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Abstract

We establish the existence and nonlinear stability of travelling pulse solutions for the discrete FitzHugh-

Nagumo equation with infinite-range interactions close to the continuum limit. For the verification of the

spectral properties, we need to study a functional differential equation of mixed type (MFDE) with un-

bounded shifts. We avoid the use of exponential dichotomies and phase spaces, by building on a technique

developed by Bates, Chen and Chmaj for the discrete Nagumo equation. This allows us to transfer several

crucial Fredholm properties from the PDE setting to our discrete setting.
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1 Introduction

The FitzHugh-Nagumo partial differential equation (PDE) is given by

ut = uxx + g(u; r0)− w

wt = ρ(u− γw),
(1.1)

where g(·; r0) is the cubic bistable nonlinearity given by

g(u; r0) = u(1− u)(u− r0) (1.2)

and ρ, γ are positive constants. This PDE is commonly used as a simplification of the Hodgkin-Huxley
equations, which describe the propagation of signals through nerve fibres. The spatially homogeneous
version of this equation was first stated by FitzHugh in 1961 [25] in order to describe the potential
felt at a single point along a nerve axon as a signal travels by. A few years later [26], the diffusion

∗Corresponding author.

Preprint submitted to Discrete and Continuous Dynamical Systems A May 9, 2019

ar
X

iv
:1

80
7.

11
73

6v
2 

 [
m

at
h.

D
S]

  8
 M

ay
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388642444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


term in (1.1) was added to describe the dynamics of the full nerve axon instead of just a single point.
As early as 1968 [27], FitzHugh released a computer animation based on numerical simulations of
(1.1). This video clip clearly shows that (1.1) admits isolated pulse solutions resembling the spike
signals that were measured by Hodgkin and Huxley in the nerve fibres of giant squids [32].

As a consequence of this rich behaviour and the relative simplicity of its structure, (1.1) has
served as a prototype for several similar systems. For example, memory devices have been designed
using a planar version of (1.1), which supports stable stationary, radially symmetric spot patterns
[43]. In addition, gas discharges have been described using a three-component FitzHugh-Nagumo
system [49, 54], for which it is possible to find stable travelling spots [58].

Mathematically, it turned out to be a major challenge to control the interplay between the exci-
tation and recovery dynamics and rigorously construct the travelling pulses visualized by FitzHugh
in [27]. Such pulse solutions have the form

(u,w)(x, t) = (u0, w0)(x+ c0t), (1.3)

in which c0 is the wavespeed and the wave profile (u0, w0) satisfies the limits

lim
|ξ|→∞

(u0, w0)(ξ) = 0. (1.4)

Plugging this Ansatz into (1.1) and writing ξ = x + c0t, we see that the profiles are homoclinic
solutions to the travelling wave ordinary differential equation (ODE)

c0u
′
0(ξ) = u′′0(ξ) + g(u0(ξ); r0)− w0(ξ)

c0w
′
0(ξ) = ρ

[
u0(ξ)− γw0(ξ)

]
.

(1.5)

The analysis of this equation in the singular limit ρ ↓ 0 led to the birth of many techniques in
geometric singular perturbation theory, see for example [40] for an interesting overview. Indeed, the
early works [10, 31, 41, 42] used geometric techniques such as the Conley index, exchange lemmas
and differential forms to construct pulses and analyze their stability. A more analytic approach was
later developed in [46], where Lin’s method was used in the r0 ≈ 1

2 regime to connect a branch
of so-called slow-pulse solutions to (1.5) to a branch of fast-pulse solutions. This equation is still
under active investigation, see for example [11, 12], where the birth of oscillating tails for the pulse
solutions is described as the unstable root r0 of the nonlinearity g moves towards the stable root at
zero.

Many physical, chemical and biological systems have an inherent discrete structure that strongly
influences their dynamical behaviour. In such settings lattice differential equations (LDEs), i.e. dif-
ferential equations where the spatial variable can only take values on a lattice such as Zn, are the
natural replacements for PDEs, see for example [1, 36, 48]. Although mathematically it is a relatively
young field of interest, LDEs have already appeared frequently in the more applied literature. For
example, they have been used to describe phase transitions in Ising models [1], crystal growth in
materials [9] and phase mixing in martensitic structures [57].

To illustrate these points, let us return to the nerve axon described above and reconsider the
propagation of electrical signals through nerve fibres. It is well known that electrical signals can only
travel at adequate speeds if the nerve fibre is insulated by a myeline coating. This coating admits
regularly spaced gaps at the so-called nodes of Ranvier [51]. Through a process called saltatory
conduction, it turns out that excitations of nerves effectively jump from one node to the next [47].
Exploiting this fact, it is possible [45] to model this jumping process with the discrete FitzHugh-
Nagumo LDE

u̇j = 1
h2 (uj+1 + uj−1 − 2uj) + g(uj ; r0)− wj

ẇj = ρ[uj − γwj ].
(1.6)

The variable uj now represents the potential at the jth node, while the variable wj denotes a recovery
component. The nonlinearity g describes the ionic interactions. Note that this equation arises directly
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from the FitzHugh-Nagumo PDE upon taking the nearest-neighbour discretisation of the Laplacian
on a grid with spacing h > 0.

Inspired by the procedure for partial differential equations, one can substitute a travelling pulse
Ansatz

(uj , wj)(t) = (uh, wh)(hj + cht) (1.7)

into (1.6). Instead of an ODE, we obtain the system

chu
′
h(ξ) = 1

h2 [uh(ξ + h) + uh(ξ − h)− 2uh(ξ)] + g(uh(ξ); r0)− wh(ξ)

chw
′
h(ξ) = ρ[uh(ξ)− γwh(ξ)]

(1.8)

in which ξ = hj + cht. Such equations are called functional differential equations of mixed type
(MFDEs), since they contain both advanced (positive) and retarded (negative) shifts.

In [36, 35], Hupkes and Sandstede studied (1.6) and showed that for small values of ρ and r0

sufficiently far from 1
2 , there exists a locally unique travelling pulse solution of this system and

that it is asymptotically stable with an asymptotic phase shift. No restrictions were required on the
discretisation distance h, but the results relied heavily on the existence of exponential dichotomies for
MFDEs. As a consequence, the techniques developed in [35, 36] can only be used if the discretisation
involves finitely many neighbours. Such discretisation schemes are said to have finite range.

Recently, an active interest has arisen in non-local equations that feature infinite-range interac-
tions. For example, Ising models have been used to describe the infinite-range interactions between
magnetic spins arranged on a grid [1]. In addition, many physical systems, such as amorphous
semiconductors [29] and liquid crystals [17], feature non-standard diffusion processes, which are gen-
erated by fractional Laplacians. Such operators are intrinsically non-local and hence often require
infinite-range discretisation schemes [16].

Our primary interest here, however, comes from so-called neural field models, which aim to
describe the dynamics of large networks of neurons. These neurons interact with each other by
exchanging signals across long distances through their interconnecting nerve axons [7, 8, 50, 56].
It is of course a major challenge to find effective equations to describe such complex interactions.
One model that has been proposed [7, Eq. (3.31)] features a FitzHugh-Nagumo type system with
infinite-range interactions.

Motivated by the above, we consider a class of infinite-range FitzHugh-Nagumo LDEs that
includes the prototype

u̇j = κ
h2

∑
k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; r0)− wj

ẇj = ρ[uj − γwj ],
(1.9)

in which κ > 0 is a normalisation constant. In [22], Faye and Scheel studied equations such as (1.9) for
discretisations with infinite-range interactions featuring exponential decay in the coupling strength.
They circumvented the need to use a state space as in [35], which enabled them to construct pulses
to (1.9) for arbitrary discretisation distance h. Very recently [23], they developed a center manifold
approach that allows bifurcation results to be obtained for neural field equations.

In this paper, we also construct pulse solutions to equations such as (1.9), but under weaker
assumptions on the decay rate of the couplings. Moreover, we will establish the nonlinear stability
of these pulse solutions, provided the coupling strength decays exponentially. However, both results
do require the discretisation distance h to be very small.

In particular, we will be working in the continuum limit. The pulses we construct can be seen as
perturbations of the travelling pulse solution of the FitzHugh-Nagumo PDE. However, we will see
that the travelling wave equations are highly singular perturbations of (1.5), which poses a significant
mathematical challenge. On the other hand, we do not need to use exponential dichotomies directly
in our non-local setting as in [36]. Instead we are able to exploit the detailed knowledge that has
been obtained using these techniques for the pulses in the PDE setting.
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Our approach to tackle the difficulties arising from this singular perturbation is strongly inspired
by the work of Bates, Chen and Chmaj. Indeed, in their excellent paper [1], they study a class of
systems that includes the infinite-range discrete Nagumo equation

u̇j = κ
h2

∑
k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; r0), (1.10)

in which κ > 0 is a normalisation constant. This equation can be seen as a discretisation of the
Nagumo PDE

ut = uxx + g(u; r0). (1.11)

The authors show that, under some natural assumptions, these systems admit travelling front solu-
tions for h small enough.

In the remainder of this introduction we outline their approach and discuss our modifications,
which significantly broaden the application range of these methods. We discuss these modifications
for the prototype (1.9), but naturally they can be applied to a broad class of systems.

Transfer of Fredholm properties: Scalar case.

An important role in [1] is reserved for the operator Lh;u0:sc;c0:sc given by

Lh;u0:sc;c0:scv(ξ) = c0:scv
′(ξ)− κ

h2

∑
k∈Z>0

e−k
2
[
v(ξ + hk) + v(ξ − hk)− 2v(ξ)

]
−gu(u0:sc(ξ); r0)v(ξ),

(1.12)

where u0:sc is the wave solution of the scalar Nagumo PDE (1.11) with wavespeed c0:sc. This operator
arises as the linearisation of the scalar Nagumo MFDE

c0:scu
′(ξ) = κ

h2

∑
k∈Z>0

e−k
2
[
v(ξ + hk) + v(ξ − hk)− 2v(ξ)

]
+ gu(u0:sc(ξ); r0)v(ξ), (1.13)

around the wave solution u0:sc of the scalar Nagumo PDE (1.11). This operator should be compared
to

L0;u0:sc;c0:scv(ξ) = c0:scv
′(ξ)− v′′(ξ)− gu(u0:sc(ξ); r0)v(ξ), (1.14)

the linearisation of the scalar Nagumo PDE around its wave solution.
The key contribution in [1] is that the authors fix a constant δ > 0 and use the invertibility of

L0;u0:sc;c0:sc + δ to show that also Lh;u0:sc;c0:sc + δ is invertible. In particular, they consider weakly-
converging sequences {vn} and {wn} with (Lh;u0:sc;c0:sc + δ)vn = wn and try to find a uniform (in δ
and h) upper bound for the L2-norm of v′n in terms of the L2-norm of wn. Such a bound is required
to rule out the limitless transfer of energy into oscillatory modes, a key complication when taking
weak limits. To obtain this bound, the authors exploit the bistable structure of the nonlinearity g to
control the behaviour at ±∞. This allows the local L2-norm of vn on a compact set to be uniformly
bounded away from zero. Since the operator Lh;u0:sc;c0:sc + δ is not self-adjoint, this procedure must
be repeated for the adjoint operator.

Transfer of Fredholm properties: System case.

Plugging the travelling pulse Ansatz

(u,w)j(t) = (uh, wh)(hj + cht) (1.15)

into (1.9) and writing ξ = hj+ cht, we see that the profiles are homoclinic solutions to the equation

chu
′
h(ξ) = κ

h2

∑
k>0

e−k
2
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+g(uh(ξ); r0)− wh(ξ)

chw
′
h(ξ) = ρ

(
uh(ξ)− γwh(ξ)

)
.

(1.16)
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We start by considering the linearised operator Kh;u0;c0 of the system (1.16) around the pulse solution
(u0, w0) of the FitzHugh-Nagumo PDE with wavespeed c0. This operator is given by

Kh;u0;c0

(
v
w

)
(ξ) =

(
Lh;u0;c0v(ξ) + w(ξ)
c0w

′(ξ)− ρv(ξ) + ργw(ξ)

)
, (1.17)

where Lh;u0;c0 is given by equation (1.12), but with u0:sc replaced by u0 and c0:sc by c0.
In §3 we use a Fredholm alternative as described above to establish the invertibility of Kh;u0;c0 +δ

for fixed δ > 0. However, the transition from a scalar equation to a system is far from trivial. Indeed,
when transferring the Fredholm properties there are multiple cross terms that need to be controlled.
We are aided here by the relative simplicity of the terms in the equation that involve w. In particular,
three of the four matrix-elements of the linearisation (1.17) have constant coefficients. We emphasize
that it is not sufficient to merely assume that the limiting state (0, 0) is a stable equilibrium of (1.9).
In [55] we explore a number of structural conditions that allow these types of arguments to be
extended to general multi-component systems.

Construction of pulses.

Using these results for Kh;u0;c0 a standard fixed point argument can be used to show that the system
(1.9) has a locally unique travelling pulse solution (Uh(t))j = (uh, wh)(hj+ cht) for h small enough,
which converges to a travelling pulse solution of the FitzHugh-Nagumo PDE as h ↓ 0. Indeed, one
can mimic the approach developed in [1, §4], which in turn closely follows the lines of a standard
proof of the implicit function theorem.

Spectral stability.

The natural next step is to study the linear operator Kh;uh;ch that arises after linearising the system
(1.9) around its new-found pulse solution. This operator is given by

Kh;uh;ch

(
v
w

)
(ξ) =

(
Lh;uh;chv(ξ) + w(ξ)
c0w

′(ξ)− ρv(ξ) + ργw(ξ)

)
, (1.18)

where Lh;uh is given by equation (1.12), but with u0:sc replaced by uh and c0:sc by ch. The procedure
above can be repeated to show that for fixed δ > 0, it also holds that Kh;uh;ch + δ is invertible for
h small enough. However, to understand the spectral stability of the pulse, we need to consider the
eigenvalue problem

Kh;uh;chv + λv = 0 (1.19)

for fixed values of h and λ ranging throughout a half-plane. Switching between these two points of
view turns out to be a delicate task.

We start in §4 by showing that Kh;uh;ch and its adjoint K∗h;uh;ch
are Fredholm operators with

one-dimensional kernels. This is achieved by explicitly constructing a kernel element for K∗h;uh;ch
that converges to a kernel element of the adjoint of the operator corresponding to the linearised
PDE. An abstract perturbation argument then yields the result.

In particular, we see that λ = 0 is a simple eigenvalue of Kh;uh;ch . In §5 we establish that in a
suitable half-plane, the spectrum of this operator consists precisely of the points {k2πich

1
h : k ∈ Z},

which are all simple eigenvalues. We do this by first showing that the spectrum is invariant under
the operation λ 7→ λ + 2πich

h , which allows us to restrict ourselves to values of λ with imaginary
part in between −πchh and πch

h . Note that the period of the spectrum is dependent on h and grows
to infinity as h ↓ 0. This is not too surprising, since the spectrum of the linearisation of the PDE
around its pulse solution is not periodic. However, this means that we cannot restrict ourselves to
a fixed compact subset of the complex plane for all values of h at the same time. In fact, it takes
quite some effort to keep the part of the spectrum with large imaginary part under control.
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It turns out to be convenient to partition our ‘half-strip’ into four parts and to calculate the
spectrum in each part using different methods. Values close to 0 are analyzed using the Fredholm
properties of Kh;uh;ch exploiting many of the results from §4; values with a large real part are
considered using standard norm estimates, but values with a large imaginary part are treated using
a Fourier transform. The final set to consider is a compact set that is independent of h and bounded
away from the origin. This allows us to apply a modified version of the procedure described above
that exploits the absence of spectrum in this region for the FitzHugh-Nagumo PDE.

Let us emphasize that our arguments here for bounded values of the spectral parameter λ strongly
use the fact that the PDE pulse is spectrally stable. The main complication to establish the latter fact
is the presence of a secondary eigenvalue that is O(ρ)-close to the origin. Intuitively, this eigenvalue
arises as a consequence of the interaction between the front and back solution to the Nagumo
equation that are both part of the singular pulse that arises in the ρ ↓ 0 limit. In the PDE case,
Jones [41] and Yanagida [59] essentially used shooting arguments to construct and analyze an Evans
function E(λ) that vanishes precisely at eigenvalues. In particular, they computed the sign of E ′(0)
and used counting arguments to show that the secondary eigenvalue discussed above lies to the left
of the origin. Currently, a program is underway to build a general framework in this spirit based on
the Maslov index [2, 13, 33], which also works in multi-dimensional spatial settings. In [18, 19] this
framework was applied to an equal-diffusion version of the FitzHugh-Nagumo PDE.

An alternative approach involving Lin’s method and exponential dichotomies was pioneered in
[46]. Based upon these ideas stability results have been obtained for the LDE (1.6) [36] and the PDE
(1.1) [11] in the non-hyperbolic regime r0 ∼ 0. The first major advantage of this approach is that
explicit bifurcation equations can be formulated that allow asymptotic expansions to be developed
for the location of the interaction eigenvalue discussed above. The second major advantage is that it
allows us to avoid the use of the Evans function, which cannot easily be defined in discrete settings
because MFDEs are ill-posed as initial value problems [52]. We believe that a direct approach
along these lines should also be possible for the infinite range system (1.9) as soon as exponential
dichotomies are available in this setting.

Nonlinear stability.

The final step in our program is to leverage the spectral stability results to obtain a nonlinear stability
result. To do so, we follow [36] and derive a formula that links the pointwise Green’s function of our
general problem (1.9) to resolvents of the operator Kh;uh;ch in §6. Since we have already analyzed
the latter operator in detail, we readily obtain a spectral decomposition of this Green’s function
into an explicit neutral part and a residual that decays exponentially in time and space. Therefore,
we obtain detailed estimates on the decay rate of the Green’s function for the general problem.
These Green’s functions allow us to establish the nonlinear stability of the family of travelling pulse
solutions Uh. To be more precise, for each initial condition close to Uh(0), we show that the solution
with that initial condition converges at an exponential rate to the solution Uh(·+ θ̃) for a small (and
unique) phase shift θ̃.

We emphasize that by now there are several techniques available to obtain nonlinear stability
results in the relatively simple spectral setting encountered in this paper. If a comparison principle is
available, which is not the case for the FitzHugh-Nagumo system, one can follow the classic approach
developed by Fife and McLeod [24] to show that travelling waves have a large basin of attraction.
Indeed, one can construct explicit sub- and super-solutions that trade-off additive perturbations at
t = 0 to phase-shifts at t = ∞. In fact, one can actually use this type of argument to establish
the existence of travelling waves by letting an appropriate initial condition evolve and tracking its
asymptotic behaviour [14, 37]. For systems that can be written as gradient flows, which is also not
the case here, the existence and stability of travelling waves can be obtained by using an elegant
variational technique that was developed by Gallay and Risler [28].

In the spatially continuous setting, it is possible to freeze a travelling wave by passing to a co-
moving frame. In our setting, one can achieve this by simply adding a convective term −c0∂x(u,w)
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to the right hand side of (1.1). The main advantage is that one can immediately use the semigroup
exp[tL0] to describe the evolution of the linearised system in this co-moving frame, which is tem-
porally autonomous. Here L0 is the standard linear operator associated to the linearisation of (1.1)
around (u0, w0); see (2.10). For each ϑ ∈ R one can subsequently construct the stable manifold of(
u0(· + ϑ), w0(· + ϑ)

)
by applying a fixed point argument to Duhamel’s formula. Upon varying ϑ,

these stable manifolds span a tubular neighbourhood of the family (u0, w0)(·+R). This readily leads
to the desired stability result; see e.g. [44, §4]. We remark here that these stable manifolds are all
related to each other via spatial shifts.

In the spatially discrete setting the wave can no longer be frozen. In particular, the linearisation
of (1.6) around the pulse (1.7) leads to an equation that is temporally shift-periodic. In [15] the
authors attack this problem head-on by developing a shift-periodic version of Floquet theory that
leads to a nonlinear stability result in `∞. However, they delicately exploit the geometric structure
of `∞ and it is not clear how more degenerate spectral pictures can be fitted into the framework.
These issues are explained in detail in [36, §2].

In [5] the authors found a way to express the Green’s function of the temporally shift-periodic
linear discrete equation in terms of resolvents of the linear operator Lh associated to the pulse (1.7).
Based on this procedure, it is possible to follow the spirit of the powerful pointwise Green’s function
techniques pioneered by Zumbrun and Howard [61]. Indeed, in [3] a stability result is obtained in
the setting of discrete conservation laws, where one encounters curves of essential spectrum that
touch the imaginary axis. Using exponential dichotomies in a setting with extended state-spaces
L2([−h, h];R2)×R2, pointwise λ-meromorphic expansions were obtained for the operators [Lh−λ]−1.
This allowed the techniques from [4] to be transferred from the continuous to the discrete setting. A
slightly more streamlined approach was developed in [36], which does not need the extended state-
space and avoids the use of a variation-of-constants formula. However, exponential dichotomies are
still used at certain key points.

In our paper we follow the spirit of the latter approach and extend it to the present setting with
infinite-range interactions. In particular, we show how the use of exponential dichotomies can be
eliminated all together, which is a delicate task. In addition, we need to be very careful in many
computations since integrals and sums over shifts as in (1.16) can no longer be freely exchanged. We
emphasize here that our techniques do not depend on the specific LDE that we are analyzing. All
that is required is the spectral setting described above and the fact that the shifts appearing in the
problem are all rationally related.

Let us mention that it is also possible to bypass the construction of the stable manifolds altogether
and employ a direct phase-tracking approach along the lines of [60]. In particular, one can couple the
system with an extra equation for the phase. To close the system, one chooses this extra equation in
such a way that the resulting nonlinear terms never encounter the non-decaying part of the relevant
semigroup. Such an approach has been used in the current spectral setting to show that travelling
waves remain stable under the influence of a small stochastic noise term [30].

Acknowledgements. Both authors acknowledge support from the Netherlands Organization for
Scientific Research (NWO) (grant 639.032.612).

2 Main results

We consider the following system of equations

u̇j = 1
h2

∑
k>0

αk[uj+k + uj−k − 2uj ] + g(uj)− wj

ẇj = ρ[uj − γwj ],
(2.1)

which we refer to as the (spatially) discrete FitzHugh-Nagumo equation with infinite-range interac-
tions. Often, for example in [35, 36], it is assumed that only finitely many of these coefficients αk
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are non-zero. However, we will impose the following much weaker conditions here.

Assumption (Hα1). The coefficients {αk}k∈Z>0
satisfy the bound∑

k>0

|αk|k2 < ∞, (2.2)

as well as the identity ∑
k>0

αkk
2 = 1. (2.3)

Finally, the inequality

A(z) :=
∑
k>0

αk

(
1− cos(kz)

)
> 0 (2.4)

holds for all z ∈ (0, 2π).

We note that (2.4) is automatically satisfied if α1 > 0 and αk ≥ 0 for all k ∈ Z>1. The conditions
in (Hα1) ensure that for φ ∈ L∞(R) with φ′′ ∈ L2(R), we have the limit

lim
h↓0
‖ 1
h2

∑
k>0

αk

[
φ(·+ hk) + φ(· − hk)− 2φ(·)

]
− φ′′‖L2 = 0, (2.5)

see Lemma 3.5. In particular, we can see (2.1) as the discretisation of the FitzHugh-Nagumo PDE
(1.1) on a grid with distance h. Additional remarks concerning the assumption (Hα1) can be found
in [1, §1].

Throughout this paper, we impose the following standard assumptions on the remaining param-
eters in (2.1). The last condition on γ in (HS) ensures that the origin is the only j-independent
equilibrium of (2.1).

Assumption (HS). The nonlinearity g is given by g(u) = u(1− u)(u− r0), where 0 < r0 < 1. In
addition, we have 0 < ρ < 1 and 0 < γ < 4(1− r0)−2.

