52 research outputs found

    Algorithms for Skein Manipulation in a Genus-2 Handlebody

    Full text link
    We present a series of algorithms for skein manipulation in a genus-2 handlebody, implementing a novel strand sorting method to reduce any skein to a skein in a 2-punctured disk. This reduction guarantees resolution as a linear combination of basis elements of the Kauffman Bracket Skein Module. Manually, these skein manipulations prove to be computationally intensive due to the inherent exponential nature of skein relations (i.e., a skein diagram with nn crossings yields 2n2^n new skein diagrams, each in C[t,t1]\mathbb{C}[t,t^{-1}], the Laurent polynomials with complex coefficients). Thus, as the number of crossings in a skein diagram increases, manual computations become intractable and automation desirable. We enable the automation of all skein computations in the genus-2 handlebody by first converting the skein diagram into an equivalent array, reducing the task of performing skein computations to that of implementing array operators, and then proving that we can always recover the resulting complex Laurent polynomial.Comment: Presented at the American Mathematical Society (AMS) Spring Southeastern Sectional Meeting, April 2023, Atlanta G

    A limit on the extent to which increased egg size can compensate for a poor postnatal environment revealed experimentally in the burying beetle, Nicrophorus vespilloides.

    Get PDF
    It is often assumed that there is a positive relationship between egg size and offspring fitness. However, recent studies have suggested that egg size has a greater effect on offspring fitness in low-quality environments than in high-quality environments. Such observations suggest that mothers may compensate for poor posthatching environments by increasing egg size. In this paper we test whether there is a limit on the extent to which increased egg size can compensate for the removal of posthatching parental care in the burying beetle, Nicrophorus vespilloides. Previous experiments with N. vespilloides suggest that an increased egg size can compensate for a relatively poor environment after hatching. Here, we phenotypically engineered female N. vespilloides to produce large or small eggs by varying the amount of time they were allowed to feed on the carcass as larvae. We then tested whether differences between these groups in egg size translated into differences in larval performance in a harsh postnatal environment that excluded parental care. We found that females engineered to produce large eggs did not have higher breeding success, and nor did they produce larger larvae than females engineered to produce small eggs. These results suggest that there is a limit on the extent to which increased maternal investment in egg size can compensate for a poor posthatching environment. We discuss the implication of our results for a recent study showing that experimental N. vespilloides populations can adapt rapidly to the absence of posthatching parental care.The authors were supported by a Consolidator's Grant from the European Research Council (310785 Baldwinian Beetles) and by the Department of Zoology at the University of Cambridge. RMK was also supported by a Wolfson Merit Award from the Royal Society

    Moving Beyond the 2018 Minimum International Care Considerations for Osteoporosis Management in Duchenne Muscular Dystrophy (DMD)

    Get PDF
    Individuals living with Duchenne muscular dystrophy (DMD) are at significant risk of bone fragility due to osteoporosis, with the most potent drivers of fragility fractures in this context stemming from the aggressive myopathy and long term oral glucocorticoid therapy. Young people with DMD have a high fracture burden, with reported total and vertebral fracture rates that are four [1, 2] and 535 times [1] higher than those of healthy growing boys, respectively. Vertebral fractures can occur as early as six months following daily glucocorticoid initiation [3]. Up to 75% of young people with DMD sustain at least one fracture after eight years of glucocorticoid therapy [4]. Fractures in DMD can lead to devastating outcomes, including steeper rates of functional decline, premature and permanent loss of ambulation, chronic pain, and even death from fat embolism syndrome or adrenal crisis following long bone fractures [2, 5–8]. The potential for serious consequences and medical complications linked to fractures has driven efforts to develop effective guidelines for timely bone health surveillance and treatment with more recent efforts to develop fracture prevention strategies.To guide clinicians in the management of DMD and its related co-morbidities (including skeletal health), the first internationally-endorsed, minimum standards of care were published in 2010 under the moniker “Clinical Care Considerations” [9, 10]. This document recommends that osteoporosis monitoring include spine x-rays if back pain or kyphosis is present, followed by initiation of intravenous bisphosphonate therapy if vertebral fractures are identified [10]. In the years following the inaugural 2010 Clinical Care Considerations, studies were published showing that vertebral fractures, a key manifestation of bone fragility among children and adults living with glucorticoid-treated chronic conditions, were frequently asymptomatic, necessitating routine surveillance for early detection [3, 11]. It was also better appreciated that even a single long bone fracture can signal osteoporosis in a persistently high-risk setting such as DMD, and prompt initiation of bone protection therapy is important.With this new knowledge, the latest international, minimum standards of clinical care for DMD published in 2018, known as Care Considerations [12–14], recommended routine, standardized spine imaging for early detection of vertebral fractures, combined with more timely bone-targeted (bisphosphonate) intervention in the presence of vertebral or low trauma long bone fractures [12]. At the same time, the ever-changing therapeutic landscape for the treatment of the underlying condition calls for ongoing examination of the intimate relationship between muscle and bone development in DMD, including the effect of different DMD treatment approaches on the skeletal and endocrine systems. The overall goal of such focus is to harvest discussions about optimal management that will foster bone strength and prevent fractures in this high-risk setting across all underlying disease-targeted treatment paradigms for people with DMD

