oL 60°

ALz 470 nm ap 25.5°
Az 1064 nm

U r h x 16 kHz VI F 4.1 kHz=1.5 Eg
TB 296 s T 79 s
mp, B 3 x 10° atoms/(10 pm)*

realizable depends to a large extend on the unknown elastic and inelastic scattering properties of Li—Yb. Similar
schemes can be applied to other mixtures, such as Li-Dy or Li—Er, for which some interspecies interaction
tuning should be possible.

7.3. Detection of p-wave superfluidity

There are some predictable signatures for the experimental detection of the p, + ip, superfluid phase.
Particularly, the density of state (rf absorption spectrum) of a rotating weak pairing p, + ip, phase is expected to
exhibit a set of gapless modes [76], which are a direct consequence of the zero-energy Majorana modes on the
vortices. The rf-spectroscopy can be also applied to detect Majorana edge states of the topological superfluid in a
2D square lattice [77]. On the other hand, the time-reversal symmetry broken signature of the chiral p, + ip,
fermionic superfluid can be detected with time-of-flight image of the atomic density distribution: an external
effective electric field (i.e., dipole interaction between the neutral atoms in the superfluid and the laser field)
brings a nonzero antisymmetric transverse mass current in the velocity distribution of the atoms [78].

8. Conclusion

In the present work, we explored the feasibility of a p-wave superfluid by using a Fermi—Bose mixture in a mixed-
dimension configuration, where p-wave interaction between spin-polarized degenerate fermions in 2D is
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induced indirectly, through the scattering of the Bogoliubov modes of condensed bosons moving in 3D. We
have shown that, even in the weak-coupling regime, the appropriate renormalization of the phonon propagator
(BEC modes) with particle-hole fluctuations and the vertex correction significantly increase the gap and the
predicted critical temperature for the fermion-pair formation.

Itis important to remark that we adopt a minimum value for g ~ ag ny/3, whichyields vy /¢, < 1,thus
allowing to disregard retardation effects. According to Wu and Bruun [13], who performed calculations
including retardation but no vertex correction to determine Ty, in the limit vg /¢; < 1, it holds that
Tame ~ Tpcs (see figure 2 in the cited reference), which confirms the validity of our approximation.

We neglected decay of the BEC phonons, like the Beliaev damping and the lifetime due to the scattered
particle-hole pairs of the degenerate fermionic sample. The Beliaev damping is given by the boson—-boson
scattering potential, resulting in a phonon lifetime proportional to g5 [79, 80]. In the small-momentum regime,
however, the Beliaev decay mechanism is strongly suppressed [79]. On the other hand, if we consider the
phonon dressed by particle-hole fluctuations of the Fermi sea, it will have a lifetime proportional to gz. In the
static limit considered in the paper, however, the lifetime is infinite (see appendix B for details). Hence, we
conclude that there is no damping mechanism that could hamper the stability of the BEC in the chosen regime of
parameters.

Exploiting the difference in polarizability and mass of the atomic species, and by optimizing the density np
and the scattering length ap of the bosons, our work sets the boundary for the experimental realization of a p-
wave superfluid within the reachable limit of T = 0.05Ty. It identifies a realistic route and provides the details
to the accomplishment and manipulation of this long-sought fascinating chiral-superfluid phase in the realm of
ultracold atoms in optical lattices.
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Appendix A. Bogoliubov transformation in the BCS Hamiltonian
Starting with the definition

A, p) = ak/2 — p)ak/2 + p), (A1)

we can apply a mean-field approach in equation (16) and replace the pair operator A (k, p) by

<A &k, p) + 8A(k, p) (similar expression for its conjugate), with <A (k, p)) = bro{@(—p)d(p))and

<AT (k, p)) = b10(a’(p)a’ (—p)). Holding terms up to the first order in the fluctuations of this field (neglecting
O[(6A)", n > 1), wefind

N d? . . 1 R . 1 . R ~ o
7= [ (275;2 {fpa*(p)a(m + B3 EPaP) — SIA5APIAP) + Lo () (—p)] } (A2)

with €, = p?/2mp — 11 and the order parameter (or momentum-dependent gap) expressed as

2
8y = — [ Vo, 10 (- W00k, ()

(m)?

where we consider the interaction potential

1

JIp — kP 4262

with Vj = 2g§B ngmg. Before applying the Bogoliubov transformation, let us first symmetrize this BCS
Hamiltonian properly. It is easier to go further with this process in the discrete-momentum space, summing
over half of the k-space >, — >}

