81 research outputs found

    Meeting global land restoration and protection targets:What would the world look like in 2050?

    Get PDF
    Land restoration has received increased attention recently as a tool to counteract negative externalities of unsustainable land management on human well-being. This is reflected in targets of the Sustainable Development Goals (SDGs), the Convention on Biological Diversity (CBD), the United Nations Framework of the Convention on Climate Change (UNFCCC) and the United Nations Convention to Combat Desertification (UNCCD). However, the implications of these targets for land use, especially considering their potential conflict with growing food production demands, are largely unexplored. We study the potential and aggregated consequences of meeting these targets on land cover and land system change. We do so by analyzing targets originating from these global commitments towards land restoration and protection and implement them in a global land system change model. We compare this Restoration and Protection scenario with simulation results of two plausible pathways of socio-economic development in the absence of these targets, following the Shared Socio-Economic Pathway (SSP) storylines. We find that meeting global land restoration and protection targets would increase global tree cover by 4 million km², increasing forest carbon stocks by 50 Gt and protecting 28% of the terrestrial area with the highest value of both biodiversity and carbon storage. Gains in tree cover and natural land systems would cause a contraction of crop, pasture- and bare land. This results in further cropland intensification and the expansion of land systems that are combining land use demands in mosaics of forest and agriculture. Without these targets, land system architecture tends to become more specialized, while many carbon and biodiversity hotspots, such as in the Americas, India, and Indonesia would be lost. Grassland-agriculture mosaics were threatened by land use change under all scenarios, requiring greater consideration in research and environmental policy. Our results emphasize the need for targeted land management in line with the analyzed policy targets if global restoration and protection targets are to be achieved

    The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator

    Get PDF
    During the infection of plants, Agrobacterium tumefaciens introduces several Virulence proteins including VirE2, VirF, VirD5 and VirE3 into plant cells in addition to the T-DNA. Here, we report that double mutation of virF and virE3 leads to strongly diminished tumor formation on tobacco, tomato and sunflower. The VirE3 protein is translated from a polycistronic mRNA containing the virE1, virE2 and virE3 genes, in Agrobacterium. The VirE3 protein has nuclear localization sequences, which suggests that it is transported into the plant cell nucleus upon translocation. Indeed we show here that VirE3 interacts in vitro with importin-α and that a VirE3–GFP fusion protein is localized in the nucleus. VirE3 also interacts with two other proteins, viz. pCsn5, a component of the COP9 signalosome and pBrp, a plant specific general transcription factor belonging to the TFIIB family. We found that VirE3 is able to induce transcription in yeast when bound to DNA through the GAL4-BD. Our data indicate that the translocated effector protein VirE3 is transported into the nucleus and there it may interact with the transcription factor pBrp to induce the expression of genes needed for tumor development

    LandSense: Coupling citizen science and earth observation data to promote environmental monitoring

    Get PDF
    The Horizon 2020 project, LandSense, is a modern citizen observatory for Land Use & Land Cover (LULC) monitoring, that connects citizens with Earth Observation (EO) data to transform current approaches to environmental decision making. Citizen Observatories are community-driven mechanisms to complement existing environmental monitoring systems and can be fostered through EO-based mobile and web applications, allowing citizens to not only play a key role in LULC monitoring, but also to be directly involved in the co-creation of such solutions. Within LandSense, citizens can participate in ongoing demonstration pilots using their own devices (e.g. mobile phones and tablets), through interactive reporting, gaming applications and mapathons. Campaigns in Vienna, Toulouse, Amsterdam, Serbia, Spain and Indonesia address topics such as urban greenspaces, agricultural management and biodiversity/habitat threat monitoring. For example, in the case of Toulouse and Indonesia, hotspots of change in LULC are identified through Sentinel 2 time series analysis. These hotspots are then validated by citizens and interested stakeholders either directly on-site via customized mobile applications, providing geotagged photos, or remotely via the online LandSense Engagement platform. The presentation will not only showcase the tools and results from these campaigns, but also highlight how citizen-driven observations can contribute to sustainable development. Such initiatives present clear opportunities to integrate citizen-driven observations with established authoritative data sources to further extend GEOSS and Copernicus capacities, and support comprehensive environmental monitoring systems. In addition, these applications have considerable potential in lowering expenditure costs on in-situ data collection and current calibration/validation approaches within the processing chain of environmental monitoring activities both within and beyond Europe

    Origin and Evolution of GALA-LRR, a New Member of the CC-LRR Subfamily: From Plants to Bacteria?

    Get PDF
    The phytopathogenic bacterium Ralstonia solanacearum encodes type III effectors, called GALA proteins, which contain F-box and LRR domains. The GALA LRRs do not perfectly fit any of the previously described LRR subfamilies. By applying protein sequence analysis and structural prediction, we clarify this ambiguous case of LRR classification and assign GALA-LRRs to CC-LRR subfamily. We demonstrate that side-by-side packing of LRRs in the 3D structures may control the limits of repeat variability within the LRR subfamilies during evolution. The LRR packing can be used as a criterion, complementing the repeat sequences, to classify newly identified LRR domains. Our phylogenetic analysis of F-box domains proposes the lateral gene transfer of bacterial GALA proteins from host plants. We also present an evolutionary scenario which can explain the transformation of the original plant LRRs into slightly different bacterial LRRs. The examination of the selective evolutionary pressure acting on GALA proteins suggests that the convex side of their horse-shoe shaped LRR domains is more prone to positive selection than the concave side, and we therefore hypothesize that the convex surface might be the site of protein binding relevant to the adaptor function of the F-box GALA proteins. This conclusion provides a strong background for further functional studies aimed at determining the role of these type III effectors in the virulence of R. solanacearum

    Crowdsourcing public perceptions of urban green space quality: A case study of Rembrandt park in Amsterdam

    No full text
    City-dwellers are realizing the benefits of green spaces and are flocking to urban parks. City planners face the challenge of ensuring that urban green spaces are functional for all citizens. To make informed choices they need the right information and that is where the Mijn Park app can help. Research shows that when considering the social functions of urban green spaces, quality is just as important as quantity. It is easy enough to map how much green spaces there are, but how do we measure their quality? How do city planners ensure that the city?s green areas are attractive, accessible and inclusive ? for everyone? The Vrije Universiteit Amsterdam in collaboration with the International Institute for Applied Systems Analysis developed Mijn Park, a mobile application that will help city planners do just that. As part of the LandSense Citizen Observatory, the ?Mijn Park? (My Park) app asks respondents to go to several locations in a park and give subjective responses to those locations. They are then further questioned about how they use the whole park and how much they would like to see certain changes made in the park. This information provides information that can help to inform decisions about any renovations or improvements to the park. A pilot campaign was conducted in the summer of 2018 in Rembrandt park in Amsterdam and insights from the citizen-driven observations were shared with the Department of Planning and Sustainability of Amsterdam
    corecore