Without explicitly mentioning it, we will allow all constants in this work to depend on r0, ρ and
γ. Dependence on h will always be mentioned explicitly. We will mainly work on the Sobolev spaces

H1(R) = {f : R→ R|f, f ′ ∈ L2(R)},

H2(R) = {f : R→ R|f, f ′, f ′′ ∈ L2(R)}, (2.6)

with their standard norms

‖f‖H1(R) =
(
‖f‖2L2(R) + ‖f ′‖2L2(R)

) 1
2

,

‖f‖H2(R) =
(
‖f‖2L2(R) + ‖f ′‖2L2(R) + ‖f ′′‖2L2(R)

) 1
2

.
(2.7)

Our goal is to construct pulse solutions of (2.1) as small perturbations to the travelling pulse
solutions of the FitzHugh-Nagumo PDE. These latter pulses satisfy the system

c0u
′
0 = u′′0 + g(u0)− w0

c0w
′
0 = ρ(u0 − γw0)

(2.8)

with the boundary conditions
lim
|ξ|→∞

(u0, w0)(ξ) = (0, 0). (2.9)

If (u0, w0) is a solution of (2.8) with wavespeed c0, then the linearisation of (2.8) around this solution
is characterized by the operator L0 : H2(R)×H1(R)→ L2(R)× L2(R), that acts as

L0

(
v
w

)
=

(
c0

d
dξ −

d2

dx2 − gu(u0) 1

−ρ c0
d
dξ + γρ

)(
v
w

)
. (2.10)
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The existence of such pulse solutions for the case when ρ is close to 0 is established in [40, §5.3].
Here, we do not require ρ > 0 to be small, but we simply impose the following condition.

Assumption (HP1). There exists a solution (u0, w0) of (2.8) that satisfies the conditions (2.9)
and has wavespeed c0 6= 0. Furthermore, the operator L0 is Fredholm with index zero and it has a
simple eigenvalue in zero.

Recall that an eigenvalue λ of a Fredholm operator L is said to be simple if the kernel of L− λ
is spanned by one vector v and the equation (L − λ)w = v does not have a solution w. Note that
if L has a formal adjoint L∗, this is equivalent to the condition that 〈v, w〉 6= 0 for all non-trivial
w ∈ ker(L∗ − λ).

We note that the conditions on L0 formulated in (HP1) were established in [41] for small ρ > 0.
In addition, these conditions imply that u′0 and w′0 decay exponentially.

In order to find travelling pulse solutions of (2.1), we substitute the Ansatz

(u,w)j(t) = (uh, wh)(hj + cht), (2.11)

into (2.1) to obtain the system

chu
′
h(ξ) = 1

h2

∑
k>0

αk

[
uh(ξ + hk) + uh(ξ − hk)− 2uh(ξ)

]
+ g
(
uh(ξ)

)
− wh(ξ)

chw
′
h(ξ) = ρ[uh(ξ)− γwh(ξ)],

(2.12)

in which ξ = hj + cht. The boundary conditions are given by

lim
|ξ|→∞

(uh, wh)(ξ) = (0, 0). (2.13)

The existence of such solutions is established in our first main theorem.

Theorem 2.1 (see §3). Assume that (HP1), (HS) and (Hα1) are satisfied. There exists a positive
constant h∗ such that for all h ∈ (0, h∗), the problem (2.12) with boundary conditions (2.13) admits
at least one solution (ch, uh, wh), which is locally unique in R × H1(R) × H1(R) up to translation
and which has the property that

lim
h↓0

(ch − c0, uh − u0, wh − w0) = (0, 0, 0) in R×H1(R)×H1(R). (2.14)

Note that this result is very similar to [22, Corollary 2.1]. However, Faye and Scheel impose
an extra assumption, similar to (Hα2) below, which we do not need in our proof. This is a direct
consequence of the strength of the method from [1] that we described in §1.

Building on the existence of the travelling pulse solution, the natural next step is to show that
our new-found pulse is asymptotically stable. However, we now do need to impose an extra condition
on the coefficients {αk}k>0.

Assumption (Hα2). The coefficients {αk}k>0 satisfy the bound∑
k>0

|αk|ekν < ∞ (2.15)

for some ν > 0.

Note that the prototype equation (1.9) indeed satisfies both assumptions (Hα1) and (Hα2). An
example of a system which satisfies (Hα1), but not (Hα2) is given by

u̇j = κ
h2

∑
k>0

1
k4 [uj+k + uj−k − 2uj ] + g(uj)− wj

ẇj = ρ[uj − γwj ],
(2.16)

in which κ = 6
π2 is the normalisation constant.

Moreover, we need to impose an extra condition on the operator L0 given by (2.10). This spectral
stability condition is established in [20, Theorem 2] together with [59, Theorem 3.1] for the case where
ρ is close to 0.
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Assumption (HP2). There exists a constant λ∗ > 0 such that for each λ ∈ C with Re λ ≥ −λ∗
and λ 6= 0, the operator

L0 + λ : H2(R)×H1(R)→ L2(R)× L2(R) (2.17)

is invertible.

To determine if the pulse solution described in Theorem 2.1 is nonlinearly stable, we must first
linearise (2.12) around this pulse and determine the spectral stability. The linearised operator now
takes the form

Lh

(
v
w

)
=

(
ch

d
dξ −∆h − gu(uh) 1

−ρ ch
d
dξ + γρ

)(
v
w

)
. (2.18)

Here the operator ∆h is given by

∆hφ(ξ) = 1
h2

∑
k>0

αk

[
φ(ξ + hk) + φ(ξ − hk)− 2φ(ξ)

]
. (2.19)

As usual, we define the spectrum, σ(L), of a bounded linear operator L : H1(R)×H1(R)→ L2(R)×
L2(R), as

σ(L) = {λ ∈ C : L− λ is not invertible}. (2.20)

Our second main theorem describes the spectrum of this operator Lh, or rather of −Lh, in a suitable
half-plane.

Theorem 2.2 (see §5). Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There
exist constants λ3 > 0 and h∗∗ > 0 such that for all h ∈ (0, h∗∗), the spectrum of the operator −Lh
in the half-plane {z ∈ C : Re z ≥ −λ3} consists precisely of the points k2πich

1
h for k ∈ Z, which

are all simple eigenvalues of Lh.

We emphasize that λ3 does not depend on h. The translational invariance of (2.12) guarantees
that λ = 0 is an eigenvalue of −Lh. In Lemma 5.1 we show that the spectrum of the operator Lh is
periodic with period 2πich

1
h , which means that the eigenvalues k2πich

1
h for k ∈ Z all have the same

properties as the zero eigenvalue.
Our final result concerns the nonlinear stability of our pulse solution, which we represent with

the shorthand [
Uh(t)

]
j

= (uh, wh)(hj + cht). (2.21)

The perturbations are measured in the spaces `p, which are defined by

`p = {V ∈ (R2)Z : ‖V ‖`p :=
[ ∑
j∈Z
|Vj |p

] 1
p

<∞} (2.22)

for 1 ≤ p <∞ and
`∞ = {V ∈ (R2)Z : ||V ||`∞ := sup

j∈Z
|Vj | <∞}. (2.23)

Theorem 2.3 (see §6). Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 <
h ≤ h∗∗ and 1 ≤ p ≤ ∞. Then there exist constants δ > 0, C > 0 and β > 0, which may depend on
h but not on p, such that for all initial conditions U0 ∈ `p with ‖U0 −Uh(0)‖`p < δ, there exists an

asymptotic phase shift θ̃ ∈ R such that the solution U = (u,w) of (2.1) with U(0) = U0 satisfies the
bound

‖U(t)− Uh(t+ θ̃)‖`p ≤ Ce−βt‖U0 − Uh(0)‖`p (2.24)

for all t > 0.
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3 The singular perturbation

The main difficulty in analysing the travelling wave MFDE (2.12) is that it is a singular perturbation
of the ODE (2.8). Indeed, the second derivative in (2.8) is replaced by the linear operator ∆h :
H1(R)→ L2(R) that acts as

∆hφ(ξ) = 1
h2

∑
k>0

αk

(
φ(ξ + hk) + φ(ξ − hk)− 2φ(ξ)

)
. (3.1)

We will see in Lemma 3.5 that for all φ ∈ L∞(R) with φ′′ ∈ L2(R), we have that lim
h↓0
‖∆hφ−φ′′‖L2 =

0. Hence, the bounded operator ∆h converges pointwise on a dense subset of H1(R) to an unbounded
operator on that same dense subset. In particular, the norm of the operator ∆h grows to infinity as
h ↓ 0.

Since there are no second derivatives involved in (2.12), we have to view it as an equation posed
on the space H1(R)×H1(R), while the ODE (2.8) is posed on the space H2(R)×H1(R). From now
on we write

H1 := H1(R)×H1(R),

L2 := L2(R)× L2(R).
(3.2)

The main results in this section will be used in several different settings. In order to accommodate
this, we introduce the following conditions.

Assumption (hFam). For each h > 0 there is a pair (ũh, w̃h) ∈ H1 and a constant c̃h such that
(ũh, w̃h)− (u0, w0)→ 0 in H1 and c̃h → c0 as h ↓ 0.

In the proof of Theorem 2.1 we choose (ũh, w̃h) and c̃0 to be (u0, w0) and c0 for all values of h.
However, in §4 we let (ũh, w̃h) be the travelling pulse (uh, wh) from Theorem 2.1 and we let c̃h be
its wave speed ch.

If (hFam) is satisfied, then for δ > 0 and h > 0 we define the operators

L+

h,δ =

(
c̃h

d
dξ −∆h − gu(ũh) + δ 1

−ρ c̃h
d
dξ + γρ+ δ

)
(3.3)

and

L−h,δ =

(
−c̃h d

dξ −∆h − gu(ũh) + δ −ρ
1 −c̃h d

dξ + γρ+ δ

)
. (3.4)

These operators are bounded linear functions from H1 to L2. We see that L−h,δ is the adjoint operator

of L+

h,δ, in the sense that

〈(φ, ψ),L+

h,δ(θ, χ)〉 = 〈L−h,δ(φ, ψ), (θ, χ)〉 (3.5)

holds for all (φ, ψ), (θ, χ) ∈ L2. Here we have introduced the notation

〈(φ, ψ), (θ, χ)〉 = 〈φ, θ〉+ 〈ψ, χ〉

=
∞∫
−∞

(
φ(x)θ(x) + ψ(x)χ(x)

)
dx

(3.6)

for (φ, ψ), (θ, χ) ∈ L2.
Since at some point we want to consider complex-valued functions, we also work in the spaces

H2
C(R), H1

C(R) and L2
C(R), which are given by

H2
C(R) = {f + gi|f, g ∈ H2(R)},

H1
C(R) = {f + gi|f, g ∈ H1(R)},

L2
C(R) = {f + gi|f, g ∈ L2(R)}.

(3.7)
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These spaces are equipped with the inner product

〈φ, ψ〉 =
∫ (

f1(x) + ig1(x)
)(
f2(x)− ig2(x)

)
dx (3.8)

for φ = f1 + ig1, ψ = f2 + ig2. As before, we write

H1
C = H1

C(R)×H1
C(R)

L2
C = L2

C(R)× L2
C(R).

(3.9)

Each operator L from H1 to L2 can be extended to an operator from H1
C to L2

C by writing

L(f + ig) = Lf + iLg. (3.10)

It is well-known that this complexification preserves adjoints, invertibility, inverses, injectivity, sur-

jectivity and boundedness, see for example [53]. If λ ∈ C then the operators L±h,λ are defined
analogously to their real counterparts, but now we view them as operators from H1

C(R) × H1
C(R)

to L2
C(R) × L2

C(R). Whenever it is clear that we are working in the complex setting we drop the
subscript C from the spaces H1

C and L2
C and simply write H1 and L2.

We also introduce the operators L±0 : H2(R)×H1(R)→ L2(R)× L2(R), that act as

L+
0 =

(
c0

d
dξ −

d2

dx2 − gu(u0) 1

−ρ c0
d
dξ + γρ

)
(3.11)

and

L−0 =

(
−c0 d

dξ −
d2

dx2 − gu(u0) −ρ
1 −c0 d

dξ + γρ

)
. (3.12)

These operators can be viewed as the formal h ↓ 0 limits of the operators L±h,0. Upon introducing
the notation

(φ+
0 , ψ

+
0 ) =

(u′0,w
′
0)

‖(u′0,w′0)‖L2
, (3.13)

we see that L+
0 (φ+

0 , ψ
+
0 ) = 0 by differentiating (2.8).

To set the stage, we summarize several basic properties of L±0 . The last property references a
spectral set M , on which we impose the following condition.

Assumption (hM). The set M ⊂ C is compact with 0 /∈ M . In addition, recalling the constant
λ∗ appearing in (HP2), we have Re z ≥ −λ∗ for all z ∈M .

In §5 the set M will be fixed as the final region of our spectral analysis, which we will refer to as
R4. The proof of this result follows the standard procedure described in [1, Lemma 5] and, as such,
will be omitted.

Lemma 3.1. Assume that (HP1), (HS) and (Hα1) are satisfied. Then the following results hold.

1. We have that (φ+
0 , ψ

+
0 ) ∈ H2(R)×H1(R) and ker(L+

0 ) = span{(φ+
0 , ψ

+
0 )}.

2. There exist (φ−0 , ψ
−
0 ) ∈ H2(R) ×H1(R) with ‖(φ−0 , ψ

−
0 )‖L2 = 1, with 〈(u′0, w′0), (φ−0 , ψ

−
0 )〉 > 0

and ker(L−0 ) = span{(φ−0 , ψ
−
0 )}.

3. For every (θ, χ) ∈ L2 the problem L±0 (φ, ψ) = (θ, χ) with (φ, ψ) ∈ H2(R) × H1(R) and
〈(φ, ψ), (φ±0 , ψ

±
0 )〉 = 0 has a unique solution (φ, ψ) if and only if 〈(θ, χ), (φ∓0 , ψ

∓
0 )〉 = 0.

4. There exists a positive constant C1 such that

‖(φ, ψ)‖H2(R)×H1(R) ≤ C1‖L±0 (φ, ψ)‖L2 (3.14)

for all (φ, ψ) ∈ H2(R)×H1(R) with 〈(φ, ψ), (φ±0 , ψ
±
0 )〉 = 0.
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5. There exists a positive constant C2 and a small constant δ0 > 0 such that for all 0 < δ < δ0
we have

‖(L±0 + δ)−1(θ, χ)‖H2(R)×H1(R) ≤ C2

[
‖(θ, χ)‖L2(R)×L2(R) + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(3.15)

for all (θ, χ) ∈ L2(R)× L2(R).

6. If (HP2) is also satisfied, then for each M ⊂ C that satisfies (hM), there exists a constant
C3 > 0 such that the uniform bound

‖(L±0 + λ)−1(θ, χ)‖H2
C(R)×H1

C(R) ≤ C3‖(θ, χ)‖L2
C(R)×L2

C(R) (3.16)

holds for all (θ, χ) ∈ L2
C(R)× L2

C(R) and all λ ∈M .

The main goal of this section is to prove the following two propositions, which transfer parts (5)
and (6) of Lemma 3.1 to the discrete setting.

Proposition 3.2. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. There exists a positive
constant C ′0 and a positive function h′0(·) : R+ → R+, depending only on the choice of (ũh, w̃h) and

c̃h, such that for every 0 < δ < δ0 and every h ∈ (0, h′0(δ)), the operators L±h,δ are homeomorphisms

from H1 to L2 that satisfy the bounds

‖(L±h,δ)−1(θ, χ)‖H1 ≤ C ′0

[
‖(θ, χ)‖L2 + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(3.17)

for all (θ, χ) ∈ L2.

Proposition 3.3. Assume that (hFam), (HP1),(HP2), (HS) and (Hα1) are satisfied. Let M ⊂ C
satisfy (hM). Then there exists a constant hM > 0, depending only on M and the choice of (ũh, w̃h)

and c̃h, such that for all 0 < h ≤ hM and all λ ∈ M the operator L±h,λ is a homeomorphism from

H1 to L2.

3.1 Strategy

Our techniques here are inspired strongly by the approach developed in [1, §2-4]. Indeed, Proposition
3.2 and Proposition 3.4 are the equivalents of [1, Theorem 4] and [1, Lemma 6] respectively. The
difference between our results and those in [1] is that Bates, Chen and Chmaj study the discrete
Nagumo equation, which can be seen as the one-dimensional fast component of the FitzHugh-
Nagumo equation by setting ρ = 0 in (2.1). In addition, the results in [1] are restricted to λ ∈ R,
while we allow λ ∈ C in Proposition 3.3. These differences play a crucial role in the proof of Lemma
3.10 below.

Recall the constant δ0 > 0 appearing in Lemma 3.1. For 0 < δ < δ0 and h > 0 we define the
quantities

Λ
±

(h, δ) = inf
‖(φ,ψ)‖H1=1

[
‖L±h,δ(φ, ψ)‖L2 + 1

δ

∣∣∣〈L±h,δ(φ, ψ), (φ∓0 , ψ
∓
0 )〉
∣∣∣] , (3.18)

together with

Λ
±

(δ) = lim inf
h↓0

Λ
±

(h, δ). (3.19)

Similarly for M ⊂ C that satisfies (hM) and h > 0 we define

Λ
±

(h,M) = inf
‖(φ,ψ)‖H1=1, λ∈M

[
‖L±h,λ(φ, ψ)‖L2

]
, (3.20)
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together with

Λ
±

(M) = lim inf
h↓0

Λ
±

(h,M). (3.21)

The key ingredients that we need to establish Propositions 3.2 and 3.3 are lower bounds on the

quantities Λ
±

(δ) and Λ
±

(M). These are provided in the result below, which we consider to be the
technical heart of this section.

Proposition 3.4. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. There exists a positive

constant C ′0, depending only on our choice of (ũh, w̃h) and c̃h, such that Λ
±

(δ) > 2
C′0

for all 0 < δ <

δ0. Similarly if M ⊂ C satisfies (hM), then there exists a positive constant C ′M , depending only on

M and our choice of (ũh, w̃h) and c̃h, such that Λ
±

(M) > 2
C′M

.

Proof of Proposition 3.2. Let δ > 0 be fixed. Since Λ
±

(δ) ≥ 2
C′0

, the definition (3.19) implies that

there exists h′0(δ) such that Λ(h, δ) ≥ 1
C′0

for all h ∈ (0, h′0(δ)]. Now pick h ∈ (0, h′0(δ)].

First of all, L±h,δ is a bounded operator from H1 to L2. Since Λ
±

(h, δ) is strictly positive, this

implies that L±h,δ is a homeomorphism from H1 to its image L±h,δ(H
1). Furthermore, the norm of the

inverse (L±h,δ)−1 from L±h,δ(H
1) ⊂ L2 is bounded by 1

Λ
±

(h,δ)
≤ C ′0. Since L±h,δ is bounded, it follows

that L±h,δ(H
1) is closed in L2.

For the remainder of this proof, we only consider the operators L+

h,δ, noting that their counter-

parts L−h,δ can be treated in an identical fashion.

Seeking a contradiction, let us assume that L+

h,δ(H
1) 6= L2, which implies that there exists a

non-zero (θ, χ) ∈ L2 orthogonal to L+

h,δ(H
1). For any φ ∈ C∞c (R), we hence obtain

0 = 〈L+

h,δ(φ, 0), (θ, χ)〉

= 〈c̃hφ′ −∆hφ− gu(ũh)φ+ δφ, θ〉+ 〈−ρφ, χ〉

= c̃h〈φ′, θ〉+ 〈φ,−∆hθ − gu(ũh)θ + δθ − ρχ〉.

(3.22)

By definition this implies that θ has a weak derivative and that c̃hθ
′ = −∆hθ− gu(ũh)θ+ δθ− ρχ ∈

L2(R). In particular, we see that θ ∈ H1(R).
For any ψ ∈ C∞c (R) a similar computation yields

0 = 〈L+

h,δ(0, ψ), (θ, χ)〉

= 〈ψ, θ〉+ 〈c̃hψ′ + (γρ+ δ)ψ, χ〉

= c̃h〈ψ′, χ〉+ 〈ψ, θ + (γρ+ δ)χ〉.

(3.23)

Again, this means that χ has a weak derivative and in fact c̃hχ
′ = θ + (γρ + δ)χ. In particular, it

follows that χ ∈ H1(R).
We, therefore, conclude that

0 = 〈L+

h,δ(φ, ψ), (θ, χ)〉

= 〈(φ, ψ), (L−h,δ(θ, χ)〉
(3.24)

holds for all (φ, ψ) ∈ H1. Since H1 is dense in L2 this implies that L−h,δ(θ, χ) = 0. Since we already

know that L−h,δ is injective, this means that (θ, χ) = 0, which gives a contradiction. Hence, we must
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have L+

h,δ(H
1) = L2, as desired.

Proof of Proposition 3.3. The result follows in the same fashion as outlined in the proof of Proposition
3.2 above.

Proof of Theorem 2.1. Recall the notation (c0, u0, w0) for the pulse solution of the PDE (1.1). The
desired solutions to (2.12) can be constructed by writing

(uh, wh) = (u0, w0) + (φh, ψh) (3.25)

and setting up a fixed-point argument to find the small perturbations (φh, ψh) along with the
wavespeed ch. This can be done by following the standard procedure described in [1, §4]. The relevant
linear operator can be found by applying Proposition 3.2 to the constant family (ũh, w̃h) = (u0, w0)
and c̃h = c0.

3.2 Preliminaries

Our goal here is to establish some basic facts concerning the operator ∆h. In particular, we extend
the real-valued results from [1] to complex-valued functions. We emphasize that the inequalities in
Lemma 3.6 in general do not hold for the imaginary parts of these inner products.

Lemma 3.5. (see [1, Lemma 3]) Assume that (Hα1) is satisfied. The following three properties
hold.

1. For all φ ∈ L∞(R) with φ′′ ∈ L2(R) we have lim
h↓0
‖∆hφ− φ′′‖L2 = 0.

2. For all φ ∈ H1(R) and h > 0 we have 〈∆hφ, φ
′〉 = 0.

3. For all φ, ψ ∈ L2(R) and h > 0 we have 〈∆hφ, ψ〉 = 〈φ,∆hψ〉 and 〈∆hφ, φ〉 ≤ 0.

Lemma 3.6. Assume that (Hα1) is satisfied and pick f ∈ H1
C(R). Then the following properties

hold.

1. For all h > 0 we have Re 〈−∆hf, f〉 ≥ 0.

2. For all h > 0 we have Re 〈∆hf, f
′〉 = 0.

3. We have Re 〈f, f ′〉 = 0.

4. For all λ ∈ C we have Re 〈λf, f ′〉 = 2 (Im λ)〈Re f, Im f ′〉.

Proof. Write f = φ+ iψ with φ, ψ ∈ H1(R). Lemma 3.5 implies that

Re 〈−∆hf, f〉 = Re
∫ (
−∆hφ− i∆hψ

)
(x)
(
φ− iψ

)
(x)dx

=
∫

(−∆hφ)(x)φ(x) + (−∆hψ)(x)ψ(x)dx

= 〈−∆hφ, φ〉+ 〈−∆hψ,ψ〉

≥ 0.

(3.26)

Similarly we have
Re 〈∆hf, f

′〉 = 〈−∆hφ, φ
′〉+ 〈−∆hψ,ψ

′〉

= 0.
(3.27)
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For λ ∈ C we may compute

Re 〈λf, f ′〉 = Re
∫ (

λφ(x) + λiψ(x)
)(
φ′(x)− iψ′(x)

)
dx

= (Re λ)〈φ, φ′〉+ (Im λ)〈φ, ψ′〉 − (Im λ)〈ψ, φ′〉+ (Re λ)〈ψ,ψ′〉

= 0 + 2 (Im λ)〈φ, ψ′〉+ 0

= 2 (Im λ)〈φ, ψ′〉.