Veer(p, k) = =V (A4)
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~BCS A 1 At AT ~
Hp —Z[fp(ﬂap — E(Ap _pfp + Apd g ,p) + A < ,pap>]

= Z lep(agdp + aT,4_p) — (ANA_pdp + Apagaip) + A3(a_pdp)], (A5)

where we used the property A_, = — Ap, which is simple to prove if we consider that Vg (—p, k) =
Veie (p, —k) and Vo (—p, —k) = Vi (p, k), as can be promptly verified from equation (A4).
Now, we apply the canonical transformation

A A A F
dp = UpQp + iy,

P
al, = —Vbp + ipal, (A6)
with [up|* + |v> = 1. To diagonalize the transformed Hamiltonian, we set the coefficients of the off-diagonal
terms to zero, 2¢,up ¥, — A;‘u}f + 4p 17}% = 0. Multiplying this equation by A, / uﬁ, we get

22

Ap ¥, ALV,
26,2 — 2,2+ 22 =0 (A7)
P Up
and then
Ay,
PP _ E, — €p (A8)
Up

with the energy dispersion E, = ,/ e‘% + |Ap[* . Using the conjugate of equation (A8), we can prove that

A . . .
Dplityl E, — ¢,. Now, with the previous relation for the parameters 1, and v,, we find

| Up |
uP=1— |l ==[1+ A9
PR .
Finally, we can build the diagonal form
2 Z Ep(afap + afya p) + Z [8%(4_pdp) + (5 — Epl. (A10)
Considering (d_pdp) = —up¥p (a;ap) + upvp (a,pa ph w1th< &p) = np(E,) = [exp(BE,) + 117!, where
B = (kg T)!, we obtain the final result
ABCS N T" | pl2
ZEP p+ = Z 71— 2np(Bp)] + (6 — Bp) - (Al1)
p

Appendix B. Higher-order correction to the effective 2D-3D interaction

Starting with the interaction between the fermions in 2D and the ‘phonons’ of the BEC in 3D (see the main text)

Hin (1) = ng\/_\/— > Vﬂq(T)+ﬂq(T)] ) (M, (), (B1)

PyP»4,

q2 1/4
‘() (B”

where q = (p; — p,, q,) and

In the following we calculate the four-point function to 4th order in the interaction constant gz
Cart
I({k; 7)) = —<TTakl(n)akz<n>ag<n>a§4m)efo § "“(”>, (B3)

which corresponds to the Feynman diagrams shown in figure B1. We consider the effective interaction between
the fermions in 2D, with the free-fermion propagator given by G,

eff({kl) Z/l}) - Aeff 6k1+k2 k3+k4ﬂ6111+1/2 vty H gO(kn Vl) (B4)

i=1..4
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P

Figure B1. Second (a) and fourth-order, (b) and (c), Feynman diagrams for the effective interaction between two fermions in 2D.

The second-order expansion in the coupling gz provides [q = (k; — ks, g,)]
1
rO({k;, vi}) = Vgl.%BnB > VaDo@, 1 — 1) Sktioks ks BOusvmniny 1] Gokis 1)

q, i=1..4

1 1
_6k1+k Jks+ky ﬂ6u1+y NZES H gO(kia Vi), (B5)
Jki— kP 2628 B

=— ZgEB ngmp
where we used static approximation to the Bogoliubov-mode propagator D,.

B.1. RPA correction
Athigher-order expansion, we obtain for the diagram in figure B1 (b)

42
8rp"B
Tipalks vi}) = ?;2 St tlaks ks B0ty [ Golkis 14)
i=1..4
X Z Véz V‘iDo(qz» v, — w3)Dy(qs, vy — iVl)Z Golp + kg — ky, vy — 1 + 1) Go(p, ), (B6)
P-9293, n

with q, = (k, — ks, q,,)and q; = (k4 — ki, g;,), which eventuallyleads to

4 2 2
4gFB ng Mg nF(Ep) - nF(6p+k47k1)

1
|k1 — k4|2 + 2572 S P vy — V) + Ep — €p+k4—k1

Do (ki v)) =

1
X§6k1+k2,k3+k4/66V|+V2,1/3+1/4 H gO(ki’ Vi)- (B7)

i=1..4

Now we will solve the ‘polarization bubble’ in 2D

. d?p np(ep) — np(epsi)
P(k, = . B
(ks i) f(Zﬂ')Z i+ 6 — ik %)

