3 research outputs found

    Cycling in virtual reality: modelling behaviour in an immersive environment

    No full text
    Immersive technologies in transport research are gaining popularity, allowing for data collection in a controlled dynamic setting. Nonetheless, their ecological validity is still to be established hence their use in mathematical modelling in a transport setting has been scarce. We aim to fill this gap by conducting a study of cycling behaviour where non-immersive and immersive presentation methods are used in a virtual reality setting. The results confirm our hypothesis that participants behave differently when shown a choice scenario in non-immersive and immersive settings. In particular, cycling in an immersive setting is characterised by a higher degree of engagement. We also captured neural activity during task performance. We focussed on oscillations in the alpha (α) band where we found increased suppression in this signal in response to the immersive condition relative to the non-immersive. These results complement the behavioural findings and indicate that immersive environments may increase levels of task-engagement

    The Spectrometer/Telescope for Imaging X-rays (STIX)

    Get PDF
    Aims. The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter is a hard X-ray imaging spectrometer, which covers the energy range from 4 to 150 keV. STIX observes hard X-ray bremsstrahlung emissions from solar flares and therefore provides diagnostics of the hottest (\ue2\uaa\u2020 10 MK) flare plasma while quantifying the location, spectrum, and energy content of flare-accelerated nonthermal electrons. Methods. To accomplish this, STIX applies an indirect bigrid Fourier imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 coarsely pixelated CdTe detectors to provide information on angular scales from 7 to 180 arcsec with 1 keV energy resolution (at 6 keV). The imaging concept of STIX has intrinsically low telemetry and it is therefore well-suited to the limited resources available to the Solar Orbiter payload. To further reduce the downlinked data volume, STIX data are binned on board into 32 selectable energy bins and dynamically-adjusted time bins with a typical duration of 1 s during flares. Results. Through hard X-ray diagnostics, STIX provides critical information for understanding the acceleration of electrons at the Sun and their transport into interplanetary space and for determining the magnetic connection of Solar Orbiter back to the Sun. In this way, STIX serves to link Solar Orbiter's remote and in-situ measurements. \ua9 2020 ESO
    corecore