(3.28)

Taking λ = 1 gives the third property.

3.3 Proof of Proposition 3.4

We now set out to prove Proposition 3.4. In Lemmas 3.7 and 3.8 we construct weakly converging
sequences that realize the infima in (3.18)-(3.21). In Lemmas 3.9-3.11 we exploit the structure of our
operators (3.3) and (3.4) to recover bounds on the derivatives of these sequences that are typically
lost when taking weak limits. Recall the constant C2 > 0 defined in Lemma 3.1, which does not
depend on δ > 0.

Lemma 3.7. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and fix 0 < δ < δ0. Then there exists a sequence {(hj , φj , ψj)}j≥0 in (0, 1)×H1 with
the following properties.

1. We have limj→∞ hj = 0 and ‖(φj , ψj)‖H1 = 1 for all j ≥ 0.

2. The sequence (θj , χj) = L+

hj ,δ(φj , ψj) satisfies

limj→∞

[
‖(θj , χj)‖L2 + 1

δ |〈(θj , χj), (φ
−
0 , ψ

−
0 )〉|

]
= Λ

+
(δ). (3.29)

3. There exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that (φj , ψj) ⇀ (φ, ψ) weakly in H1 and such
that (θj , χj) ⇀ (θ, χ) weakly in L2 as j →∞.

4. We have (φj , ψj)→ (φ, ψ) in L2
loc(R)× L2

loc(R) as j →∞.

5. The pair (φ, ψ) is a weak solution to (L+

0 + δ)(φ, ψ) = (θ, χ).

6. We have the bound
‖(φ, ψ)‖H2(R)×H1(R) ≤ C2Λ

+
(δ). (3.30)

The same statements hold upon replacing L+

h,δ, Λ
+

and L+

0 by L−h,δ, Λ
−

and L−0 .

Proof. Let 0 < δ < δ0 be fixed. By definition of Λ
+

(δ) there exists a sequence {(hj , φj , ψj)} in
(0, 1)×H1 such that (1) and (2) hold. Taking a subsequence if necessary, we may assume that there
exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that (φj , ψj) → (φ, ψ) in L2

loc(R) × L2
loc(R) and weakly in

H1 as j →∞ and such that (θj , χj) ⇀ (θ, χ) weakly in L2. By the weak lower-semicontinuity of the
L2-norm we obtain

‖(θ, χ)‖L2 + 1
δ |〈(θ, χ), (φ−0 , ψ

−
0 )〉| ≤ Λ

+
(δ). (3.31)

For any pair of test functions (ζ1, ζ2) ∈ C∞c (R)× C∞c (R) we have

〈(θj , χj), (ζ1, ζ2)〉 = 〈L+

hj ,δ(φj , ψj), (ζ1, ζ2)〉

= 〈(φj , ψj),L
−
hj ,δ(ζ1, ζ2)〉.

(3.32)
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Since u0 is a bounded function, the limit ũh − u0 → 0 in H1 implies that also ũh → u0 in L∞.
In particular, we can choose h′ > 0 and N > 0 in such a way that |ũh| ≤ N and |u0| ≤ N for
all 0 < h ≤ h′. Since gu is Lipschitz continuous on [−N,N ], there is a constant K > 0 such that
|gu(x)− gu(y)| ≤ K|x− y| for all x, y ∈ [−N,N ]. We obtain

lim
h↓0
‖gu(ũh)− gu(u0)‖2L2 = lim

h↓0

∫
(gu(ũh)− gu(u0))2dx

≤ lim
h↓0

∫
K2(ũh − u0)2dx

≤ lim
h↓0

K2‖ũh − u0‖2L2

= 0,

(3.33)

together with

lim
h↓0
‖gu(ũh)ζ1 − gu(u0)ζ1‖L2 ≤ lim

h↓0
‖ζ1‖∞‖gu(ũh)− gu(u0)‖L2

= 0.
(3.34)

Furthermore, we know that c̃h → c0 as h ↓ 0, which gives

lim
h↓0
‖c̃hζ ′1 − c0ζ ′1‖L2 = lim

h↓0
‖c̃hζ ′2 − c0ζ ′2‖L2

= 0.
(3.35)

Finally, Lemma 3.5 implies
lim
h↓0
‖∆hζ1 − ζ ′′1 ‖L2 = 0, (3.36)

which means that

‖L−hj ,δ(ζ1, ζ2)− (L−0 + δ)(ζ1, ζ2)‖L2 → 0 (3.37)

as j →∞. Sending j →∞ in (3.32), this yields

〈(θ, χ), (ζ1, ζ2)〉 = 〈(φ, ψ), (L−0 + δ)(ζ1, ζ2)〉. (3.38)

In particular, we see that (φ, ψ) is a weak solution to (L+

0 + δ)(φ, ψ) = (θ, χ). Since φ ∈ H1, ψ ∈ L2,
θ ∈ L2 and

φ′′ = c0φ
′ − gu(u0)φ+ δφ+ ψ − θ, (3.39)

we get φ′′ ∈ L2 and hence φ ∈ H2. Since we already know that ψ ∈ H1, we may apply Lemma 3.1
and (3.31) to obtain

‖(φ, ψ)‖H2(R)×H1(R) ≤ C2[‖(θ, χ)‖L2 + 1
δ |〈(θ, χ), (φ−0 , ψ

−
0 )〉|]

≤ C2Λ
+

(δ).
(3.40)

The next result is the analogue of Lemma 3.7 for the setting where we are considering a spectral
set M ⊂ C that satisfies (hM). The proof is omitted as it is almost identical to that of Lemma 3.7.
We recall the constant C3 > 0 from Lemma 3.1, which only depends on the choice of the set M ⊂ C.

Lemma 3.8. Assume that (HP1),(HP2), (HS) and (Hα1) are satisfied. Let M ⊂ C satisfy (hM).
There exists a sequence {(λj , hj , φj , ψj)} in M × (0, 1)×H1 with the following properties.

1. We have lim
j→∞

hj = 0, lim
j→∞

λj = λ for some λ ∈M and ‖(φj , ψj)‖H1 = 1 for all j.

2. The pair (θj , χj) = L+

hj ,λj (φj , ψj) satisfies

lim
j→∞
‖(θj , χj)‖L2 = Λ

+
(M). (3.41)
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3. There exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that as j → ∞ (φj , ψj) → (φ, ψ) in L2
loc(R) ×

L2
loc(R) and weakly in H1 and such that (θj , χj) ⇀ (θ, χ) weakly in L2.

4. The pair (φ, ψ) is a weak solution to (L+

0 + λ)(φ, ψ) = (θ, χ).

5. We have the bound
‖(φ, ψ)‖H2(R)×H1(R) ≤ C3Λ

+
(M). (3.42)

The same statements hold upon replacing L+

h,λj , Λ
+

(M) and L+

0 by L−h,λj , Λ
−

and L−0 .

In our arguments below, we often consider the sequences {(hj , φj , ψj)} and {(λj , hj , φj , ψj)}
defined in Lemmas 3.7 and 3.8 in a similar fashion. To streamline our notation, we simply write
{(λj , hj , φj , ψj)} for all these sequences, with the understanding that λj = δ when referring to
Lemma 3.7. As argued in the proof of Lemma 3.7, it is possible to choose h > 0 in such a way that

c∗ := inf0≤h≤h |c̃h| > 0,

g∗ := sup0≤h≤h‖gu(ũh)‖∞ < ∞.
(3.43)

By taking a subsequence if necessary, we assume from now on that hj < h for all j.
It remains to find a positive lower bound for ‖(φ, ψ)‖L2 . An essential step to accomplish this is

to keep the derivatives (φ′j , ψ
′
j) under control. This can be achieved by exploiting the results for ∆h

derived in §3.2.

Lemma 3.9. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. Then there exists a constant B > 0, such that for
all j we have the bound

B‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖
2
L2 − 4‖(θj , χj)‖2L2 . (3.44)

Proof. We first consider the sequence for Λ
+

. Using L+

hj ,λj (φj , ψj) = (θj , χj) and Re 〈∆hjφj , φ
′
j〉 =

0 = Re 〈φj , φ′j〉 = Re 〈ψj , ψ′j〉, which follow from Lemma 3.6, we obtain

Re 〈(θj , χj), (φ′j , ψ′j)〉 = Re 〈L+

hj ,λj (φj , ψj), (φ
′
j , ψ
′
j)〉

= Re 〈c̃hjφ′j −∆hjφj − gu(ũhj )φj + λjφj + ψj , φ
′
j〉

+ Re 〈−ρφj + c̃hjψ
′
j + γρψj + λjψj , ψ

′
j〉

= c̃hj‖φ′j‖
2
L2 − Re 〈gu(ũhj )φj , φ

′
j〉+ Re 〈ψj , φ′j〉

+ Re 〈λjφj , φ′j〉 − ρRe 〈φj , ψ′j〉

+c̃hj‖ψ′j‖
2
L2 + Re 〈λjψj , ψ′j〉

= c̃hj‖(φ′j , ψ′j)‖
2
L2 − Re 〈gu(ũhj )φj , φ

′
j〉+ (1 + ρ)〈ψj , φ′j〉

+ Re 〈λj(φj , ψj), (φ′j , ψ′j)〉.

(3.45)

We write λmax = δ0 in the setting of Lemma 3.7 or λmax = max{|z| : z ∈ M} in the setting of
Lemma 3.8. We write

G = λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + g∗‖φj‖L2‖(φ′j , ψ′j)‖L2 . (3.46)
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Using the Cauchy-Schwarz inequality we now obtain

G ≥ λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + ‖gu(ũhj )‖L∞‖φj‖L2‖φ′j‖L2

≥ sign(c̃hj )
(
− Re 〈λj(φj , ψj), (φ′j , ψ′j)〉+ Re 〈gu(ũhj )φj , φ

′
j〉
)

= sign(c̃hj )
(
c̃hj‖(φ′j , ψ′j)‖

2
L2 + (1 + ρ) Re 〈ψj , φ′j〉 − Re 〈(θj , χj), (φ′j , ψ′j)〉

)
≥ |c̃hj |‖(φ′j , ψ′j)‖

2
L2 − (1 + ρ)‖ψj‖L2‖φ′j‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2

≥ c∗‖(φ′j , ψ′j)‖
2
L2 − (1 + ρ)‖ψj‖L2‖(φ′j , ψ′j)‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2 .

(3.47)

This implies

c∗‖(φ′j , ψ′j)‖L2 ≤ g∗‖φj‖L2 + (1 + ρ)‖ψj‖L2 + ‖(θj , χj)‖L2 + λmax‖(φj , ψj)‖L2 . (3.48)

Squaring this equation and using the standard inequality 2µω ≤ µ2 + ω2, this implies that

c2∗‖(φ′j , ψ′j)‖
2
L2 ≤ 4g2

∗‖φj‖
2
L2 + 4(1 + ρ)2‖ψj‖2L2

+4‖(θj , χj)‖2L2 + 4λ2
max‖(φj , ψj)‖

2
L2 .

(3.49)

In particular, we see

4
(

max{g2
∗, (1 + ρ)2}+ λ2

max

)
‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖

2
L2 − 4‖(θj , χj)‖2L2 . (3.50)

We now look at the sequence for Λ
−

. Using L−hj ,λj (φj , ψj) = (θj , χj) and Re 〈∆hjφj , φ
′
j〉 = 0 =

Re 〈φj , φ′j〉 = Re 〈ψj , ψ′j〉, which follow from Lemma 3.6, we obtain

Re 〈(θj , χj), (φ′j , ψ′j)〉 = Re 〈L−hj ,λj (φj , ψj), (φ
′
j , ψ
′
j)〉

= Re 〈−c̃hjφ′j −∆hjφj − gu(ũh)φj + λjφj − ρψj , φ′j〉

+ Re 〈φj − c̃hψ′j + γρψj + λjψj , ψ
′
j〉

= −c̃hj‖φ′j‖
2
L2 − Re 〈gu(ũh)φj , φ

′
j〉 − ρRe 〈ψj , φ′j〉

+ Re 〈λjφj , φ′j〉+ Re 〈φj , ψ′j〉

−c̃hj‖ψ′j‖
2
L2 + Re 〈λjψj , ψ′j〉

= −c̃hj‖(φ′j , ψ′j)‖
2
L2 − Re 〈gu(ũh)φj , φ

′
j〉+ (1 + ρ)〈ψj , φ′j〉

+ Re 〈λj(φj , ψj), (φ′j , ψ′j)〉.

(3.51)

We write
G = λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + g∗‖φj‖L2‖(φ′j , ψ′j)‖L2 . (3.52)

Using the Cauchy-Schwarz inequality we now obtain

G ≥ λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + ‖gu(ũhj )‖L∞‖φj‖L2‖φ′j‖L2

≥ −sign(c̃hj )
(
− Re 〈λj(φj , ψj), (φ′j , ψ′j)〉+ Re 〈gu(ũhj )φj , φ

′
j〉
)

= −sign(c̃hj )
(
− c̃hj‖(φ′j , ψ′j)‖

2
L2 − (1 + ρ) Re 〈ψj , φ′j〉 − Re 〈(θj , χj), (φ′j , ψ′j)〉

)
≥ |c̃hj |‖(φ′j , ψ′j)‖

2
L2 − (1 + ρ)‖ψj‖L2‖φ′j‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2

≥ c∗‖(φ′j , ψ′j)‖
2
L2 − (1 + ρ)‖ψj‖L2‖(φ′j , ψ′j)‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2 .

(3.53)
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This is the same equation that we derived for Λ
+

. Hence, we again obtain

B‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖
2
L2 − 4‖(θj , χj)‖2L2 , (3.54)

where
B = 4

(
max{g2

∗, (1 + ρ)2}+ λ2
max

)
. (3.55)

The next step is to show that the L2-mass of φj can be concentrated in a compact interval. We
heavily exploit the bistable structure of the non-linearity g to accomplish this. Moreover, we are
aided by the fact that the off-diagonal elements are constant, which allows us to keep the cross-
terms under control. In fact, one might be tempted to think that it is sufficient to note that the

eigenvalues of the matrix

(
−gu(0) 1
−ρ γρ

)
all have positive real part, as then one would be able to

find a basis in which this matrix is positive definite. However, passing over to another basis destroys
the structure of the diffusion terms and, therefore, does not give any insight.

Lemma 3.10. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. There exist positive constants a and m, depending
only on our choice of (ũh, w̃h), such that we have the following inequality for all j

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥
(

1
2 min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2 min{a, 12ργ}

‖(θj , χj)‖2L2 − β‖(θj , χj)‖2L2 .
(3.56)

Here we write λmin = 0 in the setting of Lemma 3.7 or λmin = min{Re λ : λ ∈M} in the setting of
Lemma 3.8, together with

β = 1−ρ
ρ

1
4( ρ

1−ρ
1
2γρ+γρ+λmin)

. (3.57)

Proof. Again we first look at the sequence for Λ
+

. We know that ũh−u0 → 0 in H1 as h ↓ 0. Hence,
it follows that ũh − u0 → 0 in L∞ and, therefore, also gu(ũh)− gu(u0)→ 0 in L∞ as h ↓ 0. By the
bistable nature of our non-linearity g, we can choose m to be a positive constant such that for all
h ∈ [0, h] (by making h smaller if necessary)

min
|x|≥m

[−gu(ũh(x))] ≥ a :=
1

2
r0 > 0. (3.58)

Here r0 is the constant appearing in the choice of our function g in (HS). Then we obtain, using
Re 〈φ′j , φj〉 = Re 〈ψ′j , ψj〉 = 0 and Re 〈−∆hjφj , φj〉 ≥ 0, which we know from Lemma 3.6, that

Re 〈(θj , χj), (φj , ψj)〉 = Re 〈L+

hj ,λj (φj , ψj), (φj , ψj)〉

≥ Re 〈−gu(ũhj )φj , φj〉+ Re 〈ψj , φj〉

−ρRe 〈ψj , φj〉+ γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ min|x|≥m{−gu(ũhj (x))}
∫
|x|≥m |φj(x)|2dx

−‖gu(ũhj )‖L∞
∫

|x|≤m
|φj(x)|2dx+ (1− ρ) Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 − (a+ g∗)
∫

|x|≤m
|φj(x)|2dx+ (1− ρ) Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2.

(3.59)
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We assumed that 0 < ρ < 1 so we see that 1−ρ
−ρ < 0. We set

β+
j = 1

4( ρ
1−ρ

1
2γρ+γρ+Re λj)

. (3.60)

Now we obtain

Re 〈χj , ψj〉 ≤ ‖χj‖L2‖ψj‖L2

= 1√
2( ρ

1−ρ
1
2γρ+γρ+Re λj)

‖χj‖L2

√
2( ρ

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖L2

≤ 1
4( ρ

1−ρ
1
2γρ+γρ+Re λj)

‖χj‖2L2 + ( ρ
1−ρ

1
2γρ+ γρ+ Re λj)‖ψj‖2L2

= β+
j ‖χj‖

2
L2 + ( ρ

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖2L2 .

(3.61)

Note that the denominator 4( ρ
1−ρ

1
2γρ + γρ + Re λj) is never zero since we can assume that λ∗ is

small enough to have Re λj ≥ −λ∗ > −γρ. Using the identity

χj = −ρφj + c̃hjψ
′
j + γρψj + λjψj (3.62)

and the fact that Re 〈ψ′j , ψj〉 = 0, we also have

Re 〈χj , ψj〉 = −ρRe 〈φj , ψj〉+ (γρ+ Re λj)‖ψj‖2L2 . (3.63)

Hence, we must have that

(1− ρ) Re 〈φj , ψj〉 = 1−ρ
ρ

(
− Re 〈χj , ψj〉+ (γρ+ Re λj)‖ψj‖2L2

)
≥ 1−ρ

ρ

(
− β+

j ‖χj‖
2
L2 − ( ρ

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖2L2

+(γρ+ Re λj)‖ψj‖2L2

)
= − 1−ρ

ρ β+
j ‖χj‖

2
L2 − 1

2γρ‖ψj‖
2
L2 .

(3.64)

Combining this bound with (3.59) yields the estimate

Re 〈(θj , χj), (φj , ψj)〉

≥ a‖φj‖2L2 − (a+ g∗)
∫

|x|≤m
|φj(x)|2dx+ (1− ρ) Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 − (a+ g∗)
∫

|x|≤m
|φj(x)|2dx

+ 1
2γρ‖ψj‖

2
L2 + λmin‖(φj , ψj)‖2 − 1−ρ

ρ β+
j ‖χj‖

2
L2 .

(3.65)

We now look at the sequence for Λ
−

. Letm and a be as before. Then we obtain, using L−hj ,λj (φj , ψj) =
(θj , χj), Re 〈φ′j , φj〉 = Re 〈ψ′j , ψj〉 = 0 and Re 〈−∆hjφj , φj〉 ≥ 0 that

Re 〈(θj , χj), (φj , ψj)〉 = Re 〈L−hj ,δ(φj , ψj), (φj , ψj)〉

≥ Re 〈−gu(ũh)φj , φj〉+ (1− ρ) Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2L2 .

(3.66)

We set
β−j = 1

4( 1
1−ρ

1
2γρ+γρ+Re λj)

. (3.67)
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Arguing as in (3.61) with different constants, we obtain

Re 〈θj , φj〉 ≥ −‖θj‖L2‖φj‖L2

≥ − 1
4(a+Re λj)

‖θj‖2L2 − (a+ Reλj)‖φj‖2L2

= −β−j ‖θj‖
2
L2 − (a+ Re λj)‖φj‖2L2 .

(3.68)

Note that the denominator 4(a+ Re λj) is never zero since we can assume that λ∗ is small enough
to have Re λj ≥ −λ∗ > −a. Using the identity

θj = −c̃hjφ′j −∆hφj − gu(ũh)φj + λjψj − ρφj (3.69)

and the fact that Re 〈φ′j , φj〉 = 0, we also have

Re 〈θj , φj〉 = Re 〈−∆hφj , φj〉+ Re 〈−gu(ũh)φj , φj〉

+ Re λj‖ψj‖2L2 − ρRe 〈φj , ψj〉.
(3.70)

Hence, we must have that

(1− ρ) Re 〈φj , ψj〉 = 1−ρ
ρ

(
− Re 〈θj , φj〉+ Re 〈−∆hφj , φj〉

+ Re 〈−gu(ũh)φj , φj〉+ Re λj‖ψj‖2L2

)
≥ 1−ρ

ρ

(
− β−j ‖θj‖

2
L2 −

(
a+ Reλj

)
‖φj‖2L2

+ Re 〈−gu(ũh)φj , φj〉+ Re λj‖ψj‖2L2

)
= 1−ρ

ρ

(
− β−j ‖θj‖

2
L2 − a‖φj‖2L2 + Re 〈−gu(ũh)φj , φj〉

)
.

(3.71)

Combining this with the estimate (3.66) and noting that 1−ρ
ρ + 1 = 1

ρ yields

Re 〈(θj , χj), (φj , ψj)〉 ≥ 1
ρ Re 〈−gu(ũh)φj , φj〉+ λmin‖(φj , ψj)‖2L2

+γρ‖ψj‖2L2 − a 1−ρ
ρ ‖φj‖

2
L2 − 1−ρ

ρ β−j ‖θj‖
2
L2

≥ 1
ρ

(
min|x|≥m{−gu(ũh(x))}

∫
|x|≥m |φj |

2dx

−‖gu(ũh)‖L∞
∫

|x|≤m
|φj |2dx

)
+ λmin‖(φj , ψj)‖2L2

+γρ‖ψj‖2L2 − a 1−ρ
ρ ‖φj‖

2
L2 − 1−ρ

ρ β−j ‖θj‖
2
L2

≥ a‖φj‖2L2 − 1
ρ (a+ g∗)

∫
|x|≤m

|φj |2dx+ γρ‖ψj‖2L2

+λmin‖(φj , ψj)‖2L2 − 1−ρ
ρ β−j ‖θj‖

2
L2

(3.72)

Upon setting
β = 1−ρ

ρ min
{

1
4( ρ

1−ρ
1
2γρ+γρ+λmin)

, 1
4(a+λmin)

}
, (3.73)

we note that 1−ρ
ρ β+

j ≤ β and 1−ρ
ρ β−j ≤ β for all j since ρ < 1 and since β+

j and β−j are maximal for
Re λ = λmin. Therefore, in both cases, we obtain

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ a‖φj‖2L2 + 1
2ργ‖ψj‖

2
L2 − Re 〈(θj , χj), (φj , ψj)〉

−β‖(θj , χj)‖2L2 + λmin‖(φj , ψj)‖2L2

≥
(

min{a, 1
2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− ‖(θj ,χj)‖L2√
min{a, 12ργ}

√
min{a, 1

2ργ}‖(φj , ψj)‖L2

−β‖(θj , χj)‖L2

(3.74)
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and thus, again using the inequality 2µω ≤ µ2 + ω2 for µ, ω ∈ R,

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥
(

min{a, 1
2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2

1
min{a, 12ργ}

‖(θj , χj)‖2L2

− 1
2 min{a, 1

2ργ}‖(φj , ψj)‖
2
L2

−β‖(θj , χj)‖2L2

=
(

1
2 min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2 min{a, 12ργ}

‖(θj , χj)‖2L2 − β‖(θj , χj)‖2L2 ,

(3.75)

as desired.

Lemma 3.11. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. There exist positive constants C4 and C5, depending
only on our choice of (ũh, w̃h), such that for all j we have

1
ρ (a+ g∗)

∫
|x|≤m

|φ2
j (x)|dx ≥ C4 − C5‖(θj , χj)‖2L2 . (3.76)

Proof. Without loss of generality we assume that 1
2 min{a, 1

2ργ}+ λmin > 0. Write

µ =
1
2 min{a, 12ργ}+λmin

c2∗+B
. (3.77)

Adding µ times equation (3.44) to equation (3.56) gives

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ µc2∗‖(φ′j , ψ′j)‖
2
L2 − 4µ‖(θj , χj)‖2L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

− 1
2(min{a, 12ργ}+λmin)

‖(θj , χj)‖2L2

−β‖(θj , χj)‖2L2 −Bµ‖(φj , ψj)‖2L2 .