Before we integrate in momentum space, we simplify the above expression by changing the variable in the second
termto p’ = p + k. We then obtain

Pk, iv) =

> np(fp)[ ! - ! ] (B9)

v+ 6 — ik i+ 6k — 6

d*p
(2m)

Since we are interested in the zero-temperature limit, we consider the analytic continuation iv — v + 19, with
nr(€p) — O(u — €p). Then, we focus on the real part of equation (B9)

kg m
Re P(k, v) = ff pdp (7 d9 24 . (B10)
o 27 J-rx 2w Ei_(M_V)

Starting with the angular integral in equation (B10) (for |k/2kg £ vmg /kkg| > 1), after changing the
variable p — & = p?/2my in the resulting integral, we obtain (see [81])
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Re Pk, )= 2: foﬂ d [(Ek i V)zl_ ]/2 + [(Ek _ V)zl_ ﬁ]l/z

2 1 2 2
= ———{Iek + U+ e — vl - \/(5k +v)? — LUy \/(ek —v)? - Zk—ﬂ} (B11)

2 k? mg mg

remembering that ;1 = k7 /2my. Particularly, in the static limit 7 = 0, we will have
Mg

Re P() = ~E for k< 2kp, (B12)
2T
and
2
Re Poy = ~ |1 = | = 2k for k> 2k (B13)
2 K?

Assuming |k; — ky| < 2kg, we can easily calculated the RPA series, which gives
ARPA — Xo + N3Py + \oP¢ +

= X[l 4+ XoPo + AP + .1, (B14)
where we defined \ = —2g§BanB/\/|k1 — ky? +2672and Py = —myg /27. For \gPy < 1, we find
2¢2 ngm
AR Ao B0 . (B15)

1 — APy \/|k1 — kP 267 - SegMBMBME

K

Now, we consider the RPA correction to calculate the projected component # = 1of the potential VY, i.e.,

ARPA() (k) = Lz ffﬂ —Vp cos ¢ cosf) dode, (B16)
m V2672 4 2311 = cos(O — )] — Vopup

and then

MRAC) = % V¢ Z(X, V), (B17)

withY = Vopmf/\/f,and
X, Y)
(1 +2X2 - Y2 K [Hzxz] + Y( L2C A 42X - )+ YT 42X - Y2 H[ DS ])

14+2X2-v2? 142X2
J1 4+ 2X2(1 4+ 2X2 — Y?)3/2

2 2 v2 2 _ 2 2y3/2
Ja +2X)1 + 2X% - YH( - Y)E[Hzxz] 1+2XZ(HZX Y9 K[1+2X2]

Jr

X2 /(1 = Y)( + 2X2 — Y?)

o 2 v2 — 2 2 v2 A-Y)a+2X2-v? 2x? 2x2
Y( O R (RS O ISy R o) B gy ((ERETRE H[Hzxzfyz,mxz])

X2/ = Y)( + 2X? — Y?)

Jr

>

(B18)
where TI[X, Y]isthe complete elliptic integral of the third kind. One can estimate the RPA gap correction
comparing the minima in figure 3, which shows the profile of 7(X) and Z(X, Y) in abroad range of X
(Y ~ 0.05/X, since we consider np as the only tunable parameter).
B.2. Phonon lifetime
The phonon lifetime (7) due to particle-hole excitation is
1_ -2 ImX(q, v), (B19)
-
where
(q, i) = gm0 Ve Do(q, iv)*P(q, iv), (B20)
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Figure B2. Polarization bubble in the phonon propagator.

as shown in figure B2, with the polarization bubble

1

P(q, iv) = 55 Z Go(p> iwn) Go(p + q, iw, + ). (B21)
np
Since we have
Im Py — el | 4 me || 2P e
¢ k2 ke gky mg

4 mev
ZkF qu

2
- @[1 - ]\/zq—“ — (eq — u)z}, (B22)
mg

with the Fermi energy ju = k /2mpg, then T = 0o for v = 0 (static limit considered in the paper).

