3,324 research outputs found

    Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets

    Full text link
    In this paper we derive the most general first-order symmetry operator commuting with the Dirac operator in all dimensions and signatures. Such an operator splits into Clifford even and Clifford odd parts which are given in terms of odd Killing-Yano and even closed conformal Killing-Yano inhomogeneous forms respectively. We study commutators of these symmetry operators and give necessary and sufficient conditions under which they remain of the first-order. In this specific setting we can introduce a Killing-Yano bracket, a bilinear operation acting on odd Killing-Yano and even closed conformal Killing-Yano forms, and demonstrate that it is closely related to the Schouten-Nijenhuis bracket. An important non-trivial example of vanishing Killing-Yano brackets is given by Dirac symmetry operators generated from the principal conformal Killing-Yano tensor [hep-th/0612029]. We show that among these operators one can find a complete subset of mutually commuting operators. These operators underlie separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions [arXiv:0711.0078].Comment: 37 pages, no figure

    Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions

    Get PDF
    We establish the existence and nonlinear stability of travelling pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions close to the continuum limit. For the verification of the spectral properties, we need to study a functional differential equation of mixed type (MFDE) with unbounded shifts. We avoid the use of exponential dichotomies and phase spaces, by building on a technique developed by Bates, Chen and Chmaj for the discrete Nagumo equation. This allows us to transfer several crucial Fredholm properties from the PDE setting to our discrete setting

    A cryogenic amplifier for fast real-time detection of single-electron tunneling

    Full text link
    We employ a cryogenic High Electron Mobility Transistor (HEMT) amplifier to increase the bandwidth of a charge detection setup with a quantum point contact (QPC) charge sensor. The HEMT is operating at 1K and the circuit has a bandwidth of 1 MHz. The noise contribution of the HEMT at high frequencies is only a few times higher than that of the QPC shot noise. We use this setup to monitor single-electron tunneling to and from an adjacent quantum dot and we measure fluctuations in the dot occupation as short as 400 nanoseconds, 20 times faster than in previous work.Comment: 4 pages, 3 figure

    Incremental Distance Transforms (IDT)

    Get PDF
    A new generic scheme for incremental implementations of distance transforms (DT) is presented: Incremental Distance Transforms (IDT). This scheme is applied on the cityblock, Chamfer, and three recent exact Euclidean DT (E2DT). A benchmark shows that for all five DT, the incremental implementation results in a significant speedup: 3.4×−10×. However, significant differences (i.e., up to 12.5×) among the DT remain present. The FEED transform, one of the recent E2DT, even showed to be faster than both city-block and Chamfer DT. So, through a very efficient incremental processing scheme for DT, a relief is found for E2DT’s computational burden

    ON NON-RIEMANNIAN PARALLEL TRANSPORT IN REGGE CALCULUS

    Full text link
    We discuss the possibility of incorporating non-Riemannian parallel transport into Regge calculus. It is shown that every Regge lattice is locally equivalent to a space of constant curvature. Therefore well known-concepts of differential geometry imply the definition of an arbitrary linear affine connection on a Regge lattice.Comment: 12 pages, Plain-TEX, two figures (available from the author

    Is the Quantum Hall Effect influenced by the gravitational field?

    Get PDF
    Most of the experiments on the quantum Hall effect (QHE) were made at approximately the same height above sea level. A future international comparison will determine whether the gravitational field g(x)\mathbf{g}(x) influences the QHE. In the realm of (1 + 2)-dimensional phenomenological macroscopic electrodynamics, the Ohm-Hall law is metric independent (`topological'). This suggests that it does not couple to g(x)\mathbf{g}(x). We corroborate this result by a microscopic calculation of the Hall conductance in the presence of a post-Newtonian gravitational field.Comment: 4 page

    Josephson squelch filter for quantum nanocircuits

    Full text link
    We fabricated and tested a squelch circuit consisting of a copper powder filter with an embedded Josephson junction connected to ground. For small signals (squelch-ON), the small junction inductance attenuates strongly from DC to at least 1 GHz, while for higher frequencies dissipation in the copper powder increases the attenuation exponentially with frequency. For large signals (squelch-OFF) the circuit behaves as a regular metal powder filter. The measured ON/OFF ratio is larger than 50dB up to 50 MHz. This squelch can be applied in low temperature measurement and control circuitry for quantum nanostructures such as superconducting qubits and quantum dots.Comment: Corrected and completed references 6,7,8. Updated some minor details in figure

    Multipole moments in Kaluza-Klein theories

    Get PDF
    This paper contains discussion of the problem of motion of extended i.e. non point test bodies in multidimensional space. Extended bodies are described in terms of so called multipole moments. Using approximated form of equations of motion for extended bodies deviation from geodesic motion is derived. Results are applied to special form of space-time.Comment: 11 pages, AMS-TeX, few misprints corrected, to appear in Classical and Quantum Gravit
    corecore