(3.78)

We hence obtain
1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖
2
L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

−Bµ‖(φj , ψj)‖2L2 ,

(3.79)

where
C5 = 4µ+ 1

2(min{a, 12ργ}+λmin)
+ β

> 0.
(3.80)

This allows us to compute

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖
2
L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

−Bµ‖(φj , ψj)‖2L2

= −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖L2

+(µ(c2∗ +B)−Bµ)‖(φj , ψj)‖2L2

= µc2∗‖(φj , ψj)‖
2
H1 − C5‖(θj , χj)‖2L2

= C4 − C5‖(θj , χj)‖2L2 ,

(3.81)
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where C4 = µc2∗ > 0.

Proof of Proposition 3.4. We first choose 0 < δ < δ0 and consider the setting of Lemma 3.7. Sending
j →∞ in (3.76), Lemma 3.7 implies

C4 − C5Λ
±

(δ) ≤ C4 − C5 lim
j→∞
‖(θj , χj)‖2L2

≤ 1
ρ (a+ g∗)

∫
|x|≤m

|φ|2dx

≤ 1
ρ (a+ g∗)‖(φ, ψ)‖2H2(R)×H1(R)

≤ 1
ρ (a+ g∗)C

2
2Λ

+
(δ)2.

(3.82)

Solving this quadratic inequality, we obtain

Λ
±

(δ) ≥
−C5+

√
C2

5+ 4
ρ (a+g∗)C2

2C4

2
ρ (a+g∗)C2

2

:= 2
C′0
.

(3.83)

The analogous computation in the setting of Lemma 3.8 yields

Λ
+

(M) ≥
−C5+

√
C2

5+ 4
ρ (a+g∗)C2

3C4

2
ρ (a+g∗)C2

3

:= 2
C′M

.
(3.84)

4 The point and essential spectrum

In this section we discuss several properties of the operator that arises after linearising the travelling
pulse MFDE (2.12) around our wave solution (uh, wh). The main goals are to determine the Fredholm
properties of this operator. In particular, we show that both the linearised operator and its adjoint
have Fredholm index 0 and that they both have a one-dimensional kernel. Moreover, we construct a
family of kernel elements of the adjoint operator that converges to (φ−0 , ψ

−
0 ), the kernel element of

the operator L−0 .
Pick 0 < h < min{h∗, h}, where h∗ is given in Theorem 2.1 and h is characterized by (3.43). We

recall the operator Lh : H1 → L2, introduced in §2, which acts as

Lh =

(
ch

d
dξ −∆h − gu(uh) 1

−ρ ch
d
dξ + γρ

)
. (4.1)

In addition, we write L∗h : H1 → L2 for the formal adjoint of Lh, which is given by

L∗h =

(
−ch d

dξ −∆h − gu(uh) −ρ
1 −ch d

dξ + γρ

)
. (4.2)

We emphasize that Lh and L∗h correspond to the operators L+

h,0 and L−h,0 defined in §3 respectively
upon writing

(ũh, w̃h) = (uh, wh),

c̃h = ch
(4.3)

for the family featuring in (hFam). Finally, we introduce the notation

Φ+
h = (φ+

h , ψ
+
h ) = 1

‖(u′h,w
′
h)‖L2

(u′h, w
′
h),

Φ+
0 = (φ+

0 , ψ
+
0 ),

Φ−0 = (φ−0 , ψ
−
0 ).

(4.4)
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The results of this section should be seen as a bridge between the singular perturbation theory
developed in §3 and the spectral analysis preformed in §5. Indeed, one might be tempted to think
that most of the work required for the spectral analysis of the operator Lh can already be found
in Proposition 3.2 and Proposition 3.3. However, the problem is that we have no control over the

δ-dependence of the interval (0, h′0(δ)), which contains all values of h for which Lh + δ = L+

h,δ is

invertible. In particular, for fixed h > 0 we cannot directly conclude that L+

h,δ is invertible for all δ
in a subset of the positive real axis.

Our main task in this section is, therefore, to remove the δ-dependence and study Lh and L∗h
directly. The main conclusions are summarized in the results below.

Proposition 4.1. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then there exists a
constant λ̃ > 0 such that for all λ ∈ C with Re λ > −λ̃ and all 0 < h < min{h∗, h} the operator
Lh + λ is Fredholm with index 0.

Proposition 4.2. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then there exists a
constant h∗∗ > 0, together with a family Φ−h = (φ−h , ψ

−) ∈ H1, defined for 0 < h < h∗∗, such that
the following properties hold.

1. For each 0 < h < h∗∗ we have the identities

ker(Lh) = span{Φ+
h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)}
(4.5)

and
ker(L∗h) = span{Φ−h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(Lh)}.
(4.6)

2. The family Φ−h converges to Φ−0 in H1 as h ↓ 0.

3. Upon introducing the spaces

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0} (4.7)

and
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}, (4.8)

the operator Lh : Xh → Yh is invertible and there exists a constant Cunif > 0 such that for
each 0 < h < h∗∗ we have the uniform bound

‖L−1
h ‖B(Yh,Xh) ≤ Cunif . (4.9)

A direct consequence of these results is that the zero eigenvalue of Lh is simple. In addition,
these results allow us to construct a quasi-inverse for Lh that we use heavily in §5 and §6.

Corollary 4.3. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then for any 0 < h < h∗∗
the zero eigenvalue of Lh is simple.

Proof. We can assume that 〈Φ−h ,Φ
+
h 〉 6= 0 for all 0 < h < h∗∗, since by Proposition 4.2 〈Φ−h ,Φ

+
h 〉 →

〈Φ−0 ,Φ
+
0 〉 6= 0. Equation (4.6) now implies that Φ+

h /∈ Range(Lh), which together with (4.5) completes
the proof.

Corollary 4.4. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. There exist linear maps

γh : L2 → R

Lqinv
h : L2 → H1,

(4.10)
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such that for all Θ ∈ L2 and each 0 < h < h∗∗ the pair

(γ,Ψ) = (γhΘ, Lqinv
h Θ) (4.11)

is the unique solution to the problem

LhΨ = Θ + γΦ+
h (4.12)

that satisfies the normalisation condition

〈Φ−h ,Ψ〉 = 0. (4.13)

Proof. Fix 0 < h < h∗∗ and Θ ∈ L2. Upon defining

γh[Θ] = − 〈Φ
−
h ,Θ〉

〈Φ−h ,Φ
+
h 〉
, (4.14)

we see that Θ + γh[Θ]Φ+
h ∈ Yh. In particular, Proposition 4.2 implies that the problem

LhΨ = Θ + γh[Θ]Φ+
h (4.15)

has a unique solution Ψ ∈ Xh, which we refer to as Lqinv
h Θ.

The results in [21, 48] allow us to read off the Fredholm properties of Lh from the behaviour of
this operator in the limits ξ → ±∞. In particular, we let Lh,∞ be the operator defined by

Lh,∞ =

(
ch

d
dξ −∆h − lim

ξ→∞
gu(uh(ξ)) 1

−ρ ch
d
dξ + γρ

)

=

(
ch

d
dξ −∆h − gu(0) 1

−ρ ch
d
dξ + γρ

)
.

(4.16)

This system has constant coefficients. For λ ∈ C we introduce the notation

Lh,∞;λ = Lh,∞ + λ. (4.17)

We show that for λ in a suitable right half-plane the operator Lh,∞;λ is hyperbolic in the sense of
[21, 48], i.e. we write

∆Lh,∞;λ
(z)

=
[
Lh,∞;λe

zξ
]
(0)

=

 chz − 1
h2

[ ∑
k>0

αk

(
ekhz + e−khz − 2

)]
− gu(0) + λ 1

−ρ chz + γρ+ λ

 (4.18)

and show that det(∆Lh,∞;λ
(iy)) 6= 0 for all y ∈ R. In the terminology of [21, 48], this means that

Lh + λ is asymptotically hyperbolic. This allows us to compute the Fredholm index of Lh + λ.

Remark 4.5. From this section onward we assume that (Hα2) is satisfied. This is done for technical
reasons, allowing us to apply the results from [21]. In particular, this condition implies that the
function ∆Lh,∞;λ

(z) defined in (4.18) is well-defined in a vertical strip |Re (z)| < ν .

Lemma 4.6. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. There exists a constant
λ̃ > 0 such that for all 0 < h < min{h∗, h} and all λ ∈ C with Re λ > −λ̃ the operator Lh,∞;λ is
hyperbolic and thus the operator Lh + λ is asymptotically hyperbolic.
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Proof. Remembering that −gu(0) = r0 > 0 and picking y ∈ R, we compute

∆Lh,∞;λ
(iy) =

 chiy + 1
h2

[ ∑
k>0

αk

(
2− 2 cos(khy)

)]
+ r0 + λ 1

−ρ chiy + γρ


=

(
chiy + 1

h2A(hy) + r0 + λ 1
−ρ chiy + γρ+ λ

)
,

(4.19)

where A(hy) ≥ 0 is defined in (Hα1). We hence see

det(∆Lh,∞;λ
(iy)) =

(
chiy + 1

h2A(hy) + r0 + λ
)(
chiy + γρ+ λ

)
+ ρ. (4.20)

Let λ̃ = 1
4 min{γρ, r0} and assume that Re λ > −λ̃. If y 6= − Im λ

ch
then we obtain

Im
(

det(∆Lh,∞;λ
(iy))

)
= (chy + Im λ)(γρ+ Re λ)

+( 1
h2A(hy) + r0 + Re λ)(chy + Im λ)

= (chy + Im λ)(γρ+ 1
h2A(hy) + r0 + 2 Re λ)

6= 0,

(4.21)

since γρ+ 1
h2A(hy) + r0 + Re λ > 0. For y = − Im λ

ch
we obtain

Re
(

det(∆Lh,∞;λ
(y))

)
=

(
1
h2A(hy) + r0 + Re λ

)(
γρ+ Re λ

)
+ ρ

> ρ

> 0.

(4.22)

In particular, we see that det(∆Lh,∞;λ
(iy)) 6= 0 for all y ∈ R, as desired.

Before we consider the Fredholm properties of Lh + λ, we establish a technical estimate for the
function ∆Lh,∞;λ

, which we need in §6 later on.

Lemma 4.7. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 < h < min{h∗, h}
and S ⊂ C compact in such a way that Re λ > −λ̃ for all λ ∈ S. Then there exist constants κ > 0
and Γ > 0, possibly depending on h and S, such that for all z = x + iy ∈ C with |x| ≤ κ and all
λ ∈ S we have the bound

|det(∆Lh,∞;λ
(z))| ≥ 1

Γ . (4.23)

Proof. Using assumption (Hα2) we can pick κ1 > 0 and Γ1 > 0 in such a way that the bound

| 1
h2A(hz)| :=

∣∣∣ 1
h2

[ ∑
k>0

αk

(
2− ekhz − e−khz

)]∣∣∣
≤ 1

h2

∑
k>0

|αk|
(
ehk|x| + 3

)
≤ Γ1

(4.24)

holds for all z = x+ iy ∈ C with |x| ≤ κ1.
Observe that for z = x+ iy ∈ C and λ ∈ S we have

Re
(

det(∆Lh,∞;λ
(z))

)
=

(
chx+ 1

h2 Re A(hz) + r0 + Re λ
)(
chx+ γρ+ Re λ

)
−(chy + Im λ)2 − (chy + Im λ) 1

h2 (Im A(y)) + ρ.
(4.25)
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Since S is compact we can find Y > 0 such that for all z = x + iy ∈ C with |y| ≥ Y and |x| ≤ k1

and all λ ∈ S we have ∣∣∣Re
(

det(∆Lh,∞;λ
(z))

)∣∣∣ ≥ 1
2c

2
hy

2

≥ 1
2c

2
hY

2.
(4.26)

Seeking a contradiction, let us assume that for each 0 < κ ≤ κ1 and each Γ > 0 there exist λ ∈ S
and z = x+ iy ∈ C with |x| ≤ κ and |y| ≤ Y for which

|det(∆Lh,∞;λ
(z))| < 1

Γ . (4.27)

Then we can construct a sequence {κn, zn, λn} with 0 < κn ≤ κ1 for each n, κn → 0, λn ∈ S for each
n and zn = xn + iyn ∈ C with |xn| ≤ κn and |yn| ≤ Y in such a way that |det(∆Lh,∞;λn

(zn))| < 1
n

for each n. By taking a subsequence if necessary we see that λn → λ for some λ ∈ S and zn → iy
for some y ∈ R with |y| ≤ Y . Since det(∆Lh,∞;λ

(z)) is continuous as a function of λ and z, it follows
that

det(∆Lh,∞;λ
(iy)) = lim

n→∞
det(∆Lh,∞;λn

(zn))

= 0,
(4.28)

which contradicts Lemma 4.6. Hence, we can find κ > 0 and Γ > 0 as desired.

Proof of Proposition 4.1. We have already seen in Lemma 4.6 that Lh+λ is asymptotically hyperbolic
in the sense of [21, 48]. Now according to [21, Theorem 1.6], we obtain that Lh + λ is a Fredholm
operator and that the following identities hold

dim
(

ker(Lh + λ)
)

= codim
(

Range(L∗h + λ)
)
,

codim
(

Range(Lh + λ)
)

= dim
(

ker(L∗h + λ)
)
,

ind(Lh + λ) = −ind(L∗h + λ),

(4.29)

where
ind(Lh + λ) = dim

(
ker(Lh + λ)

)
− codim

(
Range(Lh + λ)

)
(4.30)

is the Fredholm index of Lh + λ.
We follow the proof of [48, Theorem B]. For 0 ≤ ϑ ≤ 1, we let the operator Lϑ(h) be defined by

Lϑ(h) = (1− ϑ)(Lh + λ) + ϑ(Lh,∞ + λ). (4.31)

Note that the operator Lϑ(h) is asymptotically hyperbolic for each ϑ and thus [21, Theorem 1.6]
implies that these operators Lϑ(h) are Fredholm. Moreover, the family Lϑ(h) varies continuously
with ϑ in B(H1,L2), which means the Fredholm index is constant. In particular, we see that

ind(Lh + λ) = ind(Lh,∞ + λ)

= 0,
(4.32)

where the last equality follows from [21, Theorem 1.7].
We can now concentrate on the kernel of Lh. The goal is to exclude kernel elements other than

Φ+
h . In order to accomplish this, we construct a quasi-inverse for Lh by mimicking the approach of

[38, Proposition 3.2]. As a preparation, we obtain the following technical result.

Lemma 4.8. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant δ0 from Lemma
3.1. Let 0 < λ < min{ 1

2 , δ0} be given. Then there exist constants 0 < h∗1 ≤ min{h∗, h} and κ > 0
such that for all 0 < h ≤ h∗1 we have

〈Φ−0 , (Lh + λ)−1Φ+
0 〉 > 1

2λ
−1〈Φ−0 ,Φ

+
h 〉

> 1
2λ
−1κ

> 0.

(4.33)
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Proof. We know from Lemma 3.1 that 〈Φ−0 ,Φ
+
0 〉 > 0. Since Φ+

h converges to Φ+
0 in L2, it follows

that 〈Φ−0 ,Φ
+
h 〉 converges to 〈Φ−0 ,Φ

+
0 〉 > 0. Fix h∗1 ≤ min{h∗, h, h′0(λ)} in such a way that

‖Φ+
0 − Φ+

h ‖L2 < 1
2

〈Φ−0 ,Φ
+
h 〉

2Cunif
(4.34)

holds for all 0 ≤ h ≤ h∗1, where
Cunif = 4C ′0 (4.35)

and C ′0 is defined in Proposition 3.2. The factor 4 in the definition is for technical reasons in a later
proof. We assume from now on that 0 < h ≤ h∗1. Using LhΦ+

h = 0 we readily see

(Lh + λ)−1Φ+
h = λ−1Φ+

h . (4.36)

Recall that ‖Φ−0 ‖L2 = 1. Since 1 < λ−1, we may use Proposition 3.2 to obtain

‖(Lh + λ)−1Φ+
0 − λ−1Φ+

h ‖L2 = ‖(Lh + λ)−1[Φ+
0 − Φ+

h ]‖L2

≤ Cunif

[
‖Φ+

h − Φ+
0 ‖L2 + λ−1|〈Φ+

h − Φ+
0 ,Φ

−
0 〉|
]

< Cunifλ
−1‖Φ+

0 − Φ+
h ‖L2

(
1 + ‖Φ−0 ‖L2

)
= 2Cunifλ

−1‖Φ+
0 − Φ+

h ‖L2 .

(4.37)

Remembering 〈Φ−0 ,Φ
+
h 〉 > 0 and using Cauchy-Schwarz, we see that

|〈 Φ−0
〈Φ−0 ,Φ

+
h 〉
, (Lh + λ)−1Φ+

0 〉 − λ−1| = |〈 Φ−0
〈Φ−0 ,Φ

+
h 〉
, (Lh + λ)−1Φ+

0 − λ−1Φ+
h 〉|

<
‖Φ−0 ‖L2

〈Φ−0 ,Φ
+
h 〉

2Cunifλ
−1‖Φ+

0 − Φ+
h ‖L2

≤ 1
〈Φ−0 ,Φ

+
h 〉

2Cunifλ
−1 1

2

〈Φ−0 ,Φ
+
h 〉

2Cunif

= 1
2λ
−1.

(4.38)

Hence, we must have

〈Φ−0 , (Lh + λ)−1Φ+
0 〉 > 1

2λ
−1〈Φ−0 ,Φ

+
h 〉 > 0. (4.39)

Lemma 4.9. Assume that (HP1), (HS) and (Hα1) are satisfied. There exists 0 < h∗∗ ≤ min{h∗, h}
together with linear maps

γ̃+
h : L2 → R

L̃qinv
h : L2 → H1,

(4.40)

defined for all 0 < h < h∗∗, such that for all Θ ∈ L2 the pair

(γ,Ψ) = (γ̃+
h Θ, L̃qinv

h Θ) (4.41)

is the unique solution to the problem

LhΨ = Θ + γΦ+
0 (4.42)

that satisfies the normalisation condition

〈Φ−0 ,Ψ〉 = 0. (4.43)

In addition, there exists C > 0 such that for all 0 < h < h∗∗ and all Θ ∈ L2 we have the bound

|γ̃+
h Θ|+ ‖L̃qinv

h Θ‖H1 ≤ C‖Θ‖L2 . (4.44)
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Proof. Fix 0 < λ < min{ 1
2 , δ0} and let 0 < h ≤ min{h∗, h, h′0(λ)} be given, where h′0(λ) is defined in

Proposition 3.2. For now, all constants will not depend on our choice of λ. We define the set

Z1 = {Ψ ∈ H1 : 〈Φ−0 ,Ψ〉 = 0}. (4.45)

Pick Θ ∈ L2. We look for a solution (γ,Ψ) ∈ R× Z1 of the problem

Ψ = (Lh + λ)−1[Θ + γΦ+
0 + λΨ]. (4.46)

By Lemma 4.8 we have 〈Φ−0 , (Lh + λ)−1Φ+
0 〉 6= 0. Hence, for given Θ ∈ L2,Ψ ∈ Z1, h, λ, we may

write
γ(Ψ,Θ, h, λ) = − 〈Φ

−
0 ,(Lh+λ)−1(Θ+λΨ)〉
〈Φ−0 ,(Lh+λ)−1Φ+

0 〉
, (4.47)

which is the unique value for γ for which

(Lh + λ)−1[Θ + γΦ+
0 + λΨ] ∈ Z1. (4.48)

Recall the constant Cunif from (4.35). With Proposition 3.2 we obtain

|〈Φ−0 , (Lh + λ)−1(Θ + λΨ)〉| ≤ ‖Φ−0 ‖L2Cunif

[
‖Θ + λΨ‖L2 + 1

λ |〈Θ + λΨ,Φ−0 〉|
]

≤ ‖Φ−0 ‖L2Cunif

[
(1 + 1

λ )‖Θ‖L2 + λ‖Ψ‖L2

]
≤ C1

[
λ−1‖Θ‖L2 + λ‖Ψ‖L2

] (4.49)

for some C1 that is independent of h, λ. Here we used that λ < 1 and thus 1 + 1
λ <

2
λ . Exploiting

λ < 1
2 and applying Lemma 4.8, we see that

|γ(Ψ,Θ, h, λ)| = |〈Φ−0 , (Lh + λ)−1(Θ + λΨ)〉| 1
|〈Φ−0 ,(Lh+λ)−1Φ+

0 〉|

≤ C1

[
λ−1‖Θ‖L2 + λ‖Ψ‖L2

]
1

1
2λ
−1〈Φ−0 ,Φ

+
h 〉

≤ C1

[
κ‖Θ‖L2 + κλ2‖Ψ‖L2

]
≤ C2

[
‖Θ‖L2 + λ2‖Ψ‖L2

]
.

(4.50)

Here we used that 〈Φ−0 ,Φ
+
h 〉 converges to 〈Φ−0 ,Φ

+
0 〉 > 0, which means that 〈Φ−0 ,Φ

+
h 〉 can be bounded

away from zero. For Ψ ∈ Z1 we write

t(Ψ) = Θ + γ(Ψ,Θ, h, λ)Φ+
0 + λΨ (4.51)

and
T (Ψ) = (Lh + λ)−1t(Ψ). (4.52)

For Ψ ∈ Z1 Proposition 3.2 implies

‖T (Ψ)‖H1 ≤ Cunif

[
‖Θ + γ(Ψ,Θ, h, λ)Φ+

0 + λΨ‖L2

+ 1
λ |〈Θ + γ(Ψ,Θ, h, λ)Φ+

0 + λΨ,Φ−0 〉|
]

≤ C3

[
1
λ‖Θ‖L2 + λ‖Ψ‖L2

]
≤ C3

[
1
λ‖Θ‖L2 + λ‖Ψ‖H1

]
.

(4.53)
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For Ψ1,Ψ2 ∈ Z1, a second application of Proposition 3.2 yields

|γ(Ψ1,Θ, h, λ)− γ(Ψ2,Θ, h, λ)| =
∣∣∣ 〈Φ−0 ,(Lh+λ)−1(λΨ1−λΨ2)〉

〈Φ−0 ,(Lh+λ)−1Φ+
0 〉

∣∣∣
≤ 1

〈Φ−0 ,(Lh+λ)−1Φ+
0 〉
Cunif

[
λ‖Ψ1 −Ψ2‖L2

+ 1
λ |〈λΨ1 − λΨ2,Φ

−
0 〉|
]

≤ C4λ
[
λ‖Ψ1 −Ψ2‖L2 + 0

]
≤ C4λ

2‖Ψ1 −Ψ2‖H1 .

(4.54)

Applying Proposition 3.2 for the final time, we see

‖T (Ψ1)− T (Ψ2)‖H1 ≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2 + 1

λ |〈t(Ψ1)− t(Ψ2),Φ−0 〉|
]

≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2

+ 1
λ 〈
(
γ(Ψ1,Θ, h, λ)− γ(Ψ2,Θ, h, λ)

)
Φ+

0 ,Φ
−
0 〉

+ 1
λ 〈λ(Ψ1 −Ψ2),Φ−0 〉

]
≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2 + 1

λ

(
C4λ

2‖Ψ1 −Ψ2‖H1 + 0
)]

≤ CunifC4λ
2‖Ψ1 −Ψ2‖H1 + Cunifλ‖Ψ1 −Ψ2‖H1

+C4λ‖Ψ1 −Ψ2‖H1

≤ C5λ‖Ψ1 −Ψ2‖H1 .

