1,068 research outputs found
Wick's theorem for q-deformed boson operators
In this paper combinatorial aspects of normal ordering arbitrary words in the
creation and annihilation operators of the q-deformed boson are discussed. In
particular, it is shown how by introducing appropriate q-weights for the
associated ``Feynman diagrams'' the normally ordered form of a general
expression in the creation and annihilation operators can be written as a sum
over all q-weighted Feynman diagrams, representing Wick's theorem in the
present context.Comment: 9 page
Genetic structure of community acquired methicillin-resistant Staphylococcus aureus USA300.
BackgroundCommunity-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a significant bacterial pathogen that poses considerable clinical and public health challenges. The majority of the CA-MRSA disease burden consists of skin and soft tissue infections (SSTI) not associated with significant morbidity; however, CA-MRSA also causes severe, invasive infections resulting in significant morbidity and mortality. The broad range of disease severity may be influenced by bacterial genetic variation.ResultsWe sequenced the complete genomes of 36 CA-MRSA clinical isolates from the predominant North American community acquired clonal type USA300 (18 SSTI and 18 severe infection-associated isolates). While all 36 isolates shared remarkable genetic similarity, we found greater overall time-dependent sequence diversity among SSTI isolates. In addition, pathway analysis of non-synonymous variations revealed increased sequence diversity in the putative virulence genes of SSTI isolates.ConclusionsHere we report the first whole genome survey of diverse clinical isolates of the USA300 lineage and describe the evolution of the pathogen over time within a defined geographic area. The results demonstrate the close relatedness of clinically independent CA-MRSA isolates, which carry implications for understanding CA-MRSA epidemiology and combating its spread
Contact-mediated nucleation in melt emulsions investigated by rheo-nuclear magnetic resonance
Increasing the efficiency of disperse phase crystallization is of great interest for melt emulsion production as the fraction of solidified droplets determines product quality and stability. Nucleation events must appear within every single one of the μm-sized droplets for solidification. Therefore, primary crystallization requires high subcooling and is, thus, time and energy consuming. Contact-mediated nucleation is a mechanism for intensifying the crystallization process. It is defined as the successful nucleation of a subcooled liquid droplet induced by contact with an already crystallized droplet. We investigated contact-mediated nucleation under shear flow conditions up to shear rates of 457 s for a quantitative assessment of this mechanism. Rheo-nuclear magnetic resonance was successfully used for the time-resolved determination of the solids fraction of the dispersed phase of melt emulsions upon contact-mediated nucleation events. The measurements were carried out in a dedicated Taylor–Couette cell. The efficiency of contact-mediated nucleation decreased with increasing shear rate, whereas the effective second order kinetic constant k increased approximately linearly at small shear rates and showed a linear decrease for shear rates higher than about 200 s. These findings are in accordance with coalescence theory. Thus, the nucleation rate is optimal at specific flow conditions. There are limitations for successful inoculation at a low shear rate because of rare contact events and at a high shear rate due to too short contact time
Magnetic impurity coupled to interacting conduction electrons
We consider a magnetic impurity which interacts by hybridization with a
system of weakly correlated electrons and determine the energy of the ground
state by means of an 1/N_f expansion. The correlations among the conduction
electrons are described by a Hubbard Hamiltonian and are treated to lowest
order in the interaction strength. We find that their effect on the Kondo
temperature, T_K, in the Kondo limit is twofold: First, the position of the
impurity level is shifted due to the reduction of charge fluctuations, which
reduces T_K. Secondly, the bare Kondo exchange coupling is enhanced as spin
fluctuations are enlarged. In total, T_K increases. Both corrections require
intermediate states beyond the standard Varma-Yafet ansatz. This shows that the
Hubbard interaction does not just provide quasiparticles, which hybridize with
the impurity, but also renormalizes the Kondo coupling.Comment: ReVTeX 19 pages, 3 uuenconded postscript figure
Periodic Anderson model with correlated conduction electrons
We investigate a periodic Anderson model with interacting conduction
electrons which are described by a Hubbard-type interaction of strength U_c.
Within dynamical mean-field theory the total Hamiltonian is mapped onto an
impurity model, which is solved by an extended non-crossing approximation. We
consider the particle-hole symmetric case at half-filling. Similar to the case
U_c=0, the low-energy behavior of the conduction electrons at high temperatures
is essentially unaffected by the f-electrons and for small U_c a quasiparticle
peak corresponding to the Hubbard model evolves first. These quasiparticles
screen the f-moments when the temperature is reduced further, and the system
turns into an insulator with a tiny gap and flat bands. The formation of the
quasiparticle peak is impeded by increasing either U_c or the c-f
hybridization. Nevertheless almost dispersionless bands emerge at low
temperature with an increased gap, even in the case of initially insulating
host electrons. The size of the gap in the one-particle spectral density at low
temperatures provides an estimate for the low-energy scale and increases as U_c
increases.Comment: 11 pages RevTeX with 13 ps figures, accepted by PR
Conservation of Distinct Genetically-Mediated Human Cortical Pattern
The many subcomponents of the human cortex are known to follow an anatomical pattern and functional relationship that appears to be highly conserved between individuals. This suggests that this pattern and the relationship among cortical regions are important for cortical function and likely shaped by genetic factors, although the degree to which genetic factors contribute to this pattern is unknown. We assessed the genetic relationships among 12 cortical surface areas using brain images and genotype information on 2,364 unrelated individuals, brain images on 466 twin pairs, and transcriptome data on 6 postmortem brains in order to determine whether a consistent and biologically meaningful pattern could be identified from these very different data sets. We find that the patterns revealed by each data set are highly consistent (p<10−3), and are biologically meaningful on several fronts. For example, close genetic relationships are seen in cortical regions within the same lobes and, the frontal lobe, a region showing great evolutionary expansion and functional complexity, has the most distant genetic relationship with other lobes. The frontal lobe also exhibits the most distinct expression pattern relative to the other regions, implicating a number of genes with known functions mediating immune and related processes. Our analyses reflect one of the first attempts to provide an assessment of the biological consistency of a genetic phenomenon involving the brain that leverages very different types of data, and therefore is not just statistical replication which purposefully use very similar data sets.publishedVersio
Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach
We consider the Hubbard model with a magnetic Anderson impurity coupled to a
lattice site. In the case of infinite dimensions, one-particle correlations of
the impurity electron are described by the effective Hamiltonian of the
two-impurity system. One of the impurities interacts with a bath of free
electrons and represents the Hubbard lattice, and the other is coupled to the
first impurity by the bare hybridization interaction. A study of the effective
two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of
a weak conduction-electron interaction (small U) reveals an enhancement of the
usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 -
3), treated by the variational principle, leads to the loss of the exponential
scale. The Kondo temperature T_K of the effective two-impurity system is
calculated as a function of the hybridization parameter and it is shown that
T_K decreases with an increase of U. The non-Fermi-liquid character of the
Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe
- …