    Moving beyond the 2018 minimum international care considerations for osteoporosis management in duchenne muscular dystrophy (DMD): Meeting report from the 3rd International Muscle-Bone Interactions Meeting 7th and 14th November 2022

    Get PDF
    This current manuscript summarizes the proceedings of the “Third Muscle-bone interactions in Duchenne Muscular Dystrophy Symposium: Moving Beyond the 2018 Minimum International Standards of Care for Osteoporosis Management”, an event co-organized by the World Duchenne Organization (www.worldduchenne.org) and the International Conference on Children’s Bone Health (www.theiscbh.org). This virtual symposium, held on November 7th and 14th 2022, brought together a total of 385 delegates representing 55 countries registered for the symposium, which included 239 clinicians, 70 researchers, 40 patient representatives and others from pharmaceutical companies and regulators. This symposium aimed to review the evidence base that informed the 2018 international minimum Care Considerations, best practices for implementation of these Care Considerations, and emerging knowledge that has arisen from research since the 2018 Care Considerations that shines light on the path forward. The online symposium and this report cover the following areas: 1. Current understanding of the bone morbidity in DMD, especially in relation to conventional glucocorticoid therapy. 2. The published, 2018 minimum international Care Considerations for osteoporosis monitoring and management in DMD. 3. Real world initiatives and challenges in the implementation of the 2018 minimum international Care Considerations for osteoporosis monitoring and management in DMD. 4. The need to consider strategies to move beyond the 2018 minimum international Care Considerations to prevent first fractures in DMD. 5. New therapies in DMD with potential impact on skeletal outcomes

    Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum

    Get PDF
    Expression of the transcription factor hypoxia-inducible factor 1 (HIF-1), which plays a key role in cellular adaptation to hypoxia, was investigated in normal colorectal mucosa (ten), adenomas (61), and carcinomas (23). Tissue samples were analyzed for HIF-1α, its upstream regulators, von Hippel–Lindau factor, AKT, and mammalian target of rapamycin (mTOR) and its downstream targets glucose transporter 1 (GLUT1), carbonic anhydrase IX, stromal-cell-derived factor 1 (SDF-1) by immunohistochemistry. In normal colorectal mucosa, HIF-1α was observed in almost all nuclei of surface epithelial cells, probably secondary to a gradient of oxygenation, as indicated by pimonidazole staining. The same staining pattern was present in 87% of adenomas. In carcinomas, HIF-1α was present predominantly around areas of necrosis (78%). Active AKT and mTOR, were present in all adenomas, carcinomas, and in normal colorectal mucosa. GLUT1 and SDF-1 were present in the normal surface epithelium of all adenoma cases, whereas in the carcinoma GLUT1 was located around necrotic regions and SDF-1 was present in all epithelial cells. In conclusion, HIF-1α appears to be physiologically expressed in the upper part of the colorectal mucosa. The present observations support that upregulation of HIF-1α and its downstream targets GLUT1 and SDF-1 in colorectal adenomas and carcinomas may be due to hypoxia, in close interaction with an active phosphatidylinositol 3-kinases–AKT–mTOR pathway

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
    corecore