2,380 research outputs found

    Adiabatic Quantum State Manipulation of Single Trapped Atoms

    Get PDF
    We use microwave induced adiabatic passages for selective spin flips within a string of optically trapped individual neutral Cs atoms. We position-dependently shift the atomic transition frequency with a magnetic field gradient. To flip the spin of a selected atom, we optically measure its position and sweep the microwave frequency across its respective resonance frequency. We analyze the addressing resolution and the experimental robustness of this scheme. Furthermore, we show that adiabatic spin flips can also be induced with a fixed microwave frequency by deterministically transporting the atoms across the position of resonance.Comment: 4 pages, 4 figure

    Generation of Requirements for Simulant Measurements

    Get PDF
    This TM presents a formal, logical explanation of the parameters selected for the figure of merit (FoM) algorithm. The FoM algorithm is used to evaluate lunar regolith simulant. The objectives, requirements, assumptions, and analysis behind the parameters are provided. A requirement is derived to verify and validate simulant performance versus lunar regolith from NASA s objectives for lunar simulants. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn, this leads to a set of nine criteria with which to evaluate comparative measurements. Many of the potential measurements of interest are not defensible under these criteria. For example, many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users. Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three parameters (composition, size, and shape) are recognized as being definable at the particle level. The fourth parameter (density) is a bulk property. In recent work, a fifth parameter (spectroscopy) has been identified, which will need to be added to future releases of the FoM

    Figures of Merit Software: Description, User's Guide, Installation Notes, Versions Description, and License Agreement

    Get PDF
    Figures of Merit (FoMs) and the FoM software provide a method for quantitatively evaluating the quality of a regolith simulant by comparing the simulant to a reference material. FoMs may be used for comparing a simulant to actual regolith material, specification by stating the value a simulant s FoMs must attain to be suitable for a given application and comparing simulants from different vendors or production runs. FoMs may even be used to compare different simulants to each other. A single FoM is conceptually an algorithm that computes a single number for quantifying the similarity or difference of a single characteristic of a simulant material and a reference material and provides a clear measure of how well a simulant and reference material match or compare. FoMs have been constructed to lie between zero and 1, with zero indicating a poor or no match and 1 indicating a perfect match. FoMs are defined for modal composition, particle size distribution, particle shape distribution, (aspect ratio and angularity), and density. This TM covers the mathematics, use, installation, and licensing for the existing FoM code in detail

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Scattering Theory Approach to Random Schroedinger Operators in One Dimension

    Get PDF
    Methods from scattering theory are introduced to analyze random Schroedinger operators in one dimension by applying a volume cutoff to the potential. The key ingredient is the Lifshitz-Krein spectral shift function, which is related to the scattering phase by the theorem of Birman and Krein. The spectral shift density is defined as the "thermodynamic limit" of the spectral shift function per unit length of the interaction region. This density is shown to be equal to the difference of the densities of states for the free and the interacting Hamiltonians. Based on this construction, we give a new proof of the Thouless formula. We provide a prescription how to obtain the Lyapunov exponent from the scattering matrix, which suggest a way how to extend this notion to the higher dimensional case. This prescription also allows a characterization of those energies which have vanishing Lyapunov exponent.Comment: 1 figur

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure

    Lunar Regolith Simulant User's Guide

    Get PDF
    Based on primary characteristics, currently or recently available lunar regolith simulants are discussed from the perspective of potential experimental uses. The characteristics used are inherent properties of the material rather than their responses to behavioral (geomechanical, physiochemical, etc.) tests. We define these inherent or primary properties to be particle composition, particle size distribution, particle shape distribution, and bulk density. Comparable information about lunar materials is also provided. It is strongly emphasized that anyone considering either choosing or using a simulant should contact one of the members of the simulant program listed at the end of this document

    Notes on Lithology, Mineralogy, and Production for Lunar Simulants

    Get PDF
    The creation of lunar simulants requires a very broad range of specialized knowledge and information. This document covers several topic areas relevant to lithology, mineralogy, and processing of feedstock materials that are necessary components of the NASA lunar simulant effort. The naming schemes used for both terrestrial and lunar igneous rocks are discussed. The conflict between the International Union of Geological Sciences standard and lunar geology is noted. The rock types known as impactites are introduced. The discussion of lithology is followed by a brief synopsis of pyroxene, plagioclase, and olivine, which are the major mineral constituents of the lunar crust. The remainder of the text addresses processing of materials, particularly the need for separation of feedstock minerals. To illustrate this need, the text includes descriptions of two norite feedstocks for lunar simulants: the Stillwater Complex in Montana, United States, and the Bushveld Complex in South Africa. Magnetic mineral separations, completed by Hazen Research, Inc. and Eriez Manufacturing Co. for the simulant task, are discussed
    • …
    corecore