1,622 research outputs found

    Nanostructured graphene for spintronics

    Get PDF
    Zigzag edges of the honeycomb structure of graphene exhibit magnetic polarization making them attractive as building blocks for spintronic devices. Here, we show that devices with zigzag edged triangular antidots perform essential spintronic functionalities, such as spatial spin-splitting or spin filtering of unpolarized incoming currents. Near-perfect performance can be obtained with optimized structures. The device performance is robust against substantial disorder. The gate-voltage dependence of transverse resistance is qualitatively different for spin-polarized and spin-unpolarized devices, and can be used as a diagnostic tool. Importantly, the suggested devices are feasible within current technologies.Comment: 6 pages, 5 figures, publishe

    Graphene on graphene antidot lattices: Electronic and transport properties

    Get PDF
    Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken, by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a novel bilayer graphene heterostructure, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band structure engineering can be performed to obtain linearly dispersing bands (with a high concomitant mobility), which nevertheless can be made gapped with the perpendicular field. We analyze the electronic structure and transport properties of various types of GOALs, and draw general conclusions about their properties to aid their design in experiments.Comment: 13 pages, 10 figures, submitte

    Solar-cycle variation of the sound-speed asphericity from GONG and MDI data 1995-2000

    Get PDF
    We study the variation of the frequency splitting coefficients describing the solar asphericity in both GONG and MDI data, and use these data to investigate temporal sound-speed variations as a function of both depth and latitude during the period from 1995-2000 and a little beyond. The temporal variations in even splitting coefficients are found to be correlated to the corresponding component of magnetic flux at the solar surface. We confirm that the sound-speed variations associated with the surface magnetic field are superficial. Temporally averaged results show a significant excess in sound speed around 0.92 solar radii and latitude of 60 degrees.Comment: To be published in MNRAS, accepted July 200

    Three-dimensional stability of the solar tachocline

    Full text link
    The three-dimensional, hydrodynamic stability of the solar tachocline is investigated based on a rotation profile as a function of both latitude and radius. By varying the amplitude of the latitudinal differential rotation, we find linear stability limits at various Reynolds numbers by numerical computations. We repeated the computations with different latitudinal and radial dependences of the angular velocity. The stability limits are all higher than those previously found from two-dimensional approximations and higher than the shear expected in the Sun. It is concluded that any part of the tachocline which is radiative is hydrodynamically stable against small perturbations.Comment: 6 pages, 8 figures, accepted by Astron. & Astrophy

    Deeply penetrating banded zonal flows in the solar convection zone

    Full text link
    Helioseismic observations have detected small temporal variations of the rotation rate below the solar surface corresponding to the so-called `torsional oscillations' known from Doppler measurements of the surface. These appear as bands of slower and faster than average rotation moving equatorward. Here we establish, using complementary helioseismic observations over four years from the GONG network and from the MDI instrument on board SOHO, that the banded flows are not merely a near-surface phenomenon: rather they extend downward at least 60 Mm (some 8% of the total solar radius) and thus are evident over a significant fraction of the nearly 200 Mm depth of the solar convection zone.Comment: 4 pages, 4 figures To be published in ApJ Letters (accepted 3/3/2000

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code

    Full text link
    The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release, are reported here.Comment: Accepted for publication in Solar Physic

    Does the Sun Shrink with Increasing Magnetic Activity?

    Get PDF
    We have analyzed the full set of SOHO/MDI f- and p-mode oscillation frequencies from 1996 to date in a search for evidence of solar radius evolution during the rising phase of the current activity cycle. Like Antia et al. (2000), we find that a significant fraction of the f-mode frequency changes scale with frequency; and that if these are interpreted in terms of a radius change, it implies a shrinking sun. Our inferred rate of shrinkage is about 1.5 km/y, which is somewhat smaller than found by Antia et al. We argue that this rate does not refer to the surface, but rather to a layer extending roughly from 4 to 8 Mm beneath the visible surface. The rate of shrinking may be accounted for by an increasing radial component of the rms random magnetic field at a rate that depends on its radial distribution. If it were uniform, the required field would be ~7 kG. However, if it were inwardly increasing, then a 1 kG field at 8 Mm would suffice. To assess contribution to the solar radius change arising above 4Mm, we analyzed the p-mode data. The evolution of the p-mode frequencies may be explained by a magnetic^M field growing with activity. The implications of the near-surface magnetic field changes depend on the anisotropy of the random magnetic field. If the field change is predominantly radial, then we infer an additional shrinking at a rate between 1.1-1.3 km/y at the photosphere. If on the other hand the increase is isotropic, we find a competing expansion at a rate of 2.3 km/y. In any case, variations in the sun's radius in the activity cycle are at the level of 10^{-5} or less, hence have a negligible contribution to the irradiance variations.Comment: 10 pages (ApJ preprint style), 4 figures; accepted for publication in Ap

    Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    Full text link
    The Sun's complex dynamics is controlled by buoyancy and rotation in the convection zone and by magnetic forces in the atmosphere and corona. While small-scale solar convection is well understood, the dynamics of large-scale flows in the solar convection zone is not explained by theory or simulations. Waves of vorticity due to the Coriolis force, known as Rossby waves, are expected to remove energy out of convection at the largest scales. Here we unambiguously detect and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at angular wavenumbers below fifteen, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below 200 nHz in a co-rotating frame, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We find a transition from turbulence-like to wave-like dynamics around the Rhines scale of angular wavenumber of twenty; this might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.Comment: This is the submitted version of the paper published in Nature Astronomy. 23 pages, 8 figures, 1 tabl
    • …
    corecore