B.3. Vertex correction
We still have to deal with the 4th-order vertex-correction in figure B1 (c)

4 2
8rptB
'Yk, vi) = — iﬁz Sxtkokst ks BOutvpvsin, || Golkir 1)
i—1..4
X > Véz V‘iDo(qz) vy — 113)) . Dy(qy ivs — i) Go(p + ka — ki, v4 — 11 + ) Go(ps 1), (B23)
Pds n

with q, = (k, — ks, g,,)and q, = (ks — p, q,,)-
Thatleads to

2g4 né mpg 1
rB _ﬁ6k1+kz,k3+k4 51/1+1/2,u3+u4 H gO(ki’ l/i)
Jlk — kg2 + 2672 V'S 1

q 1 4np(ep)wy
> + — |  B29)
pa, A2+ 267 Wo + ) (Wq + i) (6 = i)Wy — €})

with wg = 51-\/q* + 267 and q = (ks — p, q.).

TP ((k;, v} =

X

B.4. Self-consistent vertex equation
Summing the ladder series as shown in figure B3, we derive the self-consistent vertex equation

Aks, kg — ks ivs, iy — 1) = Ao(ks, ky — ks ivs, iy — iv1) — gFZBnBV—ﬁ YD VaDy(g, s — ivy)
pq, n
Xgo(p, il/n) g()(p + k4 — li iVn + il/4 — illl))\(p, k4 — kl; iVn, iV4 — iVl).

(B25)

After considering ¢, = €, — 1 ~ 0and A = A(Jks4 — ky|), again for zero external frequencies ; = 0, we can
deal with the remaining sum
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k2
k2 k2
p+ ka-k
I
— = = = —_— = = = + R |k3-p
ka-k1 ka-k1 ka-k1 |
k3 p \
k3
k3
Figure B3. Feynman diagram for the self-consistent vertex equation in equation (B25).

~ 1 . . .
II(ky, ky) = 7] > VeDo(qs —iv) Go(ps iwn) Go(p + ka — ky, i)

P, 1
ZLZ q 4ng (€p) 1
Voo V@' + 2572 € ~ Eptki—k W
d
= —l6mpmg f 1z 1
@em?J 2n kF + p? — 2kppeos(d — 05) + q} + 2£7*

X
ks — ki® + 2kpp[cos(9 — 6y) — cos(8 — 0))]

ki 2m
= -2 [ pdp [ a0 !
m  Jo 0 JkE + p? — 2kppeos(d — 03) + 262
X L (B26)
ks — ki|* + 2kpp[cos(d — 6;) — cos(0 — 6))],
with the additional external momenta constraint 8, — 6, = mand 6, — 0; = m,and |k, — k/|* =
2kA[1 — cos(6; — 6y)].
We finally obtain the vertex correction after substituting the angular momentum expansion
Ak — Taf) = > XD (kp)cos[£ (05 — O1)] (B27)
¢
in equation (B25), to obtain the decoupled equation for the projection £ = 1
XD(kp) = AP (kr) — gfymp XV (k) IO (kp), (B28)
where )\61) = Véflf), as calculated in the main text, and
MG = 5 [ doy costy [ dbs cost T, Kopcos(dy — 6. (B29)
™ - -7

After considering p = kg in the integrant of equation (B29), we have to deal with the angular integrals

Mg mg cos(0y — 0)

\/_774kF f dé, cos91f dé, cos94f dg\/l T+ cos@ — O 1+ (ke 2

W (kp) =

X
1 — cos(6) — 0,) + cos(0 — 04) — cos(0 — 0)
1 mgmp  Jlke€]

, (B30)
Vam? kiE 1+ ok2e
with
1 1
X]=(1+2X)E|1 — 1+X2K[1 ] B31
JIXT = )[ 1+2X2] ( ) 1+ 2X*2 (B30
Then, from equation (B28) we finally get
4J_
— 8ppnemp& Flkr&)
AV (ky) = 8ip "1 ;[k (B32)
1+ g g . mBsz rEl
EB ﬁw ks 1+ 2k3e?

