1,248 research outputs found

    Comparative genetic resistance to Ascaridia galli infections of 4 different commercial layer-lines

    Get PDF
    1. The objective of the study was to compare the establishment and effect of Ascaridia galli infections in 4 different layer-lines. 2. A total of 160 birds comprising 4 different commercial layer-lines, ISA Brown, New Hampshire, Skalborg and a cross of New Hampshire(NH) and Skalborg (Sk), were infected with A. galli eggs. The birds were examined for the presence of parasite eggs and parasites at weeks 3, 6 and 9 post infection (pi). 3. At week 6 pi the chickens of the NH line harboured more larvae compared with the three other lines. The Sk line chickens excreted more A. galli eggs throughout the study compared with the other lines. Female worms in the Sk line were more fecund than the worms in the other lines. Male and female worms recovered from the Sk line at week 9 pi were longer. Male worms recovered from the NH line 6 weeks pi were shorter than male worms from the other lines. Female worms recovered from the NH line were shorter than the female worms from the ISA line and the Sk line. No differences were seen in weight gain among the 4 lines. 4. The results suggest that genetic factors are involved in the establishment and survival of A. galli in the intestine of layers. Further studies are needed to elucidate the genetic mechanisms behind the observed parasitological findings

    Measurement of low signal-to-noise-ratio solar p modes in spatially-resolved helioseismic data

    Full text link
    We present an adaptation of the rotation-corrected, m-averaged spectrum technique designed to observe low signal-to-noise-ratio, low-frequency solar p modes. The frequency shift of each of the 2l+1 m spectra of a given (n,l) multiplet is chosen that maximizes the likelihood of the m-averaged spectrum. A high signal-to-noise ratio can result from combining individual low signal-to-noise-ratio, individual-m spectra, none of which would yield a strong enough peak to measure. We apply the technique to GONG and MDI data and show that it allows us to measure modes with lower frequencies than those obtained with classic peak-fitting analysis of the individual-m spectra. We measure their central frequencies, splittings, asymmetries, lifetimes, and amplitudes. The low-frequency, low- and intermediate-angular degrees rendered accessible by this new method correspond to modes that are sensitive to the deep solar interior down to the core and to the radiative interior. Moreover, the low-frequency modes have deeper upper turning points, and are thus less sensitive to the turbulence and magnetic fields of the outer layers, as well as uncertainties in the nature of the external boundary condition. As a result of their longer lifetimes (narrower linewidths) at the same signal-to-noise ratio the determination of the frequencies of lower-frequency modes is more accurate, and the resulting inversions should be more precise.Comment: 17 pages, 17 figures. Accepted for publication in ApJ on 27 January 200

    How much more can sunspots tell us about the solar dynamo?

    Get PDF
    Sunspot observations inspired solar dynamo theory and continue to do so. Simply counting them established the sunspot cycle and its period. Latitudinal distributions introduced the tough constraint that the source of sunspots moves equator-ward as the cycle progresses. Observations of Hale's polarity law mandated hemispheric asymmetry. How much more can sunspots tell us about the solar dynamo? We draw attention to a few outstanding questions raised by inherent sunspot properties. Namely, how to explain sunspot rotation rates, the incoherence of follower spots, the longitudinal spacing of sunspot groups, and brightness trends within a given sunspot cycle. After reviewing the first several topics, we then present new results on the brightness of sunspots in Cycle 24 as observed with the Helioseismic Magnetic Imager (HMI). We compare these results to the sunspot brightness observed in Cycle 23 with the Michelson Doppler Imager (MDI). Next, we compare the minimum intensities of five sunspots simultaneously observed by the Hinode Solar Optical Telescope Spectropolarimeter (SOT-SP) and HMI to verify that the minimum brightness of sunspot umbrae correlates well to the maximum field strength. We then examine 90 and 52 sunspots in the north and south hemisphere, respectively, from 2010 - 2012. Finally, we conclude that the average maximum field strengths of umbra 40 Carrington Rotations into Cycle 24 are 2690 Gauss, virtually indistinguishable from the 2660 Gauss value observed at a similar time in Cycle 23 with MDI

    Generation of artificial helioseismic time-series

    Get PDF
    We present an outline of an algorithm to generate artificial helioseismic time-series, taking into account as much as possible of the knowledge we have on solar oscillations. The hope is that it will be possible to find the causes of some of the systematic errors in analysis algorithms by testing them with such artificial time-series

    A method for the estimation of p-mode parameters from averaged solar oscillation power spectra

    Full text link
    A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from mm-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we have computed using the WMLTP method on the 66-day long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion we developed a new procedure for the identification and correction of outliers in a frequency data set. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model~S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle~24 during mid-2010

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code

    Full text link
    The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release, are reported here.Comment: Accepted for publication in Solar Physic

    Frequency, splitting, linewidth and amplitude estimates of low-l p modes of alpha Cen A: analysis of WIRE photometry

    Full text link
    We present results of fitting the 50-day time series of photometry of alpha Cen A taken by the WIRE satellite in 1999. Both power spectrum and autocovariance function (ACF) fitting techniques were used in an attempt to determine mode frequencies, rotational splittings, lifetimes and amplitudes of low-l p-modes. In all, using both techniques, we managed to fit 18 modes (seven l = 0, eight l = 1 and three l = 2) with frequencies determined to within 1 - 2 micro-Hz. These estimates are shown to be 0.6 +/- 0.3 micro-Hz lower, on average, than the frequencies determined from two other more recent studies (Bouchy & Carrier, 2002; Bedding et al. 2004) which used data gathered about 19 months after the WIRE observations. This could be indicative of an activity cycle, although due to the large uncertainty, more data would be needed to confirm this. Over a range of 1700 to 2650 micro-Hz we were also able to use the ACF fitting to determine an average lifetime of 3.9 +/- 1.4 days, and an average rotational splitting of 0.54 +/- 0.22 micro-Hz, which is the first ever reliable estimate of this parameter. In contrast to the ACF, the power spectrum fitting was shown to return significantly biased results for these parameters.Comment: 11 pages, 10 figures (some figures are made up from multiple ps files of which there are 17 in total
    corecore