(4.55)

In view of these bounds, we pick λ to be small enough to have C3λ <
1
2 and C5λ <

1
2 . Since this λ

is now fixed, we can allow the constants in the final part of the proof to depend on λ. In addition,
we write h∗∗ = min{h∗1, h′0(λ)} and pick 0 < h < h∗∗. Then T : Z1 → Z1 is a contraction, so the

fixed point theorem implies that there is a unique L̃qinv
h (Θ) ∈ Z1 for which

L̃qinv
h (Θ) = (Lh + λ)−1

[
Θ + γ(L̃qinv

h (Θ),Θ, h, λ)Φ+
0 + λL̃qinv

h (Θ)
]
. (4.56)

Furthermore, we have

1
2‖L̃

qinv
h (Θ)‖H1 ≤ (1− λC3)‖L̃qinv

h (Θ)‖H1

≤ C3λ
−1‖Θ‖L2

≤ C6‖Θ‖L2 .

(4.57)

Writing γ̃+
h (Θ) = γ(L̃qinv

h (Θ),Θ, h, λ), we compute

|γ̃+
h (Θ)| ≤ C2[‖Θ‖L2 + λ2‖Θ‖L2 ]

≤ C7‖Θ‖L2 .
(4.58)

Finally we see that (4.46) is in fact equivalent to (4.42)-(4.43), so in fact L̃qinv
h (Θ) and γ̃+

h (Θ) do not
depend on λ. In addition, the constants h∗∗, C6 and C7 above only depend on the one fixed λ and,
as such, do not depend on h or Θ.

Lemma 4.10. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Let 0 < h < h∗∗ be given.
Then we have the inclusion

span{Φ+
h } ⊂ ker(Lh)

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)},
(4.59)

where L∗h is the formal adjoint of Lh.
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Proof. By differentiating the differential equation (2.12) we see that LhΦ+
h = 0. We know that

(uh, wh)− (u0, w0)→ 0 ∈ H1. Since (u′0, w
′
0) decays exponentially, we get (u′0, w

′
0) ∈ L2. Hence, we

can assume that h∗∗ is small enough such that Φ+
h ∈ L2 for all 0 < h < h∗∗. Since LhΦ+

h = 0 we
obtain from the differential equation that also (Φ+

h )′ ∈ L2. In particular, we see that Φ+
h ∈ H1 and

hence Φ+
h ∈ ker(Lh).

Lemma 4.11. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Let 0 < h < h∗∗ be given.
Then we have

ker(Lh) = span{Φ+
h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)},
(4.60)

where L∗h is the formal adjoint of Lh.

Proof. We show that dim(ker(Lh)) = 1. Since Φ+
h ∈ ker(Lh), we assume that there exists Ψ ∈ ker(Lh)

in such a way that Ψ is not a scalar multiple of Φ+
h .

Suppose first that 〈Ψ,Φ−0 〉 = 0. Then Lemma 4.9 yieds by linearity of L̃qinv
h that

Ψ = L̃qinv
h [0]

= 0,
(4.61)

which gives a contradiction. Hence, we suppose that 〈Ψ,Φ−0 〉 6= 0. In the proof of Lemma 4.8 we saw
that 〈Φ+

h ,Φ
−
0 〉 6= 0. As such, we can pick a, b ∈ R \ {0} in such a way that

〈aΦ+
h + bΨ,Φ−0 〉 = 0. (4.62)

Again it follows from Lemma 4.9 that aΦ+
h + bΨ = 0 which gives a contradiction. Therefore, such a

kernel element Ψ does not exist.
Since we already know that Φ+

h ∈ ker(Lh), we must have dim
(
ker(Lh)

)
= 1, which completes

the proof.
The remaining major goal of this section is to find a family of elements Φ−h ∈ ker(L∗h) which

satisfies Φ−h → Φ−0 as h ↓ 0. To establish this, we repeat part of the process above for the adjoint
operator L∗h. The key difference is that we must construct the family Φ−h by hand. This requires a
significant refinement of the argument used above to characterize ker(L∗h).

First we need a technical result, similar to Lemma 4.8.

Lemma 4.12. Assume that (HP1), (HS) and (Hα1) are satisfied. Fix 0 < λ < 1
2 and 0 < h ≤

min{h∗∗, h′0(λ)}, where h′0(λ) is defined in Proposition 3.2. Then we have

〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 >

〈Φ+
0 ,Φ

−
0 〉

2 λ−1. (4.63)

Proof. Lemma 3.1 implies that 〈Φ+
0 ,Φ

−
0 〉 > 0. Remembering that

L∗h − L∗0 =

(
(c0 − ch) ddξ − (∆h − d2

dx2 ) + (gu(u0)− gu(uh)) 0

0 (c0 − ch) ddξ

)
(4.64)

and that L∗0Φ−0 = 0, we obtain

(L∗h + λ)
[
(L∗h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0

]
= Φ−0 − Φ−0 + (L∗h − L∗0)(L∗0 + λ)−1Φ−0

= (L∗h − L∗0)λ−1Φ−0 .

(4.65)
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Recall the constant Cunif from (4.35). Proposition 3.2 yields

‖(L∗h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 ‖L2 ≤ Cunif

[
‖(L∗h − L∗0)λ−1Φ−0 ‖L2

+|〈(L∗h − L∗0)λ−1Φ−0 ,Φ
+
0 〉|
]

≤ Cunif(1 + λ−1)‖(L∗h − L∗0)λ−1Φ−0 ‖L2 .

(4.66)

Using Lemma 3.5 and the fact that ch converges to c0 and gu(uh) to gu(u0), it follows that

Cunif(1 + λ−1)‖(L∗h − L∗0)λ−1Φ−0 ‖L2 → 0 (4.67)

as h ↓ 0. Possibly after decreasing h′0(λ) > 0, we hence see that

〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 = 〈Φ+

0 , (L
∗
0 + λ)−1Φ−0 〉

+〈Φ+
0 , (L

∗
h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 〉

= λ−1〈Φ+
0 ,Φ

−
0 〉+ 〈Φ+

0 , (L
∗
h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 〉

>
〈Φ+

0 ,Φ
−
0 〉

2 λ−1

(4.68)

holds for all 0 < h < min{h∗∗, h′0(λ)}.

Lemma 4.13. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 < h < h∗∗. There
exist linear maps

γ̃−h : L2 → R,

L̃∗,qinv
h : L2 → H1

(4.69)

such that for all Θ ∈ L2 the pair

(γ,Ψ) = (γ̃−h Θ, L̃∗,qinv
h Θ) (4.70)

is the unique solution to the problem

L∗hΨ = Θ + γΦ−0 (4.71)

that satisfies the normalisation condition

〈Φ+
0 ,Ψ〉 = 0. (4.72)

Furthermore, there exists C∗ > 0, such that for all 0 < h < h∗∗ and all Θ ∈ L2 we have the bound

|γ̃−h Θ|+ ‖L̃∗,qinv
h Θ‖H1 ≤ C∗‖Θ‖L2 . (4.73)

Proof. We define the set
Z1 = {Ψ ∈ H1 : 〈Φ+

0 ,Ψ〉 = 0}. (4.74)

Pick Θ ∈ L2. We look for a solution (γ,Ψ) ∈ R× Z1 of the problem

Ψ = (L∗h + λ)−1[Θ + γΦ−0 + λΨ]. (4.75)

Lemma 4.12 implies that 〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 6= 0. Hence, for given Θ ∈ L2,Ψ ∈ Z1, h, λ, we may

write
γ(Ψ,Θ, h, λ) = − 〈Φ

+
0 ,(L

∗
h+λ)−1(Θ+λΨ)〉

〈Φ+
0 ,(L

∗
h+λ)−1Φ−0 〉

, (4.76)

which is the unique value for γ for which

(L∗h + λ)−1[Θ + γΦ−0 + λΨ] ∈ Z1. (4.77)

From now on the proof is identical to that of Lemma 4.9, so we omit it.
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Lemma 4.14. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. For each 0 < h < h∗∗
there exists an element Φ−h ∈ ker(L∗h) such that the family Φ−h converges to Φ−0 in H1 as h ↓ 0.

Proof. We repeat some of the steps of the proof of Lemma 4.11, but now for L∗h.
Fix 0 < h < h∗∗. Since dim(ker(L∗h)) = 1 by Proposition 4.1 and Lemma 4.11, we can pick

Φ ∈ ker(L∗h) with Φ 6= 0. If we would have 〈Φ,Φ+
0 〉 = 0, then we would obtain

0 = L∗,qinv
h [0]

= Φ,
(4.78)

which leads to a contradiction. Hence, we can define the kernel element Φ−h of L∗h as follows: Φ−h is
the unique kernel element of L∗h with 〈Φ−h ,Φ

+
0 〉 = 〈Φ−0 ,Φ

+
0 〉. Since we see that

〈Φ−0 − Φ−h ,Φ
+
0 〉 = 0, (4.79)

we obtain, upon defining
Θh := L∗hΦ−0 , (4.80)

that
Φ−0 − Φ−h = L∗,qinv

h [Θh]. (4.81)

Using Lemma 4.13, we can estimate

‖Φ−0 − Φ−h ‖H1 = ‖L∗,qinv
h [Θh]‖H1

≤ C−‖Θh‖L2 .
(4.82)

From the proof of Lemma 4.12 we know that Θh → 0 as h ↓ 0 in L2. Therefore, we see that Φ−h → Φ−0
as h ↓ 0 in H1.

In the final part of this section we establish item (3) of Proposition 4.2. To this end, we recall
the spaces

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0} (4.83)

and
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}, (4.84)

together with the constant Cunif from (4.35).

Lemma 4.15. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. For each 0 < h < h∗∗ we
have that Lh : Xh → Yh is invertible and we have the uniform bound

‖L−1
h ‖ ≤ Cunif . (4.85)

Proof. Fix 0 < h < h∗∗. Clearly Lh : Xh → Yh is a bounded bijective linear map, so the Banach
isomorphism theorem implies that L−1

h : Yh → Xh is bounded. Now let δ > 0 be a small constant such
that δCunif < 1. Without loss of generality we assume that 0 < h∗∗ ≤ h′0(δ) and that ‖Φ−h −Φ−0 ‖H1 ≤
δ for all 0 < h < h∗∗. This is possible by Lemma 4.14.

Pick any Ψ ∈ Xh. Remembering that 〈Ψ,Φ−h 〉 = 0 and 〈LhΨ,Φ−h 〉 = 0, we obtain the estimate

1
δ |〈(Lh + δ)Ψ,Φ−0 〉| = 1

δ |〈(Lh + δ)Ψ,Φ−0 − Φ−h 〉|

≤ 1
δ ‖(Lh + δ)Ψ‖L2δ

≤ ‖LhΨ‖L2 + δ‖Ψ‖H1 .

(4.86)

34



Applying Proposition 3.2, we hence see

‖Ψ‖H1 ≤ 1
4Cunif [‖(Lh + δ)Ψ‖L2 + 1

δ |〈(Lh + δ)Ψ,Φ−0 〉|]

≤ 1
4Cunif [2‖LhΨ‖L2 + 2δ‖Ψ‖H1 ]

≤ 1
2Cunif‖LhΨ‖L2 + 1

2‖Ψ‖H1 .

(4.87)

We, therefore, get the bound
‖Ψ‖H1 ≤ Cunif‖LhΨ‖L2 , (4.88)

which yields the desired estimate ‖L−1
h ‖ ≤ Cunif .

Proof of Proposition 4.2. This result follows directly from Lemmas 4.11, 4.14 and 4.15. .

5 The resolvent set

In this section we prove Theorem 2.2 by explicitly determining the spectrum of the operator −Lh
defined in (2.18). Our approach hinges on the periodicity of this spectrum, which we describe in our
first result.

Lemma 5.1. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 < h < h∗∗. Then the
spectrum of Lh is invariant under the operation λ 7→ λ+ 2πich

1
h .

In particular, we can restrict our attention to values with imaginary part in between −πchh and
πch
h . We divide our ‘half-strip’ into four regions and in each region we calculate the spectrum. Values

close to 0 (region R1) will be treated in Proposition 5.2; values with a large real part (region R2) in
Proposition 5.3 and values with a large imaginary part (region R3) in Proposition 5.6. In Corollary
5.7 we discuss the remaining intermediate subset (region R4), which is compact and independent of
h. The regions are illustrated in Figure 1 below.

Figure 1: Illustration of the regions R1, R2, R3 and R4. Note that the regions R2 and R3 grow when
h decreases, while the regions R1 and R4 are independent of h.
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From this section onward we need to assume that (HP2) is satisfied. Indeed, this allows us to lift
the invertibility of L0 + λ to Lh + λ simultaneously for all λ in appropriate compact sets.

Proof of Lemma 5.1. Fix k ∈ Z and write p = 2πik 1
h . We define the exponential shift operator eω

by
[eωV ](x) = eωxV (x). (5.1)

For any λ ∈ C, Ψ = (φ, ψ) ∈ H1 and x ∈ R we obtain

(e−p∆hep)φ(x) = e−px∆h(epφ)(x)

= 1
h2

∑
l>0

αl(e
plhφ(x+ lh) + e−plhφ(x− lh)− 2φ(x))

= 1
h2

∑
l>0

αl(φ(x+ lh) + φ(x− lh)− 2φ(x))

= ∆hφ(x),

(5.2)

since plh ∈ 2πiZ for all l > 0. In particular, we can compute

[e−p(Lh − λ)epΨ](x) = e−px[(Lh − λ)epΨ](x)

= e−px
( ch

d
dξ (epxφ(x))−∆h(epφ)(x)

−ρepx + ch
d
dξ (epxψ(x))

)
+e−px

( −gu(uh)epxφ(x) + epxψ(x)− λepxφ(x)
+γρepxψ(x)− λepxψ(x)

)
=

(
pchφ(x) + chφ

′(x)− gu(uh)φ(x) + ψ(x)
−ρφ(x) + pchψ(x) + chψ

′(x) + γρψ(x)− λψ(x)

)
+

(
−∆hφ(x)− λφ(x)
0

)
= (Lh − λ+ pch)Ψ(x).

(5.3)

Since ep and e−p are invertible operators on H1 and L2 respectively, we know that the spectrum of
Lh equals that of e−pLhep and thus that of Lh + pch.

Region R1.
Since Lh has a simple eigenvalue at zero, it is relatively straightforward to construct a small

neighbourhood around the origin that contains no other part of the spectrum. Exploiting the results
from §4, it is possible to control the size of this neighbourhood as h ↓ 0.

Proposition 5.2. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists a
constant λ0 > 0 such that for all 0 < h < h∗∗ the operator Lh + λ : H1 → L2 is invertible for all
λ ∈ C with 0 < |λ| < λ0.

Proof. Fix 0 < h < h∗∗ and Θ ∈ L2. We recall the notation (γh[Θ], Lqinv
h Θ) from Corollary 4.4 for

the unique solution (γ,Ψ) of the equation

LhΨ = Θ + γΦ+
h (5.4)

in the space
Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0}. (5.5)

Also recall the space
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}. (5.6)

Now for λ ∈ C with |λ| small enough, but λ 6= 0, we want to solve the equation LhΨ = λΨ + Θ.
Upon writing

Ψ = Lqinv
h Θ + λ−1γh[Θ]Φ+

h + Ψ̃, (5.7)
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with Ψ̃ ∈ Xh, we see that

(Lh − λ)Ψ = (Lh − λ)Lqinv
h Θ + λ−1(Lh − λ)γh[Θ]Φ+

h + (Lh − λ)Ψ̃

= Θ + γh[Θ]Φ+
h − λL

qinv
h Θ− γh[Θ]Φ+

h + (Lh − λ)Ψ̃.
(5.8)

In particular, we must find a solution Ψ̃ ∈ Xh for the equation

LhΨ̃ = λΨ̃ + λLqinv
h Θ, (5.9)

which we can rewrite as
[I − λL−1

h ]Ψ̃ = λL−1
h Lqinv

h Θ. (5.10)

Note that L−1
h : Xh → Xh is also a bounded operator since Xh ⊂ Yh. Since

‖L−1
h Ψ‖H1 ≤ Cunif‖Ψ‖L2

≤ Cunif‖Ψ‖H1 ,
(5.11)

we obtain
‖L−1

h ‖B(Xh,Xh) ≤ Cunif . (5.12)

We choose λ0 in such a way that 0 < λ0Cunif < 1. Then it is well-known that I−λL−1
h is invertible as

an operator on Xh for 0 < |λ| < λ0. Since λL−1
h Lqinv

h Θ ∈ Xh, we see that (5.10) indeed has a unique

solution Ψ̃ ∈ Xh. Hence, the equation (Lh − λ)Ψ = Θ always has a unique solution. Proposition 4.1
states that Lh − λ is Fredholm with index 0, which now implies that Lh − λ is indeed invertible.

Region R2.
We now show that in an appropriate right half-plane, which can be chosen independently of h,

the spectrum of −Lh is empty. The proof proceeds via a relatively direct estimate that is strongly
inspired by [1, Lemma 5].

Proposition 5.3. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists a
constant λ1 > 0 such that for all λ ∈ C with Re λ ≥ λ1 and all 0 < h < h∗∗ the operator Lh + λ is
invertible.

Proof. Write
λ1 = 1 + g∗ + 1

2 (1− ρ), (5.13)

where g∗ is defined in Lemma 3.9. Pick any λ ∈ C with Re λ ≥ λ1 and any 0 < h < h∗∗. Let
Ψ = (φ, ψ) ∈ H1 be arbitrary and set Θ = LhΨ + λΨ. Then we see that

‖Ψ‖L2‖Θ‖L2 ≥ Re 〈LhΨ + λΨ,Ψ〉

≥ Re 〈−∆hφ, φ〉 − ‖gu(uh)‖L∞‖φ‖
2
L2

−(1− ρ)|Re 〈φ, ψ〉|+ γρ‖ψ‖2L2 + Re λ‖Ψ‖2L2

≥ −g∗‖φ‖2L2 − (1− ρ)|Re 〈φ, ψ〉|+ γρ‖ψ‖2L2 + Re λ‖Ψ‖2L2

≥ −g∗‖φ‖2L2 − (1− ρ)‖φ‖L2‖ψ‖L2 + γρ‖ψ‖2L2 + Re λ‖Ψ‖2L2

≥ −(g∗ + 1
2 (1− ρ))‖Ψ‖2L2 + Re λ‖Ψ‖2L2 .

(5.14)

Hence, we obtain (
Re λ− (g∗ + 1

2 (1− ρ))
)
‖Ψ‖L2 ≤ ‖Θ‖L2 . (5.15)

Since Re λ ≥ 1 + g∗ + 1
2 (1− ρ), we obtain the bound ‖Ψ‖L2 ≤ ‖Θ‖L2 .
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In particular, if Θ = 0 then we necessarily have Ψ = 0, which implies that Lh + λ is injective.
Since also ind(Lh + λ) = 0 by Proposition 4.1, this means that Lh + λ is invertible.

Region R3.
This region is the most delicate to handle on account of the periodicity of the spectrum. Indeed,

one cannot simply take Imλ→ ±∞ in a fashion that is uniform in h. We pursue a direct approach
here, using the Fourier transform to isolate the problematic part of Lh + λ, which has constant
coefficients. The corresponding portion of the resolvent can be estimated in a controlled way by
rescaling the imaginary part of λ. We remark that an alternative approach could be to factor out
the periodicity in a more operator-theoretic setting, but we do not pursue such an argument here.

Pick λ ∈ C with λ0 < | Im λ| ≤ |ch|h π and write

λ = λr + iλim (5.16)

with λr, λim ∈ R. Introducing the new variable τ = Im λξ, we can write the eigenvalue problem
(Lh + λ)(v, w) = 0 in the form

chvτ (τ) = 1
λimh2

∑
k>0

αk

[
v(τ + khλim) + v(τ − khλim)− 2v(τ)

]
+ 1
λim

gu

(
uh(τ)

)
v(τ)− iv(τ)− 1

λim
λrv(τ)− 1

λim
w(τ),

chwτ (τ) = 1
λim

(
ρv(τ)− ργw(τ) + λw(τ)

)
.

(5.17)

Our computations below show that the leading order terms in the appropriate |λim| → ∞ limit are
encoded by the ‘homogeneous operator’ Hh,λ that acts as

Hh,λv(τ) = chvτ (τ) + iv(τ)− 1
λimh2

∑
k>0

αk

[
v(τ + khλ) + v(τ − khλ)− 2v(τ)

]
. (5.18)

Writing Hh,λ for the Fourier symbol associated to Hh,λ, we see that

Hh,λ(iω) = chiω + i− 1
λimh2

∑
k>0

αk

[
exp(ihkλimω) + exp(−ihkλimω)− 2

]
= chiω + i− 2

λimh2

∑
k>0

αk

[
cos(hkλimω)− 1

]
.

(5.19)

Lemma 5.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist small
constants ε > 0, h∗ > 0 and ω0 > 0 so that for all λ ∈ C \ R, all 0 < h < h∗ and all ω ∈ R, the
inequality

| Im Hh,λ(iω)| < ε (5.20)

can only be satisfied if the inequalities

|chω| ≤ 3
2

|ω| ≥ ω0

(5.21)

both hold.

Proof. Note that
| Im Hh,λ(iω)| = |chω + 1|. (5.22)

In particular, upon choosing ε = 1
4 , we see that

| Im Hh,λ(iω)| < ε (5.23)

implies ∣∣|chω| − 1
∣∣ ≤ |chω + 1| < ε (5.24)
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and hence
1
2 < 1− ε ≤ |chω| ≤ 1 + ε < 3

2 . (5.25)

Since ch → c0 6= 0 as h ↓ 0, the desired inequalities (5.21) follow.

Lemma 5.5. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exists
a constant C > 0 such that for all ω ∈ R and 0 < h < h∗∗ and all λ ∈ C with |λ| > λ0 and

| Imλ| ≤ |ch|h π, we have the inequality

|Hh,λ(iω)| ≥ 1
C . (5.26)

Proof. We show that Hh,λ(iω) is bounded away from 0, uniformly in h, λ and ω. To do so, we show
that the real part of Hh,λ(iω) can be bounded away from zero, whenever the imaginary part is small,
i.e. when (5.21) holds.

Recall the function A(y) =
∑
k>0

αk[1 − cos(ky)] defined in Assumption (Hα1), which satisfies

A(y) > 0 for y ∈ (0, 2π). A direct calculation shows that A′(0) = 0 and

A′′(0) =
∑
k>0

αkk
2

= 1.
(5.27)

Hence, we can pick d0 > 0 in such a way that

1
y2A(y) > d0 (5.28)

holds for all 0 < |y| ≤ 3
2π.

Writing µ = hλimω, we see

Re Hh,λ(iω) = 2ω2λim

µ2

∑
k>0

αk

[
1− cos(kµ)

]
= 2ω2λim

µ2 A(µ).
(5.29)

Now fix ω, h, λ for which | Im Hh,λ(iω)| < ε. The conditions (5.21) now imply that |ω| ≥ ω0 and

|µ| ≤ h |ch|h π|ω| ≤ 3
2π. Using (5.27), we hence see that

|Re Hh,λ(iω)| = | 2ω
2λim

µ2 A(µ)|

≥ 2|λim|ω2d0

≥ 2λ0ω
2
0d0,

(5.30)

which shows that Hh,λ(iω) can indeed be uniformly bounded away from zero.

Proposition 5.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist

constants λ2 > 0 and λ3 > 0 such that for all λ ∈ C with λ2 ≤ | Im λ| ≤ |ch|2h 2π and −λ3 ≤ |Re λ| ≤
λ1 and all 0 < h < h∗∗ the operator Lh + λ is invertible.

Proof. Since Proposition 4.1 implies that Lh + λ is Fredholm with index zero, it suffices to prove
that Lh + λ is injective.