18



I0OP Publishing New]. Phys. 19(2017) 115011 M A Caracanhas et al

References

[1] Kitaev AY 2001 Phys.—Usp. 44 131
[2] Tewari$, Das Sarma S, Nayak C, Zhang C and Zoller P 2007 Phys. Rev. Lett. 98 010506
[3] Volovik G E2003 The Universe in a Helium Droplet (Oxford: Oxford University Press)
[4] Kallin C2012 Rep. Prog. Phys. 75 042501
[5] Soltan-PanahiP, Luhmann DS, Struck J, Windpassinger P and Sengstock K 2012 Nat. Phys. 8 71
[6] Olschlager M, Kock T, Wirth G, Ewerbeck A, Morais Smith C and Hemmerich A 2013 New J. Phys. 15 083041
[7] GalitskiV and Spielman I B 2013 Nature 494 49
[8] Zhang C, Tewari S, Lutchyn R M and Das Sarma S 2008a Phys. Rev. Lett. 101 160401
[9] Dutta O and Lewenstein M 2010 Phys. Rev. A 81 063608
[10] Levinsen J, Cooper N R and Shlyapnikov GV 2011 Phys. Rev. A 84013603
[11] NishidaY 2009 Ann. Phys. 324 897
[12] NishidaY 2010 Phys. Rev. A82 011605
[13] WuZand Bruun GM 2016 Phys. Rev. Lett. 117 245302
[14] Schrieffer ] R 1983 Theory of Superconductivity (Boulder, CO: Westview Press)
[15] RoyB, SauJ D and Das Sarma S 2014 Phys. Rev. B89 165119
[16] EfremovD V,Mar’enko M S, Baranov M A and Kagan M'Y 2000 J. Exp. Theor. Phys. 90 861
[17] Abrikosov A A, Gorkov L P and Dzyaloshinsk I E 1963 Methods of Quantum Field Theory in Statistical Physics (Upper Saddle River, NJ:
Prentice-Hall)
[18] Pietronero L, Stréssler S and Grimaldi C 1995 Phys. Rev. B52 10516
[19] Anderson P W and Morel P 1961 Phys. Rev. 123 1911
[20] Chubukov AV 1993 Phys. Rev. B 48 1097
[21] GrossN, Shotan Z, Kokkelmans S and Khaykovich L 2009 Phys. Rev. Lett. 103 163202
[22] Pollack S E, Dries D and Hulet R G 2009a Science 326 1683
[23] NishidaY and Tan S 2008 Phys. Rev. Lett. 101 170401
[24] Lifshitz E M and Pitaevskii L P 1980 Statistical Physics (New York: Pergamon)
[25] McKay D and DeMarco B 2011 Rep. Prog. Phys. 74054401
[26] OIfR, FangF, Marti G E, MacRae A and Stamper-Kurn D M 2015 Nat. Phys. 11 720
[27] Navon N, Nascimbéne S, Chevy F and Salomon C 2010 Science 328 729
[28] Migdal A 1958 Sov. Phys. JETP7 996
[29] Fisher D S and Hohenberg P C 1988 Phys. Rev. B 37 4936
[30] Desbuquois R, ChomazL, Yefsah T, Leonard J, Beugnon J, Weitenberg C and Dalibard ] 2012 Nat. Phys. 8 1745
[31] Massignan P and CastinY 2006 Phys. Rev. A74013616
[32] Lamporesi G, CataniJ, Barontini G, Nishida Y, Inguscio M and Minardi F 2010 Phys. Rev. Lett. 104 153202
[33] D’Incao] Pand Esry B D 2008 Phys. Rev. Lett. 100 163201
[34] LaurentsS, Pierce M, Delehaye M, Yefsah T, Chevy F and Salomon C 2017 Phys. Rev. Lett. 118 103403
[35] ChinC, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 821225
[36] Pollack SE, Dries D, Junker M, Chen Y P, Corcovilos T A and Hulet R G 2009b Phys. Rev. Lett. 102 090402
[37] Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook CI, Truscott A, Baldwin K, Birkl G, Cancio P and Trippenbach M
2012 Rev. Mod. Phys. 84 175
[38] Goosen M R, Tiecke T G, Vassen W and Kokkelmans S JJ M F 2010 Phys. Rev. A 82042713
