8,738 research outputs found
Revisiting the connection between magnetic activity, rotation period, and convective turnover time for main-sequence stars
The connection between stellar rotation, stellar activity, and convective
turnover time is revisited with a focus on the sole contribution of magnetic
activity to the Ca II H&K emission, the so-called excess flux, and its
dimensionless indicator R in relation to other stellar
parameters and activity indicators. Our study is based on a sample of 169
main-sequence stars with directly measured Mount Wilson S-indices and rotation
periods. The R values are derived from the respective S-indices
and related to the rotation periods in various -colour intervals. First,
we show that stars with vanishing magnetic activity, i.e. stars whose excess
flux index R approaches zero, have a well-defined,
colour-dependent rotation period distribution; we also show that this rotation
period distribution applies to large samples of cool stars for which rotation
periods have recently become available. Second, we use empirical arguments to
equate this rotation period distribution with the global convective turnover
time, which is an approach that allows us to obtain clear relations between the
magnetic activity related excess flux index R, rotation
periods, and Rossby numbers. Third, we show that the activity versus Rossby
number relations are very similar in the different activity indicators. As a
consequence of our study, we emphasize that our Rossby number based on the
global convective turnover time approaches but does not exceed unity even for
entirely inactive stars. Furthermore, the rotation-activity relations might be
universal for different activity indicators once the proper scalings are used.Comment: 13 pages, 7 figures, accepted for publication in A&
The temperature dependence of the spin polarization of field emitted electrons from a W-EuS-vacuum junction
Baum G, Kisker E, Mahan AH, Schröder K. The temperature dependence of the spin polarization of field emitted electrons from a W-EuS-vacuum junction. Journal of Magnetism and Magnetic Materials. 1976;3(1-2):4-6.We have measured the temperature dependence P(T) of the electron spin polarization of field emitted electrons from a W-EuS-vacuum junction. The shapes of the P(T) curves depend strongly on the annealing temperature of the EuS layer. Annealed at some temperature between 300°C and 600°C the polarization drops to zero at about 16 ± 2 K
Basal Chromospheric Flux and Maunder Minimum-type Stars: The quiet-Sun Chromosphere as a Universal Phenomenon
Aims: We demonstrate the universal character of the quiet-Sun chromosphere
among inactive stars (solar-type and giants). By assessing the main physical
processes, we shed new light on some common observational phenomena. Methods:
We discuss measurements of the solar Mt. Wilson S-index, obtained by the
Hamburg Robotic Telescope around the extreme minimum year 2009, and compare the
established chromospheric basal Ca II K line flux to the Mt. Wilson S-index
data of inactive ("flat activity") stars, including giants. Results: During the
unusually deep and extended activity minimum of 2009, the Sun reached S-index
values considerably lower than in any of its previously observed minima. In
several brief periods, the Sun coincided exactly with the S-indices of inactive
("flat", presumed Maunder Minimum-type) solar analogues of the Mt. Wilson
sample; at the same time, the solar visible surface was also free of any plages
or remaining weak activity regions. The corresponding minimum Ca II K flux of
the quiet Sun and of the presumed Maunder Minimum-type stars in the Mt. Wilson
sample are found to be identical to the corresponding Ca II K chromospheric
basal flux limit. Conclusions: We conclude that the quiet-Sun chromosphere is a
universal phenomenon among inactive stars. Its mixed-polarity magnetic field,
generated by a local, "fast" turbulent dynamo finally provides a natural
explanation for the minimal soft X-ray emission observed for inactive stars.
Given such a local dynamo also works for giant chromospheres, albeit on larger
length scales, i.e., l ~ R/g, with R and g as stellar radius and surface
gravity, respectively, the existence of giant spicular phenomena and the
guidance of mechanical energy toward the acceleration zone of cool stellar
winds along flux-tubes have now become traceable.Comment: 6 pages, 4 figures; Astronomy & Astrophysics (Research Note), in
pres
A New Version of Reimers' law of Mass Loss Based on a Physical Approach
We present a new semi-empirical relation for the mass loss of cool stellar
winds, which so far has frequently been described by "Reimers' law".
Originally, this relation was based solely on dimensional scaling arguments
without any physical interpretation. In our approach, the wind is assumed to
result from the spill-over of the extended chromosphere, possibly associated
with the action of waves, especially Alfven waves, which are used as guidance
in the derivation of the new formula. We obtain a relation akin to the original
Reimers law, but which includes two new factors. They reflect how the
chromospheric height depends on gravity and how the mechanical energy flux
depends, mainly, on effective temperature. The new relation is tested and
sensitively calibrated by modelling the blue end of the Horizontal Branch of
globular clusters. The most significant difference from mass loss rates
predicted by the Reimers relation is an increase by up to a factor of 3 for
luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter
Revisiting the cycle-rotation connection for late-type stars
We analyse the relation between the activity cycle length and the Rossby
number and collected a sample of 44 main sequence stars with well-known
activity cycle periods and rotation periods. We find a linear behaviour in the
double-logarithmic relation between the Rossby number and cycle period. The
bifurcation into a long and a short period branch is clearly real but it
depends, empirically, on the colour index B-V, indicating a physical dependence
on effective temperature and position on the main sequence. Furthermore, there
is also a correlation between cycle length and convective turnover time with
the relative depth of the convection zone. Based on this, we derive empirical
relations between cycle period and Rossby number, and for the short period
cycle branch relations, we estimate a scatter of the relative deviation between
14% and 28% on the long-period cycle branch. With these relations, we obtain a
good match with the 10.3 yr period for the well known 11-year solar Schwabe
cycle and a long-period branch value of 104 yr for the Gleissberg cycle of the
Sun. Finally, we suggest that the cycles on the short-period branch appear to
be generated in the deeper layers of the convective zone, while long-period
branch cycles seem to be related to fewer deep layers in that zone. We show
that for a broader B-V range, the Rossby number is a more suitable parameter
for universal relation with cycle-rotation than just the rotation period alone.
As proof, we demonstrate that our empirical stellar relations are consistent
with the 11-year solar Schwabe cycle, in contrast to earlier studies using just
the rotation period in their relations. Previous studies have tried to explain
the cycle position of the Sun in the cycle-rotation presentation via other
kinds of dynamo, however, in our study, no evidence is found that would suggest
another type of dynamo for the Sun and other stars.Comment: 18 pages, 18 figures, accepted for publication in A&
Spins in the Vortices of a High Temperature Superconductor
Neutron scattering is used to characterise the magnetism of the vortices for
the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO(4)
(x=0.163) in an applied magnetic field. As temperature is reduced, low
frequency spin fluctuations first disappear with the loss of vortex mobility,
but then reappear. We find that the vortex state can be regarded as an
inhomogeneous mixture of a superconducting spin fluid and a material containing
a nearly ordered antiferromagnet. These experiments show that as for many other
properties of cuprate superconductors, the important underlying microscopic
forces are magnetic
3-D unrestricted TDHF fusion calculations using the full Skyrme interaction
We present a study of fusion cross sections using a new generation
Time-Dependent Hartree-Fock (TDHF) code which contains no approximations
regarding collision geometry and uses the full Skyrme interaction, including
all of the time-odd terms. In addition, the code uses the Basis-Spline
collocation method for improved numerical accuracy. A comparative study of
fusion cross sections for is made with the older TDHF
results and experiments. We present results using the modern Skyrme forces and
discuss the influence of the new terms present in the interaction.Comment: 7 pages, 10 figure
- …