Let λ3 = min{ 1
2ργ, λ∗, λ̃}, where λ∗ is defined in (HP2) and λ̃ is defined in Proposition 4.1. Pick

λ ∈ C with λ0 ≤ | Im λ| ≤ |ch|2h 2π and −λ3 ≤ |Re λ| ≤ λ1. Write λ = λr + iλim as before. Suppose
Ψ = (v, w) satisfies (Lh + λ)Ψ = 0.

Write v̂ and ŵ for the Fourier transforms of v and w respectively. For f ∈ L2 with Fourier
transform f̂ , the identity

Hh,λv = f (5.31)
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implies that
Hh,λ(iω)v̂(iω) = f̂(iω). (5.32)

In particular, we obtain
v̂(iω) = 1

Hh,λ(iω) f̂(iω), (5.33)

which using Lemma 5.5 implies that

‖v‖L2 ≤ C‖f‖L2 (5.34)

for some constant C > 0 that is independent of h, λ and ω.
Since Ψ is an eigenfunction, (5.17) hence yields

‖v‖L2 ≤ C 1
|λim| (g∗ + |λr|)‖v‖L2 + C 1

|λim|‖w‖L2 . (5.35)

Furthermore, applying a Fourier Transform to the second line of (5.17), we find

λimchiωŵ(iω) = ρv̂(iω)− ργŵ(iω) + λŵ(iω). (5.36)

Our choice λ3 ≤ 1
2ργ implies that −ργ + λr is bounded away from 0. We may hence write

ŵ(iω) = 1
ργ−λr+i(ωλimch−λim)ρv̂(iω), (5.37)

which yields the bound
‖w‖L2 ≤ C ′‖v‖L2 (5.38)

for some constant C ′ > 0. Therefore, we obtain that

‖v‖L2 ≤ C ′′ 1
|λim|‖v‖L2 (5.39)

for some constant C ′′, which is independent of λ, h and v. Clearly this is impossible for v 6= 0 if

|λim| ≥ λ2 := 2C ′′. (5.40)

Furthermore, if v = 0, then clearly also w = 0. Therefore, we have Ψ = 0, allowing us to conclude
that Lh + λ is invertible.

Region R4.
We conclude our spectral analysis by considering the remaining region R4. This region is compact

and bounded away from the origin, allowing us to directly apply the theory developed in §3.

Corollary 5.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For all λ ∈ C
with |λ| ≥ λ0, −λ3 ≤ |Re λ| ≤ λ1 and | Im λ| ≤ λ2 and all 0 < h < h∗∗ the operator Lh + λ is
invertible.

Proof. The statement follows by applying Proposition 3.3 with the choices (ũh, w̃h)
= (uh, wh), c̃h = ch and M = R4.

Proof of Theorem 2.2. The result follows directly from Lemma 5.1, Proposition 5.2, Proposition 5.3,
Proposition 5.6 and Corollary 5.7.

6 Green’s functions

In order to establish the nonlinear stability of the pulse solution (uh, wh), we need to consider two
types of Green’s functions. In particular, we first study Gλ(ξ, ξ0), which can roughly be seen as a
solution of the equation [

(Lh + λ)Gλ(·, ξ0)
]
(ξ) = δ(ξ − ξ0), (6.1)
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where δ is the Dirac delta-distribution. We then use these functions to build a Green’s function G
for the linearisation of the LDE (2.1) around the travelling pulse solution.

An important difficulty in comparison to the PDE setting is caused by the discreteness of the
spatial variable j. In particular, we cannot use a frame of reference in which the solution (uh, wh) is
constant without changing the structure of the equation (2.1). The Green’s function G will hence be
the solution to a non-autonomous problem that satisfies a shift-periodicity condition. Nevertheless,
one can follow the technique in [5] to express G in terms of a contour integral involving the functions
Gλ.

A significant part of our effort here is concerned with the construction of these latter functions.
Indeed, previous approaches in [3, 36] all used exponential dichotomies or variation-of-constants
formula’s for MFDEs with finite-range interactions. These tools are no longer available for use in the
present infinite-range setting. In particular, we construct the functions Gλ in a direct fashion using
only Fredholm properties of the operators Lh + λ. This makes it somewhat involved to recover the
desired exponential decay rates and to properly isolate the meromorphic terms of order O(λ−1).

From now on, we will no longer explicitly use the h-dependence of our system. To simplify our
notation, we fix 0 < h < h∗∗ and write

L := Lh,
L∞ := Lh;∞,
U = (u,w) := (uh, wh),
Φ± = (φ±, ψ±) := (φ±h , ψ

±
h ),

c := ch.

(6.2)

We emphasize that from now on all our constants may (and will) depend on h.
We will loosely follow §2 of [36], borrowing a number of results from [5, 34] at appropriate times.

In particular, we start by considering the linearisation of the original LDE (2.1) around the travelling
pulse solution U(t) given by (2.21). To this end, we introduce the Hilbert space

L2 := {V ∈ (Mat2(R))Z :
∑
j∈Z
|V (j)|2 <∞}, (6.3)

in which Mat2(R) is the space of 2 × 2-matrices with real coefficients which we equip with the

maximum-norm | · |. For any V ∈ L2, we often write V =

(
V(1,1) V(1,2)

V(2,1) V(2,2)

)
, when we need to refer

to the component sequences V(i,j) ∈ `2(Z;R). For any t ∈ R we now introduce the linear operator
A(t) : L2 → L2 that acts as

A(t) · V = 1
c

(
A(1,1)(t) A(1,2)(t)
A(2,1)(t) A(2,2)(t)

)(
V(1,1) V(1,2)

V(2,1) V(2,2)

)
, (6.4)

where

(A(1,1)(t)v)j = 1
h2

∑
k>0

αk[vj+k + vj−k − 2vj ] + gu

(
u(hj + ct)

)
vj

(A(1,2)(t)w)j = −wj
(A(2,1)(t)v)j = ρvj

(A(2,2)(t)v)j = −ργwj

(6.5)

for v ∈ `2(Z;R) and w ∈ `2(Z;R). With all this notation in hand, we can write the desired lineari-
sation as the ODE

d
dtV(t) = A(t) · V(t) (6.6)

posed on L2.
Fix t0 ∈ R and j0 ∈ Z. Consider the function

R 3 t 7→ Gj0(t, t0) = {Gj0j (t, t0)}j∈Z ∈ L2 (6.7)
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that is uniquely determined by the initial value problem{
d
dtG

j0(t, t0) = A(t) · Gj0(t, t0)

Gj0j (t0, t0) = δj0j I.
(6.8)

Here we have introduced

δj0j =

{
1 if j = j0

0 else,
(6.9)

where I ∈ Mat2(R) is the identity matrix. We remark that Gj0j (t, t0) is an element of Mat2(R) for
each j ∈ Z.

This function G is called the Green’s function for the linearisation around our travelling pulse.
Indeed, the general solution of the inhomogeneous equation{

dV
dt = A(t) · V (t) + F (t)

V (0) = V 0,
(6.10)

where now V (t) ∈ `2(Z;R2) ∼= `2(Z;R2×1) and F (t) ∈ `2(Z;R2) ∼= `2(Z;R2×1), is given by

Vj(t) =
∑
j0∈Z
Gj0j (t, 0)V 0

j0
+
∫ t

0

∑
j0∈Z
Gj0j (t, t0)Fj0(t0) dt0. (6.11)

Introducing the standard convolution operator ∗, this can be written in the abbreviated form

V = G(t, 0) ∗ V 0 +
∫ t

0
G(t, t0) ∗ F (t0) dt0. (6.12)

The main result of this section is the following proposition, which shows that we can decompose
the Green’s function G into a part that decays exponentially and a neutral part associated with
translation along the family of travelling pulses.

Proposition 6.1. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For any pair
t ≥ t0 and any j, j0 ∈ Z, we have the representation

Gj0j (t, t0) = Ej0j (t, t0) + G̃j0j (t, t0), (6.13)

in which

Ej0j (t, t0) = h
Ω

(
φ−(hj0 + ct0)φ+(hj + ct) ψ−(hj0 + ct0)φ+(hj + ct)
φ−(hj0 + ct0)ψ+(hj + ct) ψ−(hj0 + ct0)ψ+(hj + ct)

)
, (6.14)

while G̃ satisfies the found

|G̃j0j (t, t0)| ≤ Ke−δ̃(t−t0)e−δ̃|hj+ct−hj0−ct0| (6.15)

for some K > 0 and δ̃ > 0. The constant Ω > 0 is given by

Ω = 〈Φ−,Φ+〉. (6.16)

Furthermore, for any t ≥ t0 we have the representation

Gj0j (t, t0) =
∑
i∈Z

[
E ij(t, t0)Ej0i (t0, t0) + G̃ij(t, t0)(δj0i I − E

j0
i (t0, t0))

]
, (6.17)

which can be abbreviated as

G(t, t0) = E(t, t0) ∗ E(t0, t0) + G̃(t, t0) ∗
(
I − E(t0, t0)

)
. (6.18)

Proof of Theorem 2.3. The Green’s function bounds from Proposition 6.1 are strong enough to
follow the program described in the proof of [36, Prop 2.1]. In particular, using standard fixed point
arguments one can foliate the `p-neighbourhood of the wave U with the one-parameter family formed
by the stable manifolds of the translates U(·+ ϑ).
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6.1 Construction of the Green’s function

In this subsection we set out to define the functions Gλ in a more rigorous fashion. In addition, we
use these Green’s functions to formulate a powerful representation formula for G, see Proposition
6.4 below, following the approach developed in [5].

A key role in our analysis is reserved for the operator L∞;λ and the function ∆L∞;λ
from Lemma

4.6. We will show that L∞;λ has a Green’s function G∞;λ which takes values in the space Mat2(R)

and has some useful properties. To this end, we recall the constant λ̃ from Lemma 4.6. For each

λ ∈ C with Re λ ≥ − λ̃2 , we may now define G∞;λ : R→ Mat2(R) by writing

G∞;λ(ξ) = 1
2π

∫∞
−∞ eiηξ(∆L∞;λ

(iη))−1 dη. (6.19)

We also introduce the notation
G∞ = G∞;0. (6.20)

Here (Hα2) is essential to ensure that these Green’s functions decay exponentially.

Lemma 6.2. Assume that (HP1), (HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix λ ∈ C with

Re λ ≥ − λ̃2 . The function G∞;λ is bounded and continuous on R \ {0} and C1-smooth on R \ hZ.
Furthermore, (L∞+λ)G∞;λ(·− ξ0) is constantly zero except at ξ = ξ0 +hZ and satisfies the identity∫∞

−∞

[
(L∞ + λ)G∞;λ(· − ξ0)

]
(ξ)f(ξ) dξ = f(ξ0) (6.21)

for all ξ ∈ R and all f ∈ H1.
Finally for each χ > 0 there exist constants K∗ > 0 and β∗ > 0, which may depend on χ, such

that for each λ ∈ C with − λ̃2 ≤ Re λ ≤ χ and | Im λ| ≤ π|c|
h we have the bound

|G∞;λ(ξ − ξ0)| ≤ K∗e−β∗|ξ−ξ0| (6.22)

for all ξ, ξ0 ∈ R.

Pick λ ∈ C \ σ(−L) with Re λ ≥ − λ̃2 . Observe that

L− L∞ =

(
−gu(u) + r0 0
0 0

)
. (6.23)

We know that G∞;λ(·− ξ0) ∈ L2(R,Mat2(R)) since it decays exponentially. This means that we also
have the inclusion

[L− L∞]G∞;λ(· − ξ0) ∈ L2(R,Mat2(C)). (6.24)

Hence, it is possible to define the function Gλ by writing

Gλ(ξ, ξ0) = G∞;λ(ξ − ξ0)−
[
(λ+ L)−1[L− L∞]G∞;λ(· − ξ0)

]
(ξ). (6.25)

The next result shows that Gλ can be interpreted as the Green’s function of L + λ. It is based on
[36, Lemma 2.6].

Lemma 6.3. Assume that (HP1), (HP2), (HS), (Hα1) and (Hα2) are satisfied. For λ ∈ C \σ(−L)

with Re λ ≥ − λ̃2 we have that Gλ(·, y) is continuous on R\{y} and C1-smooth on R\{y+kh : k ∈ Z}.
Furthermore, it satisfies ∫∞

−∞

[
(λ+ L)Gλ(·, ξ0)

]
(ξ)f(ξ) dξ = f(ξ0) (6.26)

for all ξ ∈ R and all f ∈ H1.
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The link between our two types of Green’s functions is provided by the following key result. It
is based on [5, Theorem 4.2], where it was used to study one-sided spatial discretisation schemes for
systems with conservation laws.

Proposition 6.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Let χ > λunif

be given, where λunif is as in Lemma 6.7. For all t ≥ t0 the Green’s function Gj0j (t, t0) of (6.8) is
given by

Gj0j (t, t0) = − h
2πi

χ+ iπc
h∫

χ− iπch

eλ(t−t0)Gλ(hj + ct, hj0 + ct0)dλ (6.27)

where Gλ is the Green’s function of λ+ L as defined in (6.25).

Our first task is to collect several basic facts concerning the operators Lh and L∞ that will allow
us to establish Lemma’s 6.2 and 6.3. In particular, we need to isolate and explicitly compute the
part of the Fourier integral (6.19) that behave as |η|−1

and |η|−2
as η → ±∞, as these lead to the

discontinuities in G∞;λ and its derivative.

Lemma 6.5. Assume that (Hα1) and (Hα2) are satisfied. Consider any bounded function f : R→ R
which is continuous everywhere except at some ξ0 ∈ R. Then ∆hf is continuous everywhere except
at {ξ0 + hk : k ∈ Z}. Moreover, if f is differentiable except at ξ0 and f ′ is bounded, then ∆hf is
differentiable everywhere except at {ξ0 + hk : k ∈ Z} and [∆hf ]′(ξ) = [∆hf

′](ξ).

Proof. For convenience we set ξ0 = 0. Pick ξ ∈ R with ξ /∈ {kh : k ∈ Z}. Then f is continuous in

each point ξ+ kh for k ∈ Z. Choose ε > 0. Since f is bounded and
∞∑
j=1

|αj | <∞, we can pick K > 0

in such a way that

2‖f‖∞
1
h2

∞∑
j=K

|αj | < ε
2 . (6.28)

For j ∈ {1, ...,K − 1} we can pick δj > 0 in such a way that

1
h2 |αj |

∣∣∣f(ξ + y + hj)− f(ξ + hj)
∣∣∣ < ε

2K+1 (6.29)

for all y ∈ R with |y| < δj . Let δ = min{δj : 1 ≤ j < K} > 0. Then for y ∈ R with |y| < δ we obtain

|∆hf(ξ + y)−∆hf(ξ)| ≤ 1
h2

∞∑
j=K

|αj |
(
|f(ξ + y + jh)|+ |f(ξ + jh)|

)
+ 1
h2

K−1∑
j=1

|αj |
∣∣∣f(ξ + y + jh)− f(ξ + jh)

∣∣∣
≤ 2

h2

∞∑
j=K

|αj |‖f‖∞ +
K−1∑
j=1

ε
2K+1

< ε
2 + ε

2

= ε.

(6.30)

So ∆hf is continuous outside of {kh : k ∈ Z}.
Writing

fn(ξ) = 1
h2

n∑
j=1

αj

[
f(ξ + hj) + f(ξ − hj)− 2f(ξ)

]
(6.31)

for n ∈ Z>0, we can compute

f ′n(ξ) = 1
h2

n∑
j=1

αj

[
f ′(ξ + hj) + f ′(ξ − hj)− 2f ′(ξ)

]
. (6.32)
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This allows us to estimate

|f ′n(ξ)− (∆hf
′)(ξ)| ≤ 1

h2

∞∑
j=n+1

|αj |4‖f ′‖∞. (6.33)

In particular, the sequence {f ′n} converges uniformly to ∆hf
′ from which it follows that

(∆hf)′(ξ) = 1
h2

∞∑
j=1

αm

[
f ′(ξ + hj) + f ′(ξ − hj)− 2f ′(ξ)

]
= (∆hf

′)(ξ).
(6.34)

Proof of Lemma 6.2. Pick χ > 0 and set

R = {λ ∈ C : − λ̃2 ≤ Re λ ≤ χ and | Im λ| ≤ π|c|
h }. (6.35)

The proof of Lemma 4.7 implies that we can choose β∗ > 0 and K∗ > 0 in such a way that

‖∆L∞;λ
(z)−1‖ ≤ K∗

1+| Im z| (6.36)

for all λ ∈ R and all z ∈ C with |Re z| ≤ 2β∗. In particular, it follows that (y 7→ ∆L∞;λ
(iy)−1) ∈

L2(R). By the Plancherel Theorem it follows that G∞;λ is a well-defined function in L2(R). In
particular, it is bounded. Shifting the integration path in (6.19) in the standard fashion described
in [39, 48], we obtain the bound

|G∞;λ(ξ − ξ0)| ≤ K∗e−β∗|ξ−ξ0| (6.37)

for all ξ, ξ0 ∈ R and λ ∈ R.
We loosely follow the approach of [34, §5.1], which considers a similar setting for Green’s func-

tions for Banach space-valued operators with finite range interactions. Pick λ ∈ R. We rewrite the
definition of ∆L∞;λ

given in (4.18) in the more general form

1
c∆L∞;λ

(z) = z −B∞;λe
z·, (6.38)

For α ∈ R close to 0 we introduce the expression RL∞;λ;α by

RL∞;λ;α(z) = c∆L∞;λ
(z)−1 − 1

z−α −
B∞;λe

z·−α
(z−α)2

(6.39)

for z ∈ C unequal to α and |Re z| ≤ 2β∗. Since we can compute

c∆L∞;λ
(z)−1 =

[
z − α+

(
α−B∞;λe

z·)]−1

= (z − α)−1
[
1 + (z − α)−1

(
α−B∞;λe

z·)]−1

= (z − α)−1
[
1− (z − α)−1

(
α−B∞;λe

z·)+O((z − α)−2)
]
,

(6.40)

we obtain the estimate
|RL∞;λ;α(iy)| ≤ K∗

1+|y|3 , (6.41)

for all y ∈ R, possibly after increasing K∗.
Exploiting the decomposition (6.39), we write

G∞;λ = 1
cMα + 1

cRα, (6.42)

45



where we have introduced

Mα(ξ) = 1
2π

∫∞
−∞ eiηξ

(
1

iη−α −
B∞;λe

iη·−α
(iη−α)2

)
dη,

Rα(ξ) = 1
2π

∫∞
−∞ eiηξRL∞;λ;α(iη) dη

(6.43)

for any α ∈ R \ {0} and ξ ∈ R. Using [34, Lemma 5.8] we can explicitly compute

Mα(ξ) = −eαξH(−ξ)−
[
B∞;λ − α

](
· eα·H(−·)

)
(ξ), (6.44)

where we have introduced the Heaviside function H as

H(ξ) =


I, ξ > 0
1
2I, ξ = 0

0, ξ < 0.

(6.45)

Since ξ 7→ ξeαξH(−ξ) is continuous everywhere and differentiable outside of ξ = 0, Lemma 6.5
implies thatMα is continuous everywhere outside of ξ = 0 and differentiable outside of {hk : k ∈ Z}.
Moreover, we have the jump discontinuity

Mα(0+)−Mα(0−) = I (6.46)

and we can easily compute

M′α(ξ) = αMα(ξ)− [B∞;λ − α]
[
eα·H(−·)

]
(ξ), (6.47)

from which it follows that

1
cL∞;λMα(ξ) = M′α(ξ)−B∞;λMα(ξ)

= −αeαξH(−ξ)− α
[
B∞;λ − α

](
· eα·H(−·)

)
(ξ)

−[B∞;λ − α]
[
eα·H(−·)

]
(ξ) +B∞;λ

[
eα·H(−·)

]
(ξ)

+B∞;λ

[
[B∞;λ − α]

(
· eα·H(−·)

)
(∗)
]
(ξ)

= [B∞;λ − α]
[
[B∞;λ − α]

(
· eα·H(−·)

)
(∗)
]
(ξ).

(6.48)

Since RL∞;λ;α ∈ L1(R) we see that Rα is continuous. Therefore, G∞;λ is continuous outside of ξ = 0.
Similarly to [34, Eq. (5.79)] we observe that

1
c∆L∞;λ

(z)RL∞;λ;α(z) =
(B∞;λe

z·−α)2

(z−α)2 , (6.49)

which yields

1
cL∞;λRα(ξ) = R′α(ξ)−B∞;λRα(ξ)

= 1
2πc

∫∞
−∞ eiξy∆L∞;λ

(iy)RL∞;λ;α(iy)dy

= 1
2π

∫∞
−∞ eiξy

(B∞;λe
iy·−α)2

(iy−α)2 dy

= −[B∞;λ − α]
[
[B∞;λ − α]

(
· eα·H(−·)

)
(∗)
]
(ξ),

(6.50)

using [34, Lemma 5.8]. In particular, we see that

L∞;λG∞;λ(ξ) = 0 (6.51)
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for all ξ outside of {hk : k ∈ Z}. Lemma 6.5 subsequently shows that G∞;λ is C1-smooth outside of
{hk : k ∈ Z}.

Fix f ∈ H1. For any δ > 0 we may compute

0 =
∫∞
δ

[
L∞;λG∞;λ(·)

]
(ξ)f(ξ)dξ

=
[
cG∞;λf

]∞
δ
−
∫∞
δ
cG∞;λ(ξ)f ′(ξ) + [cB∞;λG∞;λ](ξ)f(ξ),

(6.52)

together with

0 =
[
cG∞;λf

]−δ
−∞
−
∫ −δ
−∞ cG∞;λ(ξ)f ′(ξ) + [cB∞;λG∞;λ](ξ)f(ξ). (6.53)

Using (6.46) we can hence compute∫∞
−∞

[
L∞;λG∞;λ(·)

]
(ξ)f(ξ)dξ = limδ↓0

[
cG∞;λf

]∞
δ
−
[
cG∞;λf

]−δ
−∞

= f(0).
(6.54)

Lemma 6.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix λ ∈ C with

Re λ ≥ − λ̃2 . Then there exist constants K > 0 and β > 0 so that for any g ∈ L2 and f ∈ H1 that
satisfy (L+ λ)f = g, the pointwise bound

|f(ξ)| ≤ Ke−α|ξ|‖f‖∞ +K
∫∞
−∞ e−|η−ξ|g(η)dη (6.55)

holds for all ξ ∈ R.

Proof. On account of Lemma 6.2 we can lift the results from [48, Prop. 5.2-5.3] to our current infinite
range setting. The proof of these results are identical, since the estimate [48, Eq. (5.4)] still holds in
our setting on account of (Hα2). A more detailed description for this procedure can be found in [6,
Lemma 4.1-Lemma 4.3].

Proof of Lemma 6.3. Pick λ ∈ C \ σ(−L) and compute

(λ+ L)Gλ(·, ξ0) = (λ+ L)G∞;λ(· − ξ0)− [L− L∞]G∞;λ(· − ξ0)

= (λ+ L∞)G∞;λ(· − ξ0).
(6.56)

The last statement follows immediately from this identity.
Write

Ĝ∞;λ(· − ξ0) = [L− L∞]G∞;λ(· − ξ0). (6.57)

We have already seen that Ĝ∞;λ(· − ξ0) ∈ L2(R,Mat2(C)). Hence, it follows that

(λ+ L)−1Ĝ∞;λ(· − ξ0) ∈ H1(R,Mat2(C)). (6.58)

In particular, this function is continuous. Together with Lemma 6.2 we obtain that Gλ(·, ξ0) is
continuous on R \ {ξ0}.