[39] Borbely] S, van Rooij R, Knoop S and Vassen W 2012 Phys. Rev. A 85 022706
[40] Inouye S, Andrews M R, Stenger J, Miesner D M, Stamper-Kurn H-J and Ketterle W 1998 Nature 392 151
[41] Stenger], Inouye S, Andrews M R, Miesner H-J, Stamper-Kurn D M and Ketterle W 1999 Phys. Rev. Lett. 822422
[42] Tiesinga E, Williams CJ, Julienne P S, Jones K M, Lett P D and Phillips W D 1996 J. Res. Natl Inst. Stand. Technol. 101 505
[43] Moals§, Portier M, Kim J, Dugué J, Rapol U D, Leduc M and Cohen-Tannoudji C 2006 Phys. Rev. Lett. 96 023203
[44] Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook C I and Aspect A 2001 Science 292 461
[45] Pereira Dos Santos F, Léonard J, WangJ, Barrelet C J, Perales F, Rasel E, Unnikrishnan C S, Leduc M and Cohen-Tannoudji C 2001
Phys. Rev. Lett. 86 3459
[46] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H-J, Stenger ] and Ketterle W 1998 Phys. Rev. Lett. 80 2027
[47] DeMarco B and Jin D S 1999 Science 285 1703
[48] Naylor B, Reigue A, Maréchal E, Gorceix O, Laburthe-Tolra Band Vernac L2015 Phys. Rev. A91 011603
[49] DeSalvo BJ, Yan M, Mickelson P G, Martinez de Escobar Y N and Killian T C 2010 Phys. Rev. Lett. 105 030402
[50] TaieS, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R and Takahashi 'Y 2010 Phys. Rev. Lett. 105 190401
[51] LuM, Burdick N Qand Lev BL 2012 Phys. Rev. Lett. 108 215301
[52] AikawaK, Frisch A, Mark M, Baier S, Grimm R and Ferlaino F 2014 Phys. Rev. Lett. 112 010404
[53] Mudrich M, Kraft S, Singer K, Grimm R, Mosk A and Weidemiiller M 2002 Phys. Rev. Lett. 88 253001
[54] HaraH, TakasuY, Yamaoka Y, Doyle J M and TakahashiY 2011 Phys. Rev. Lett. 106 205304
[55] Hansen A H, Khramov A'Y, Dowd W H, Jamison A O, Plotkin-Swing B, Roy R J and Gupta S 2013 Phys. Rev. A87 013615
[56] ProkofevN, Ruebenacker O and Svistunov B 2001 Phys. Rev. Lett. 87 270402
[57] Grimm R, Weidemiiller M and OvchinnikovY B 2000 Adv. At. Mol. Opt. Phys. 42 95
[58] Kramida A, Ralchenko Y, Reader J and (NIST ASD Team) 2016 NIST Atomic Spectra Database (National Institute of Standards and
Technology, Gaithersburg, MD) (physics.nist.gov/asd)
[59] Ketterle W and van Druten N 1996 Adv. At. Mol. Opt. Phys. 37 181
[60] Meyrath T P, Schreck F, Hanssen ] L, Chuu C-S and Raizen M G 2005 Phys. Rev. A 71 041604
[61] GauntAL, Schmidutz T F, Gotlibovych I, Smith R P and Hadzibabic Z 2013 Phys. Rev. Lett. 110 200406
[62] Madison KW, Chevy F, Wohlleben W and Dalibard ] 2000 Phys. Rev. Lett. 84 806
[63] Kaplan A, Friedman N and Davidson N 2002 J. Opt. Soc. Am. B19 1233
[64] Jaouadi A, Gaaloul N, Viaris de Lesegno B, Telmini M, Pruvost L and Charron E 2010 Phys. Rev. A 82 023613
[65] Meyrath T P, Schreck F, Hanssen J L, Chuu C S and Raizen M G 2005 Opt. Express 13 2843
[66] Gemelke N, Zhang X, Hung C-L and Chin C 2009 Nature 460 995
[67] Sherson]F, Weitenberg C, Endres M, Cheneau M, Bloch I and Kuhr S 2010 Nature 467 68