Set H = (λ + L)−1Ĝ∞;λ and write H =

(
H(1,1) H(1,2)

H(2,1) H(2,2)

)
. Using the definition of L we see

that
c ddξH = −λH − Ĝ∞ − H̃, (6.59)

where

H̃ = −
(
−∆hH

(1,1) − gu(u)H(1,1) +H(2,1) ∆hH
(1,2) − gu(u)H(1,2) +H(2,2)

−ρH(1,1) + γρH(2,1) −ρH(1,2) + γρH(2,2)

)
. (6.60)
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Since u′ ∈ H1 and hence u′ is continuous, we must have that u is continuous. As argued before
∆hH

(1,1) and ∆hH
(1,2) are also continuous. Hence, we see that c ddξH is continuous on R \ {ξ0}

and thus that d
dξH is continuous on R \ {ξ0}. Therefore, we obtain that Gλ(·, ξ0) is C1-smooth on

R \ {ξ0 + kh : k ∈ Z}.
We now proceed to the verification of the integral representation (6.27). As a preparation, we

need to show that whenever λ has a sufficiently large real part, the function Gλ is bounded uniformly
by a constant. This result is based on [5, Lemma 4.1].

Lemma 6.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exist
constants K and λunif so that the Green’s function Gλ enjoys the uniform estimate

|Gλ(ξ, ξ0)| ≤ K, (6.61)

for all ξ, ξ0 ∈ R, whenever Re λ > λunif .

Proof. We write L = c ddξ +B with

B =

(
−∆h − gu(u) 1
−ρ γρ

)
. (6.62)

We introduce G0
λ as the Green’s function of (λ + c ddξ ) viewed as a map from H1 to L2. Luckily, it

is well-known that this Green’s function admits the estimate

|G0
λ(ξ, ξ0)| ≤ 1

|c|e
−Re λ|ξ−ξ0|/|c|. (6.63)

We can look for the Green’s function Gλ as the solution of the fixed point problem

Gλ(ξ, ξ0) = G0
λ(ξ, ξ0) +

∫
RGλ(ξ, z)(BG0

λ)(z, ξ0)dz. (6.64)

Since λ+L is invertible by Theorem 2.2, Gλ must necessarily satisfy the fixed point problem (6.64).

For a matrix A ∈ Mat2(C) we write A =

(
A(1,1) A(1,2)

A(2,1) A(2,2)

)
. We make the decomposition

B = B0 +B1, (6.65)

where

B0 =

(
−∆h 0
0 0

)
,

B1 =

(
−gu(u) 1
−ρ γρ

)
.

(6.66)

We estimate

|(B0G
0
λ)(ξ, ξ0)| = |∆hG

0
λ(ξ, ξ0)(1,1)|

≤
∞∑
j=1

[
1
h2 |αj |

(
|G0

λ(ξ + hj, ξ0)(1,1)|+ |G0
λ(ξ − hj, ξ0)(1,1)|+ 2|G0

λ(ξ, ξ0)(1,1)|
)]

≤ 1
|c|

∞∑
j=1

[
1
h2 |αj |

(
e−Re λ|ξ+hj−ξ0|/|c| + e−Re λ|ξ−hj−ξ0|/|c| + 2e−Re λ|ξ−ξ0|/|c|

)]
(6.67)

and observe that ∫
R |(B0G

0
λ)(ξ, ξ0)| dξ ≤ 1

|c|

(
∞∑
j=1

4
[

1
h2 |αj | 1

Re λ/|c|

])
= 4

h2 Re λ

∞∑
j=1

|αj |.
(6.68)
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We now fix G ∈ L∞(R2,Mat2(C)) and consider the expressions

I0 =
∫
R

[
G(ξ, z)(B0G

0
λ)(z, ξ0)

](1,1)

dz,

I1 =
∫
R

[
G(ξ, z)(B1G

0
λ)(z, ξ0)

](1,1)

dz.

(6.69)

Using Fubini’s theorem for positive functions to switch the integral and the sum, we obtain the
estimates

|I0| ≤ ‖G‖L∞
∫
R |(B0G

0
λ)(z, ξ0)| dz

≤ ‖G‖L∞
4

h2 Re λ

∞∑
j=1

|αj |
(6.70)

and

|I1| ≤ ‖G‖L∞
∫
R

(
|gu(u(z))||G0

λ(z, ξ0)(1,1)|+ ρ|G0
λ(z, ξ0)(1,1)|

+(1 + γρ)|G0
λ(z, ξ0)(2,1)|

)
dz

≤ ‖G‖L∞
1
|c|
∫
R

((
|gu(u(z))|+ ρ+ 1 + γρ

)
e−Re λ|z−ξ0|/|c|

)
dz

≤ ‖G‖L∞
1
|c|

(
‖gu(u)‖L∞ + ρ+ 1 + γρ

)(
1

Re λ/|c|

)
≤ ‖G‖L∞

(
g∗ + ρ+ 1 + γρ

) (
1

Re λ

)
.

(6.71)

Similar estimates hold for the other components of
∫
RG(ξ, z)(BG0

λ)(z, ξ0)dz. Therefore, the mapping
G 7→

∫
RG(ξ, z)(BG0

λ)(z, ξ0)dz is a contraction in L∞(R2,Mat2(C)) for Re λ > λunif for λunif large
enough, with λunif possibly dependent of h ∈ (0, h∗∗). Hence, we get a unique bounded solution of
(6.64), which must be Gλ. The desired bound on Gλ is now immediate.

Proof of Proposition 6.4. Fix j0 ∈ Z and t0 ∈ R. Since (6.8) is merely a linear ODE in the Banach
space L2, it follows from the Cauchy-Lipschitz theorem that (6.8) indeed has a unique solution
V : [t0,∞)→ L2. For any Z ∈ C∞c (R;L2), an integration by parts yields

−Zj0(t0) =
∫∞
t0

∑
j∈Z

[(
dVj
dt (t)− (A(t) · V(t))j

)
Zj(t)

]
dt−

∑
j∈Z Vj(t0)Zj(t0)

=
∫∞
t0

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (A(t) · V)j(t)Zj(t)
]
dt.

(6.72)

We want to show that the function Vj(t) := Gj0j (t, t0) defined by (6.27) coincides with V on
[t0,∞). To accomplish this, we define

I =
∫∞
t0

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (A(t) · V (t))jZj(t)
]
dt (6.73)

and show that V is a weak solution to (6.8) in the sense that

I = −Zj0(t0) (6.74)

holds for all Z ∈ C∞c (R;L2). Indeed, the uniqueness of weak solutions then implies that V = V.
Note first that V (t) = 0 for t < t0, which can be seen by using (6.61) and taking χ → ∞ in

(6.27). We write y = hj0 + ct0, χ− = χ− iπc
h and χ+ = χ+ iπc

h . We see that

I =
∞∫
−∞

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (A(t) · V (t))jZj(t)
]
dt, (6.75)

since V (t) = 0 for t < t0. Moreover, we write

Gj(t) = Gλ(hj + ct, y). (6.76)

49



Using our definition of V (t), we have

I = − h
2πi

χ+∫
χ−

∑
j∈Z

[ ∞∫
−∞
Ij(t, λ)dt

]
dλ, (6.77)

where
Ij(t, λ) = eλ(t−t0)

[
−Gj(t)dZjdt (t)− (A(t) ·G(t))jZj(t)

]
. (6.78)

The permutation of the summations and integrations is allowed by Lebesgue’s theorem because Z
and dZ

dt are compactly supported and Gλ is uniformly bounded by (6.61). Fix χ− ≤ λ ≤ χ+ and
j ∈ Z. Using the change of variable x = hj + ct we obtain

∞∫
−∞
Ij(t, λ)dt = 1

c

x=∞∫
x=−∞

[
− cGj

(
x−hj
c

)
dZj
dx + λGj

(
x−hj
c

)
Zj(x, λ)

−
(
A
(
x−hj
c

)
·G
(
x−hj
c

))
j
Zj(x, λ)

]
dx,

(6.79)

where
Zj(x, λ) = eλ((x−hj)/c−t0)Zj

(
x−hj
c

)
. (6.80)

Exploiting the fact that Zj and, therefore, Zj is compactly supported, (6.26) yields

∞∫
−∞
Ij(t, λ)dt = 1

c

∫∞
−∞[(L+ λ)Gλ(x, y)Zj(x, λ)]dx

= 1
cZj(y).

(6.81)

Now since Zj is compactly supported, we can exchange sums and integrals in equation (6.77). This
allows us to compute

I = − h
2πi

1
c

χ+∫
χ−

∑
j∈Z

∞∫
−∞
Ij(t, λ)dtdλ

= − h
2πi

1
c

χ+∫
χ−

∑
j∈Z
Zj(y, λ)dλ

= − h
2πic

χ+∫
χ−

∑
j∈Z

eλ
(hj0−hj)

c Zj

(
(hj0−hj)

c + t0

)
dλ

= − h
2πic

∑
j∈Z

χ+∫
χ−

eλ
(hj0−hj)

c Zj

(
(hj0−hj)

c + t0

)
dλ

= − h
2πic

∑
j∈Z

2πich δ
j0
j Zj

(
(hj0−hj)

c + t0

)
= −Zj0(t0),

(6.82)

as desired.

6.2 Meromorphic expansion of Gλ

In this subsection we set out to explicitly isolate the pole at λ = 0 in the meromorphic expansion of
Gλ. In addition, we show that both parts of this decomposition decay exponentially in a λ-uniform
fashion. This will allow us to shift the integration path in (6.27) to the left of the imaginary axis.
The decomposition (6.13) for the Green’s function G together with the exponential decay estimates
(6.15) can subsequently be read off from the shifted contour integral.

Lemma 6.8. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist constants
K1 > 0,K2 > 0, δ > 0 and δ̃ > 0 such that

|Φ+(ξ)| ≤ K1e
−δ|ξ|‖Φ+‖∞,

|Φ−(ξ)| ≤ K2e
−δ̃|ξ|‖Φ−‖∞

(6.83)
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for all ξ ∈ R.

Proof. We obtain from Lemma 6.6 that there are constants δ > 0 and K1 > 0 for which

|Ψ(ξ)| ≤ K1e
−δ|ξ|‖Ψ‖∞ +K1

∫∞
−∞ e−δ|ξ−η||Θ(η)|dη (6.84)

holds for each Ψ ∈ H1, where Θ = LΨ. Since LΦ+ = 0 we conclude that

|Φ+(ξ)| ≤ K1e
−δ|ξ|‖Φ+‖∞ (6.85)

for all ξ. Note that the operator L∗ is also asymptotically hyperbolic. Hence, there are δ̃ > 0 and
K2 > 0 for which

|Ψ(ξ)| ≤ K2e
−δ̃|ξ|‖Ψ‖∞ +K2

∫∞
−∞ e−δ̃|ξ−η||Θ(η)|dη (6.86)

holds for each Ψ ∈ H1, where Θ = L∗Ψ. Since L∗Φ−h = 0 we obtain that

|Φ−(ξ)| ≤ K2e
−δ̃|ξ|‖Φ−‖∞ (6.87)

for all ξ.

Lemma 6.9. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exist
constants K3 > 0 and δ > 0 such that

|(Φ±)′(ξ)| ≤ K3e
−δ|ξ| (6.88)

for all ξ ∈ R.

Proof. Lemma 6.8 implies that

|∆hφ
+(ξ)| ≤ 1

h2K1

∑
k>0

|αk|(e−δ|ξ+hk| + e−δ|ξ−hk| + 2e−δ|ξ|)

≤ K1e
−δ|ξ|( 1

h2

∑
k>0

|αk|(2eδhk + 2)),
(6.89)

where the last sum converges by (Hα2), possibly after decreasing δ > 0. Using the fact that

(Φ+)′ = 1
c

(
∆hφ

+ + gu(u)φ+ − ψ+

ρφ+ − ργψ+

)
(6.90)

we hence see that there exists a constant K3 > 0 such that

|(Φ+)′(ξ)| ≤ K3e
−δ|ξ|. (6.91)

The proof for the bound on (Φ−)′ is identical.
We recall the spaces

X := Xh = {Θ ∈ H1 : 〈Φ−,Θ〉 = 0}

Y := Yh = {Θ ∈ L2 : 〈Φ−,Θ〉 = 0},
(6.92)

together with the operators L−1 in the spaces B(X,X) and in B(Y,X) that were defined in Propo-
sition 4.2. We also recall the notation LqinvΘ that was introduced in Corollary 4.4 for the unique
solution Ψ of the equation

LΨ = Θ− 〈Φ−,Θ〉
〈Φ−,Φ+〉Φ

+ (6.93)

in the space X, which is given explicitly by

LqinvΘ = L−1
[
Θ− 〈Φ−,Θ〉

〈Φ−,Φ+〉Φ
+
]
. (6.94)

We now exploit these operators to decompose the Green’s function of λ+L into a meromorphic and
an analytic part. This result is based on [36, Lemma 2.7].
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Lemma 6.10. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists a
constant 0 < λ ≤ λ0 such that for all 0 < |λ| < λ we have the representation

Gλ(ξ, ξ0) = Eλ(ξ, ξ0) + G̃λ(ξ, ξ0) (6.95)

Here the meromorphic (in λ) term can be written as

Eλ(ξ, ξ0) = − 1
λΩ

(
φ−(ξ0)φ+(ξ) ψ−(ξ0)φ+(ξ)
φ−(ξ0)ψ+(ξ) ψ−(ξ0)ψ+(ξ)

)
(6.96)

and the analytic (in λ) term G̃λ is given by

G̃λ(ξ, ξ0) = G∞;λ(ξ − ξ0)−
[
[I + λL−1]−1Lqinv(L− L∞)G∞;λ(· − ξ0)

]
(ξ)

− 1
Ω 〈Φ

−, G∞;λ(· − ξ0)〉Φ+(ξ).
(6.97)

Here we recall the notation
Ω = 〈Φ−,Φ+〉. (6.98)

Proof. Pick λ ∈ C with 0 < |λ| < λ0. By the proof of Proposition 5.2 we see that

(L+ λ)−1Θ = λ−1 〈Φ−,Θ〉
Ω Φ+ + LqinvΘ− [I + λL−1]−1λL−1LqinvΘ. (6.99)

We now compute

〈Φ−, (L− L∞)G∞;λ(· − ξ0)〉 = 〈Φ−,−L∞G∞;λ(· − ξ0)〉

= −Φ−(ξ0) + λ〈Φ−, G∞;λ(· − ξ0)〉.
(6.100)

In particular, writing
L̂ = L− L∞, (6.101)

we obtain

(L+ λ)−1L̂G∞(· − ξ0) = 1
λΩ

(
φ−(ξ0)φ+ ψ−(ξ0)φ+

φ−(ξ0)ψ+ ψ−(ξ0)ψ+

)
+
〈Φ−,G∞;λ(·−ξ0)〉

Ω Φ+ + LqinvL̂G∞;λ(· − ξ0)

−[I + λL−1]−1λL−1LqinvL̂G∞;λ(· − ξ0).

(6.102)

We may hence write
Gλ(ξ, ξ0) = Eλ(ξ, ξ0) + G̃λ(ξ, ξ0) (6.103)

with

Eλ(ξ, ξ0) = − 1
λΩ

(
φ−(ξ0)φ+(ξ) ψ−(ξ0)φ+(ξ)
φ−(ξ0)ψ+(ξ) ψ−(ξ0)ψ+(ξ)

)
(6.104)

and
G̃λ(·, ξ0) = G∞;λ(· − ξ0)− LqinvL̂G∞λ(· − ξ0)

+[I + λL−1]−1λL−1LqinvL̂G∞;λ(· − ξ0)

− 1
Ω 〈Φ

−, G∞;λ(· − ξ0)〉Φ+

= G∞;λ(· − ξ0)− [I + λL−1]−1LqinvL̂G∞;λ(· − ξ0)

− 1
Ω 〈Φ

−, G∞(· − ξ0)〉Φ+.

(6.105)

Clearly Eλ is meromorphic in λ, while G̃λ is analytic in λ in the region |λ| < λ0.
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We fix χ > λunif , where λunif was defined in Lemma 6.3, and set

R = {λ ∈ C : − λ̃2 ≤ Re λ ≤ χ and | Im λ| ≤ π|c|
h }. (6.106)

We now set out to obtain an estimate on the function G̃λ from Lemma 6.10 by exploiting the
asymptotic hyperbolicity of L. We treat each of the terms in (6.97) separately in the results below.

Lemma 6.11. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist con-
stants K4 > 0 and χ̃ > 0 such that for all λ ∈ R∣∣〈Φ−, (L− L∞)G∞;λ(· − ξ0)〉

∣∣ ≤ K4e
−χ̃|ξ0|. (6.107)

Proof. We reuse the notation L̂ = L− L∞ from the previous proof. Lemma 6.2 implies that we can
pick constants β∗ > 0 and K∗ > 0 in such a way that

|G∞;λ(ξ − ξ0)| ≤ K∗e
−β∗|ξ−ξ0| (6.108)

for all values of ξ, ξ0. Recall the constants K2, δ̃ from Lemma 6.8 and set K3 = K2‖Φ−‖∞. Then we
obtain

|〈Φ−, L̂G∞;λ(· − ξ0)〉|

≤
∫∞
−∞K3e

−δ̃|ξ|g∗K∗e
−β∗|ξ−ξ0| dξ

= K3g∗K∗

(
1

δ̃+β∗
(e−δ̃|ξ0| + e−β∗|ξ0|) + 1

β∗−δ̃
(e−δ̃|ξ0| − e−β∗|ξ0|)

)
≤ K3g∗K∗

(
1

δ̃+β∗
2e−min{δ̃,β∗}|ξ0| + 1

|β∗−δ̃|
2e−min{δ̃,β∗}|ξ0|

)
= K4e

−χ̃|ξ0|

(6.109)

for some K4 > 0 and χ̃ > 0.

Lemma 6.12. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist con-
stants K10 > 0 and γ̃ > 0 such that for all λ ∈ R∣∣∣[Lqinv(L− L∞)G∞;λ(· − ξ0)

]
(ξ)
∣∣∣ ≤ K10e

−γ̃|ξ|e−γ̃|ξ0|

≤ K10e
−γ̃|ξ−ξ0|.

(6.110)

Proof. We reuse the notation L̂ = L− L∞ from the previous proof. Recall the constants K1, δ from
Lemma 6.8. Writing

Hξ0(ξ) =
[
LqinvL̂G∞;λ(· − ξ0)

]
(ξ), (6.111)

we may use Lemma 6.6 to estimate

|Hξ0(ξ)| ≤ K1e
−δ|ξ|‖Hξ0‖∞ +K1

∫∞
−∞ e−δ|ξ−η||LHξ0(η)|dη. (6.112)

Recalling (6.92)-(6.94), we obtain

‖Hξ0‖∞ ≤ ‖Hξ0‖H1

≤ Cunif ||L̂G∞;λ(· − ξ0)− 〈Φ
−,L̂G∞;λ(·−ξ0)〉

Ω Φ+||L2

≤ Cunif

(
1 +

‖Φ−‖L2

Ω ‖Φ+‖L2

)
‖L̂G∞;λ(· − ξ0)‖L2

≤ K5‖L̂G∞;λ(· − ξ0)‖L2

(6.113)

for some constant K5 > 0.
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Using Lemma 6.8 we see that there exists a constant K6 > 0 for which

|u(ξ)| = |
∫ ξ
∞ u′(ξ′) dξ′|

≤
∫∞
ξ
K1‖(u′, w′)‖L2e−δ|ξ

′| dξ′

= K6e
−δ|ξ|

(6.114)

holds for all ξ ∈ R. Recall that

L̂ =

(
−gu(u) + r0 0
0 0

)
. (6.115)

Observe that −gu(0) + r0 = 0. Then we obtain that

| − gu(u(ξ)) + r0| ≤ K7e
−δ|ξ| (6.116)

for all ξ ∈ R and for some constant K7 > 0. Lemma 6.2 implies that

|G∞;λ(ξ − ξ0)| ≤ K∗e
−β∗|ξ−ξ0| (6.117)

for all ξ ∈ R. Therefore, we must have

‖L̂G∞;λ(· − ξ0)‖2L2 ≤
∫
RK

2
7K

2
∗e
−2δ|ξ|e−2β∗|ξ−ξ0| dξ

≤ K8e
−2γ̃|ξ0|

(6.118)

for some constants K8 > 0, γ̃ > 0 with γ̃ ≤ β∗, γ̃ ≤ 1
2δ and γ̃ ≤ 1

2 χ̃. In particular, we obtain the
estimate

‖Hξ0‖∞ ≤ K5

√
K8e

−γ̃|ξ0|. (6.119)

In a similar fashion, using Lemma 6.11, we see that

|LHξ0(ξ)| ≤
∣∣∣[L̂G∞;λ(· − ξ0)

]
(ξ)− 〈Φ

−,L̂G∞;λ(·−ξ0)〉
Ω Φ+(ξ)

∣∣∣
≤ K7K∗e

−δ|ξ|e−β∗|ξ−ξ0| + 1
ΩK4e

−χ̃|ξ0|K1e
−δ|ξ|

≤ K9

[
e−2γ̃|ξ|e−γ̃|ξ−ξ0| + e−γ̃|ξ0|e−γ̃|ξ|

] (6.120)

for all ξ ∈ R and some constant K9 > 0. Combining (6.112) with (6.113) and (6.118), we hence
obtain

|Hξ0(ξ)| ≤ K1e
−δ|ξ|‖Hξ0‖∞ +K1

∫∞
−∞ e−δ|ξ−η||LHξ0(η)|dη

≤ K1e
−δ|ξ|K5

√
K8e

−γ̃|ξ0|

+K1

∫∞
−∞ e−δ|ξ−η|K9

[
e−2γ̃|η|e−γ̃|η−ξ0| + e−γ̃|ξ0|e−γ̃|η|

]
dη

≤ K1e
−δ|ξ|K5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−δ|ξ−η|2K9e

−γ̃|η|e−γ̃|ξ0|dη

≤ K10e
−γ̃|ξ|e−γ̃|ξ0|

≤ K10e
−γ̃|ξ−ξ0|

(6.121)

for some constant K10 > 0.

Remark 6.13. In the proof of Lemma 6.12, in particular in (6.116), we explicitly used that U is
a pulse solution, instead of a traveling front solution. If one would want to transfer these results to
a more general system where the waves have different limits at ξ = ±∞, then Lemma 6.12 would
only hold for ξ0 ≥ 0. However, the definition (6.25) remains valid upon using the reference system
at ξ = −∞ instead of ξ = +∞. This new formulation allows the desired estimates for ξ0 ≤ 0 to be
recovered.
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Lemma 6.14. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist con-
stants K13 > 0 and ω > 0 such that the function G̃λ from Lemma 6.10 satisfies the bound

|G̃λ(ξ, ξ0)| ≤ K13e
−ω|ξ−ξ0| (6.122)

for all ξ, ξ0 and all 0 < |λ| < λ.