19


https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.98.010506
https://doi.org/10.1088/0034-4885/75/4/042501
https://doi.org/10.1038/nphys2128
https://doi.org/10.1088/1367-2630/15/8/083041
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/PhysRevLett.101.160401
https://doi.org/10.1103/PhysRevA.81.063608
https://doi.org/10.1103/PhysRevA.84.013603
https://doi.org/10.1016/j.aop.2008.10.011
https://doi.org/10.1103/PhysRevA.82.011605
https://doi.org/10.1103/PhysRevLett.117.245302
https://doi.org/10.1103/PhysRevB.89.165119
https://doi.org/10.1134/1.559173
https://doi.org/10.1103/PhysRevB.52.10516
https://doi.org/10.1103/PhysRev.123.1911
https://doi.org/10.1103/PhysRevB.48.1097
https://doi.org/10.1103/PhysRevLett.103.163202
https://doi.org/10.1126/science.1182840
https://doi.org/10.1103/PhysRevLett.101.170401
https://doi.org/10.1038/nphys3408
https://doi.org/10.1126/science.1187582
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1038/nphys2378
https://doi.org/10.1103/PhysRevA.74.013616
https://doi.org/10.1103/PhysRevLett.104.153202
https://doi.org/10.1103/PhysRevLett.100.163201
https://doi.org/10.1103/PhysRevLett.118.103403
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.102.090402
https://doi.org/10.1103/RevModPhys.84.175
https://doi.org/10.1103/PhysRevA.82.042713
https://doi.org/10.1103/PhysRevA.85.022706
https://doi.org/10.1038/32354
https://doi.org/10.1103/PhysRevLett.82.2422
https://doi.org/10.6028/jres.101.051
https://doi.org/10.1103/PhysRevLett.96.023203
https://doi.org/10.1126/science.1060622
https://doi.org/10.1103/PhysRevLett.86.3459
https://doi.org/10.1103/PhysRevLett.80.2027
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1103/PhysRevA.91.011603
https://doi.org/10.1103/PhysRevLett.105.030402
https://doi.org/10.1103/PhysRevLett.105.190401
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.112.010404
https://doi.org/10.1103/PhysRevLett.88.253001
https://doi.org/10.1103/PhysRevLett.106.205304
https://doi.org/10.1103/PhysRevA.87.013615
https://doi.org/10.1103/PhysRevLett.87.270402
http://arXiv.org/abs/physics.nist.gov/asd
https://doi.org/10.1103/PhysRevA.71.041604
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1364/JOSAB.19.001233
https://doi.org/10.1103/PhysRevA.82.023613
https://doi.org/10.1364/OPEX.13.002843
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature09378

10P Publishing

New]. Phys. 19(2017) 115011 M A Caracanhas et al

[68] Yamamoto R, Kobayashi], Kuno T, Kato K and Takahashi Y 2016 New J. Phys. 18 023016

[69] VilleJ etal2017 Phys. Rev. A 95 013632

[70] LeBlancLJand Thywissen J H2007 Phys. Rev. A75 053612

[71] Catani], Barontini G, Lamporesi G, Rabatti F, Thalhammer G, Minardi F, Stringari S and Inguscio M 2009 Phys. Rev. Lett. 103 140401
[72] FollingS, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Miiller T and Bloch 1 2007 Nature 448 1029

[73] Wirth G, Olschldger M and Hemmerich A 2010 Nat. Phys. 7 147

[74] Pethick CJand Smith H 2002 Bose—Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[75] Gordon] P and Ashkin A 1980 Phys. Rev. A 21 1606

[76] Grosfeld E, Cooper N R, Stern A and Ilan R 2007 Phys. Rev. B76 104516

[77] Midtgaard ] M, Wu Z and Bruun G M 2016 Phys. Rev. A 94 063631

[78] Zhang C, Tewari S, Lutchyn R M and Sarma S Das 2008b Phys. Rev. Lett. 101 160401

[79] OzeriR,Katz N, Steinhauer J and Davidson N 2005 Rev. Mod. Phys. 77 187

[80] Matveenko SIand Shlyapnikov GV 2011 Phys. Rev. A 83 033604

[81] SternF 1967 Phys. Rev. Lett. 18 546

20


https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1103/PhysRevA.95.013632
https://doi.org/10.1103/PhysRevA.75.053612
https://doi.org/10.1103/PhysRevLett.103.140401
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nphys1857
https://doi.org/10.1103/PhysRevA.21.1606
https://doi.org/10.1103/PhysRevB.76.104516
https://doi.org/10.1103/PhysRevA.94.063631
https://doi.org/10.1103/PhysRevLett.101.160401
https://doi.org/10.1103/RevModPhys.77.187
https://doi.org/10.1103/PhysRevA.83.033604
https://doi.org/10.1103/PhysRevLett.18.546

	1. Introduction
	2. System Hamiltonian
	3. Effective Interaction
	4. BCS Hamiltonian
	5. GAP equation
	6. Higher order correction to the effective 2D–3D interaction
	7. Experimental implementation
	7.1. Mixture choice
	7.2. Trap configuration
	7.3. Detection of p-wave superfluidity

	8. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	B.1. RPA correction
	B.2. Phonon lifetime
	B.3. Vertex correction
	B.4. Self-consistent vertex equation

	References