Proof. As before, we write

Hξ0(ξ) = LqinvL̂G∞;λ(· − ξ0)(ξ). (6.123)

Using Lemma 6.6 Lemma 6.12 and (6.119) and recalling (6.92)-(6.94), we obtain the estimate

|L−1Hξ0(ξ)| ≤ K1e
−α|ξ|‖L−1Hξ0‖∞ +K1

∫∞
−∞ e−α|ξ−η||Hξ0(η)|dη

≤ K1e
−α|ξ|Cunif‖Hξ0‖L2 +K1

∫∞
−∞ e−α|ξ−η|K10e

−γ̃|η−ξ0|dη

≤ K1e
−α|ξ|CunifK5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−α|ξ−η|K10e

−γ̃|η−ξ0|dη

≤ K10K11e
−γ̃|ξ−ξ0|

(6.124)

for some constants K11 > 0 and 2γ̃ ≤ α. Using Proposition 4.2 and (6.119) we obtain that

‖(L−1)nHξ0‖H1 ≤ K5

√
K8(Cunif)

ne−γ̃|ξ0| (6.125)

for all n ∈ Z>0. Continuing in this fashion, we see that

|(L−1)nHξ0(ξ)| ≤ K10K
n
11e
−γ̃|ξ−ξ0| (6.126)

for all n ∈ Z>0. If we set

λ = min{ λ̃2 , λ0, χ,
1

CunifK5

√
K8
, 1
K11
}, (6.127)

then for each n ∈ Z>0 and each 0 < |λ| < λ we have

‖(−λ)n(L−1)nHξ0‖H1 ≤ 1
2 . (6.128)

In particular, it follows that

N∑
n=0

(−λ)n(L−1)nHξ0 → [I + λL−1]−1Hξ0 (6.129)

in H1 as N →∞. Since H1-convergence implies point-wise convergence, we conclude that∣∣[I + λL−1]−1Hξ0(ξ)
∣∣ =

∣∣∣ ∞∑
n=0

(−λ)n(L−1)nHξ0(ξ)
∣∣∣

≤
∞∑
n=0

λ
n
K11K

n
12e
−γ̃|ξ−ξ0|

≤ K11

1−λK11
e−γ̃|ξ−ξ0|

:= K12e
−γ̃|ξ−ξ0|

(6.130)

for all ξ ∈ R and for some constant K12 > 0.
Combining this estimate with Lemma 6.8 and Lemma 6.12 yields the desired bound

|G̃λ(ξ, ξ0)| =
∣∣G∞;λ(ξ − ξ0)−

[
[I + λL−1]−1LqinvL̂G∞;λ(· − ξ0)

]
(ξ)

− 1
Ω 〈Φ

−, G∞(· − ξ0)〉Φ+(ξ)
∣∣

≤ K∗e
−β∗|ξ−ξ0| +K12e

−γ̃|ξ−ξ0| +K4
1
Ωe
−χ̃|ξ0|K1e

−δ|ξ|‖Φ+‖∞
≤ K13e

−ω|ξ−ξ0|

(6.131)
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for some constants K13 > 0 and ω > 0.
We write

S = {−λ+ iω : ω ∈ [−π|c|h , π|c|h ]}, (6.132)

where λ is defined in the proof of Lemma 6.14.

Lemma 6.15. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exist
constants K > 0 and β̃ > 0 such that for all λ ∈ S we have the bound

|Gλ(ξ, ξ0)| ≤ Ke−β̃|ξ−ξ0| (6.133)

for all ξ, ξ0.

Proof. Fix λ0 ∈ S. For λ ∈ S sufficiently close to λ we have[
L+ λ

]−1

=
[
L+ λ0 + λ− λ0

]−1

=
[(
L+ λ0

)(
I + (L+ λ0)−1(λ− λ0)

)]−1

=
[
I + (L+ λ0)−1(λ− λ0)

]−1[
L+ λ0

]−1

.

(6.134)

In particular, upon writing

Hξ0(ξ) =
[
[L+ λ0]−1L̂Gλ;∞(· − ξ0)

]
(ξ), (6.135)

we see that

Gλ(ξ, ξ0)−G∞;λ(ξ − ξ0) =
[
[I + (L+ λ0)−1(λ− λ0)]−1Hξ0

]
(ξ). (6.136)

Using Lemma 6.6 we can pick constants kλ0
> 0 and αλ0

> 0 in such a way that

|Hξ0(ξ)| ≤ kλ0
e−αλ0 |ξ|‖Hξ0‖∞ + kλ0

∫∞
−∞ e−αλ0 |ξ−η||(L+ λ0)Hξ0(η)|dη. (6.137)

Recall the constant CS appearing in Proposition 3.3. This allows us to estimate

‖Hξ0‖∞ ≤ ‖Hξ0‖H1

≤ CS‖L̂Gλ0
(ξ, ξ0)‖L2

≤ CS
√
K8e

−γ̃|ξ0|.

(6.138)

This yields the bound

|Hξ0(ξ)| ≤ kλ0
e−αλ0 |ξ|CS

√
K8e

−γ̃|ξ0| + kλ0

∫∞
−∞ e−αλ0 |ξ−η||L̂Gλ;∞(η, ξ0)|dη

≤ kλ0
e−αλ0 |ξ|CS

√
K8e

−γ̃|ξ0|

+kλ0

∫∞
−∞ e−αλ0 |ξ−η|K7K∗e

−δ|η|e−2β∗|η−ξ0|dη

≤ kλ0;2e
−αλ0;2|ξ−ξ0|

(6.139)

for some constants kλ0;2, αλ0;2, which may depend on λ0, but not on λ. Arguing as in (6.124), we
obtain ∣∣[L+ λ0]−1Hξ0(ξ)

∣∣ ≤ kλ0
e−αλ0 |ξ|‖[L+ λ0]−1Hξ0‖∞

+kλ0

∫∞
−∞ e−αλ0 |ξ−η||Hξ0(η)|dη

≤ kλ0;2kλ0;3e
−αλ0;2|ξ−ξ0|

(6.140)
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for some constant kλ0;3 > 0, which may depend on λ0, but not on λ. Following the same steps as
the proof of Lemma 6.14 and setting

ελ0
= min{ 1

kλ0CS
√
K8
, 1
kλ0;3
}, (6.141)

we conclude that

|Gλ(ξ, ξ0)−G∞;λ(ξ − ξ0)| =
∣∣[[I + [L+ λ0]−1(λ− λ0)]−1Hξ0

]
(ξ)
∣∣

≤ kλ0;4e
−αλ0;2|ξ−ξ0|

(6.142)

holds for each λ ∈ S with |λ− λ0| < ελ0 , for some constant kλ0;4 > 0, which may depend on λ0. In
particular, we obtain that

|Gλ(ξ, ξ0)| ≤ kλ0;4e
−αλ0;2|ξ−ξ0| +K∗e

−β∗|ξ−ξ0|

≤ kλ0;5e
−αλ0;2|ξ−ξ0|

(6.143)

holds for each λ ∈ S with |λ− λ0| < ελ0
, for some constant kλ0;5 > 0, which may depend on λ0.

Since S is compact we can find λ1, ..., λn ∈ S in such a way that

S ⊂
n⋃
i=1

{λ ∈ C : |λ− λi| < ελi}. (6.144)

Setting
K = max{kλi;5 : i ∈ {1, ...n}},

β̃ = min{αλi;2 : i ∈ {1, ..., n}},
(6.145)

we conclude that

|Gλ(ξ, ξ0)| ≤ Ke−β̃|ξ−ξ0| (6.146)

holds for all λ ∈ S and all ξ, ξ0 ∈ R.

6.3 Decomposition into stable and center modes

In this final subsection we establish Proposition 6.1. In particular, the decomposition (6.13) and
the exponential bounds (6.15) for the Green’s function G can be found by using the splitting of Gλ
obtained in §6.2. This is performed in Lemma 6.16, which is based on [36, Corollary 2.8].

We subsequently carefully study the terms appearing in (6.13) and show that they can be in-
terpreted as a spectral decomposition that splits the flow associated to the linear system (6.6) into
two invariant subspaces. The stable component decays exponentially in a uniform fashion, while the
center component can be described explicitly.

Lemma 6.16. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For any pair t ≥ t0
and any j, j0 ∈ Z, we have the representation

Gj0j (t, t0) = Ej0j (t, t0) + G̃j0j (t, t0) (6.147)

in which

Ej0j (t, t0) = h
Ω

(
φ−(hj0 + ct0)φ+(hj + ct) ψ−(hj0 + ct0)φ+(hj + ct)
φ−(hj0 + ct0)ψ+(hj + ct) ψ−(hj0 + ct0)ψ+(hj + ct)

)
, (6.148)

while G̃ satisfies the bound

|G̃j0j (t, t0)| ≤ Ke−β̃(t−t0)e−β̃|hj+ct−hj0−ct0| (6.149)

for some K > 0 and β̃ > 0.
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Proof. Recall the representation of Gj0j from Proposition 6.4. Note that Gλ(ξ, ξ0) is meromorphic for
λ in the strip {λ ∈ C : Re λ ≥ −λ3, | Im λ| ≤ cπ

h } with a simple pole at λ = 0 by Lemma 6.10,
Lemma 6.3 and Theorem 2.2. Lemma 6.10 also implies that the residue of Gλ(ξ, ξ0) in λ = 0 is given
by

Res(Gλ(ξ, ξ0), 0) = − 1
Ω

(
φ−(ξ0)φ+(ξ) ψ−(ξ0)φ+(ξ)
φ−(ξ0)ψ+(ξ) ψ−(ξ0)ψ+(ξ)

)
. (6.150)

We write
H(·, ξ0) = e2πi 1hkξ0(L+ λ+ 2πik ch )e−2πi 1hk

Gλ(·, ξ0). (6.151)

In a similar fashion as in the proof of Lemma 5.1 we see that for k ∈ Z we have

(L+ λ+ 2πik ch )e−2πi 1hk
= e−2πi 1hk

(L+ λ). (6.152)

Therefore, it follows that

H(·, ξ0) = e2πi 1hkξ0(L+ λ+ 2πik ch )e−2πi 1hk
Gλ(·, ξ0)

= e2πi 1hkξ0e−2πi 1hk
(L+ λ)Gλ(·, ξ0).

(6.153)

For any f ∈ H1 we may hence compute∫
H(ξ, ξ0)f(ξ0) dξ0 =

∫
e2πi 1hkξ0e−2πi 1hkξ(L+ λ)Gλ(·, ξ0)(ξ)f(ξ0) dξ0

= e−2πi 1hkξ[e2πi 1hkξf(ξ)]

= f(ξ).

(6.154)

Therefore, by the invertibility of L+ λ+ 2πik ch , we must have

Gλ+2πik ch
(ξ, ξ0) = e2πik 1

h (ξ0−ξ)Gλ(ξ, ξ0). (6.155)

Now recall the constants χ, χ+, χ− from (the proof of) Proposition 6.4 and define

λ
−

= −λ2 − i
πc
h

λ
+

= −λ2 + iπch .
(6.156)

Writing x = hj + ct, y = hj0 + ct0, we see that∫ χ−
λ
− eλ(t−t0)Gλ(x, y) dλ =

∫ χ+

λ
+ e(λ+2πi ch )(t−t0)e−2πi 1h (y−x)Gλ(x, y) dλ

=
∫ χ+

λ
+ eλ(t−t0)Gλ(x, y) dλ.

(6.157)

Hence, if we integrate the function eλ(t−t0)Gλ(hj + ct, hj0 + ct0) along the rectangle with edges

−λ2 − i
πc
h ,−

λ
2 + iπch , χ − i

πc
h and χ + iπch , then the integrals from χ − iπch to −λ2 − i

πc
h and from

−λ2 + iπch to χ + iπch cancel each other out. In particular, again writing x = hj + ct, y = hj0 + ct0,
the residue theorem implies

Gj0j (t, t0) = −h
2πi

∫ χ+iπch
χ−iπch

eλ(t−t0)Gλ(x, y) dλ

= h
2πi

∫ −λ2 +iπch

−λ2−i
πc
h

eλ(t−t0)Gλ(x, y) dλ

+ h
Ω

(
φ−(y)φ+(x) ψ−(y)φ+(x)
φ−(y)ψ+(x) ψ−(y)ψ+(x)

)
.

(6.158)
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Using Lemma 6.15 we also get the estimate

| h2πi
∫ −λ2 +iπch

−λ2−i
πc
h

eλ(t−t0)Gλ(x, y) dλ| ≤ h
2π

2cπ
h e−λ(t−t0)Ke−β̃|x−y|, (6.159)

which yields the desired bound (6.149).
For any t ∈ R, we introduce the suggestive notation

Πc(t) = E(t, t) (6.160)

together with
Πs(t) = I −Πc(t). (6.161)

Recalling the notation introduced in (6.12), we set out to show that Πc(t) ∗ Πc(t) = Πc(t) and
Πs(t) ∗ Πs(t) = Πs(t). Later on, we will view these operators as projections that correspond to the
center and stable parts of the flow induced by G respectively.

To establish the identity Πc(t) ∗Πc(t) = Πc(t), it suffices to show that(
φ−(xj0)φ+(xj) ψ−(xj0)φ+(xj)
φ−(xj0)ψ+(xj) ψ−(xj0)ψ+(xj)

)
= h

Ω

∑
i∈Z

(
φ−(xi)φ

+(xj) ψ−(xi)φ
+(xj)

φ−(xi)ψ
+(xj) ψ−(xi)ψ

+(xj)

)
×
(
φ−(xj0)φ+(xi) ψ−(xj0)φ+(xi)
φ−(xj0)ψ+(xi) ψ−(xj0)ψ+(xi)

)
,

(6.162)
in which xi = hi+ ct for i ∈ Z. We now write our linear operator in the form

LΨ(ξ) = c ddξΨ(ξ) +
∞∑

j=−∞
Aj(ξ)Ψ(ξ + jh), (6.163)

where

Aj(ξ) =



(
1
h2α|j| 0

0 0

)
if j 6= 0 −2 1

h2

∑
k>0

αk + gu(u(ξ)) 1

−ρ ργ

 if j = 0.

(6.164)

Before we continue, we first prove a small lemma that will help us to relate discrete inner products
with their continuous counterparts.

Lemma 6.17. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For all ξ ∈ R we
have the identity

c

(
φ−(ξ)φ+(ξ)
ψ−(ξ)ψ+(ξ)

)
=

∞∑
j=−∞

∫ hj
0
B(ξ + θ − hj)Aj(ξ + θ − hj)Φ+(ξ + θ)dθ, (6.165)

where

B(ξ) =

(
φ−(ξ) 0
0 ψ−(ξ)

)
. (6.166)

Proof. Our strategy is to differentiate both sides of (6.165) and to show their derivatives are equal.
Starting with the first component, we pick N ∈ Z>0 ∪ {∞} and write

D(N) := d
dξ

N∑
j=−N

∫ hj
0
φ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](1)

dθ. (6.167)
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For finite N , we may compute

D(N) = d
dξ

N∑
j=−N

∫ ξ
ξ−hj φ

−(θ)
[
Aj(θ)Φ

+(θ + hj)
](1)

dθ

=
N∑

j=−N
φ−(ξ)

[
Aj(ξ)Φ

+(ξ + hj)
](1)

−
N∑

j=−N
φ−(ξ − hj)

[
Aj(ξ − hj)Φ+(ξ)

](1)

.

(6.168)

Now for j > 0 we have |Aj(ξ)Φ+(ξ + hj)| ≤ 1
h2 |αj |, so the partial sums converge uniformly. Hence,

it follows that

D(∞) =
∞∑

j=−∞
φ−(ξ)

[
Aj(ξ)Φ

+(ξ + hj)
](1)

−
∞∑

j=−∞
φ−(ξ − hj)

[
Aj(ξ − hj)Φ+(ξ)

](1)

= φ−(ξ)c(φ+)′(ξ) + c(φ−)′(ξ)φ+(ξ)

= c(φ−u′)′(ξ),

(6.169)

since Φ+ ∈ ker(L) and Φ− ∈ ker(L∗).
We now set out to show that both sides of (6.165) converge to zero as ξ → ∞. Pick ε > 0 and

let N ∈ Z>0 be large enough to ensure that∑
j≥N

1
h2 j|αj | ≤ ε

4(1+‖φ−‖∞)‖Φ+‖∞
. (6.170)

In addition, let Ξ be large enough to have

|φ−(ξ)| ≤ ε

4(1+
N∑

j=−N
|jα|j||)‖Φ+‖∞ (6.171)

for all ξ ≥ Ξ−N . This Ξ exists since φ− ∈ H1. For such ξ we may estimate

|
∞∑

j=−∞

∫ hj
0
φ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](1)

dθ| < ε, (6.172)

which allows us to compute

lim
ξ→∞

∞∑
j=−∞

∫ hj
0
φ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](1)

dθ = 0

= lim
ξ→∞

cφ−(ξ)φ+(ξ).
(6.173)

With that we have proved our claim. Furthermore, we can repeat the arguments above to obtain

cψ−(ξ)ψ+(ξ) =
∞∑

j=−∞

∫ hj
0
ψ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](2)

dθ. (6.174)

We are now ready to show that Πc(t) ∗ Πc(t) = Πc(t) and Πs(t) ∗ Πs(t) = Πs(t). This result is
based on the first part of [36, Lemma 2.9].

Lemma 6.18. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then Πc(t)∗Πc(t) =
Πc(t) and Πs(t) ∗Πs(t) = Πs(t) for all t ∈ R.
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Proof. For k ∈ Z we write xk = hk + ct. In addition, for notational convenience we write Bj(θ) =[
Aj(θ)Φ

+(θ + hj)
](1)

for j ∈ Z and θ ∈ R. Using the results from Lemma 6.17 we may compute

c
∞∑

k=−∞
φ−(xk)φ+(xk) =

∞∑
k=−∞

∞∑
j=−∞

hj∫
0

φ−(xk + θ − hj)Bj(xk + θ − hj)dθ

=
∞∑

k=−∞

∞∑
j=−∞

xk∫
xk−j

φ−(θ)Bj(θ)dθ

=
∞∑

j=−∞

∞∫
−∞

jφ−(θ)Bj(θ)dθ,

(6.175)

where we were allowed to interchange the two infinite sums because∣∣ N∑
k=−N

xk∫
xk−j

φ−(θ)Bj(θ)dθ
∣∣ ≤ ∣∣ ∞∫

−∞
jφ−(θ)Bj(θ)dθ

∣∣
≤ ‖φ−‖1

1
h2 |jα|j||‖φ+‖∞

(6.176)

holds for all N ∈ Z>0 and j ∈ Z. This expression is summable over j, allowing us to apply Lebesgue’s
theorem. On the other hand, we have

c
∞∫
−∞

φ−(ξ)φ+(ξ) dξ =
∞∫
−∞

∞∑
j=−∞

hj∫
0

φ−(ξ + θ − hj)Bj(ξ + θ − hj)dθ dξ

=
∞∑

j=−∞

hj∫
0

∞∫
−∞

φ−(ξ + θ − hj)Bj(ξ + θ − hj) dξdθ

=
∞∑

j=−∞

hj∫
0

∞∫
−∞

φ−(ξ − hj)Bj(ξ − hj)dξdθ

=
∞∑

j=−∞
hj

∞∫
−∞

φ−(ξ − hj)Bj(ξ − hj)dξ.

(6.177)

Interchanging the integral with the sum was allowed since φ− and φ+ decay exponentially, say
|φ−(x)| ≤ κe−δ|x| and |φ+(x)| ≤ κe−δ|x|. In particular, for each N ∈ Z>0 and each ξ ∈ R we have

|
N∑

j=−N

hj∫
0

φ−(ξ + θ − hj)Bj(ξ + θ − hj)dθ| ≤
∞∑

j=−∞
hκ2e−δ|ξ||jα|j||‖Φ+‖∞, (6.178)

which is integrable in ξ. Furthermore, the interchanging of the two integrals was allowed, since by
the exponential decay of φ− we also see that for each j ∈ Z, ξ ∈ R and θ ∈ (0, hj) we have

|φ−(ξ + θ − hj)Bj(ξ + θ − hj)| ≤ κe−δ|ξ+θ−hj||α|j||‖Φ+‖∞. (6.179)

This is an integrable function for (ξ, θ) ∈ R× (0, hj), allowing us to apply Fubini’s theorem.
In particular, we see that

∞∫
−∞

φ−(ξ)φ+(ξ) dξ = h
∞∑

k=−∞
φ−(xk)φ+(xk). (6.180)

In the same way we obtain

∞∫
−∞

ψ−(ξ)ψ+(ξ) dξ = h
∞∑

k=−∞
ψ−(xk)ψ+(xk). (6.181)

By writing out the sums it now follows that indeed (6.162) holds.

Proof of Proposition 6.1. The calculations above imply that E(t, t0) = E(t, t0) ∗Πc(t0), which means
that we must also have E(t, t0) ∗Πs(t0) = 0.
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Observe that for any t0 ∈ R, the function Vj(t) :=

(
φ+(hj + ct)
ψ+(hj + ct)

)
is the unique solution to

(6.6) with Vj(t0) =

(
φ+(hj + ct0)
ψ+(hj + ct0)

)
. Hence, by the definition of the Green’s function G(t, t0) we

see that
V (t) = G(t, t0) ∗ V (t0) (6.182)

for all t ∈ R. Furthermore, we recall that

Ej0j (t0, t0) = Vj(t0)Φ−(hj0 + ct0). (6.183)

For j, j0 ∈ Z we may hence compute[
G(t, t0) ∗Πc(t0)

]j0
j

=
∑
i∈Z
Gij(t, t0) ∗ Ej0i (t, t0)

= h
Ω

∑
i∈Z
Gij(t, t0)i ∗ Vi(t0)Φ−(hj0 + ct0)

= h
ΩVj(t)Φ

−(hj0 + ct0)

= Ej0j (t, t0).

(6.184)

In particular, we obtain G(t, t0) ∗Πc(t0) = E(t, t0) and thus

G̃(t, t0) ∗Πc(t0) = G(t, t0) ∗Πc(t0)− E(t, t0) ∗Πc(t0)

= E(t, t0)− E(t, t0)

= 0.

(6.185)

Therefore, we must have

G(t, t0) = E(t, t0) + G̃(t, t0)

= E(t, t0) ∗
(

Πc(t0) + Πs(t0)
)

+ G̃(t, t0) ∗
(

Πc(t0) + Πs(t0)
)

= E(t, t0) ∗Πc(t0) + G̃(t, t0) ∗Πs(t0),

(6.186)

which completes the proof.
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[51] L. A. Ranvier (1878), Lećons sur l’Histologie du Système Nerveux, par M. L. Ranvier, recueil-
lies par M. Ed. Weber. F. Savy, Paris.

[52] A. Rustichini (1989), Functional Differential Equations of Mixed Type: the Linear Autonomous
Case. J. Dyn. Diff. Eq. 11, 121–143.

[53] N. Sabourova (2007), Real and Complex Operator Norms. Licentiate Thesis.

[54] C. P. Schenk, M. Or-Guil, M. Bode and H. G. Purwins (1997), Interacting Pulses in Three-
component Reaction-Diffusion Systems on Two-Dimensional Domains. Physical Review Letters
78(19), 3781.

[55] W. M. Schouten-Straatman and H. J. Hupkes (2018), Travelling waves for spatially discrete
systems of FitzHugh-Nagumo type with periodic coefficients. arXiv preprint arXiv:1808.00761.

[56] J. Sneyd (2005), Tutorials in Mathematical Biosciences II., Vol. 187 of Lecture Notes in Math-
ematics, chapter Mathematical Modeling of Calcium Dynamics and Signal Transduction. New
York: Springer.

[57] A. Vainchtein and E. S. Van Vleck (2009), Nucleation and Propagation of Phase Mixtures in
a Bistable Chain. Phys. Rev. B 79, 144123.

[58] P. van Heijster and B. Sandstede (2014), Bifurcations to Travelling Planar Spots in a Three-
Component FitzHugh–Nagumo system. Physica D 275, 19–34.

[59] E. Yanagida (1985), Stability of Fast Travelling Wave Solutions of the FitzHugh-Nagumo
Equations. J. Math. Biol. 22, 81–104.

[60] K. Zumbrun (2011), Instantaneous Shock Location and One-Dimensional Nonlinear Stability
of Viscous Shock Waves. Quarterly of applied mathematics 69(1), 177–202.

[61] K. Zumbrun and P. Howard (1998), Pointwise Semigroup Methods and Stability of Viscous
Shock Waves. Indiana Univ. Math. J. 47(3), 741–871.

65


	1 Introduction
	2 Main results
	3 The singular perturbation
	3.1 Strategy
	3.2 Preliminaries
	3.3 Proof of Proposition 3.4

	4 The point and essential spectrum
	5 The resolvent set
	6 Green's functions
	6.1 Construction of the Green's function
	6.2 Meromorphic expansion of G
	6.3 Decomposition into stable and center modes


