99 research outputs found

    The shadow of the Balbina dam: A synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia

    Get PDF
    1. The Balbina hydropower dam in the Central Amazon basin, established in the Uatumã River in the 1980s, is emblematic for its socio‐environmental disaster. Its environmental impacts go far beyond the reservoir and dam, however, affecting the floodplain forests (igapó) in the downstream area (dam shadow), which have been assessed using a transdisciplinary research approach, synthesized in this review. 2. Floodplain tree species are adapted to a regular and predictable flood pulse, with high‐ and low‐water periods occurring during the year. This was severely affected by the operation of the Balbina dam, which caused the suppression of both the aquatic phase at higher floodplain elevations and the terrestrial phase at lower floodplain elevations (termed the ‘sandwich effect’). 3. During the period of construction and reservoir fill, large‐scale mortality already occurred in the floodplains of the dam shadow as a result of reduced stream flow, in synergy with severe drought conditions induced by El Niño events, causing hydraulic failure and making floodplains vulnerable to wildfires. 4. During the operational period of the dam, permanent flooding conditions at low topographical elevations resulted in massive tree mortality. So far, 12% of the igapó forests have died along a downstream river stretch of more than 125 km. As a result of flood suppression at the highest elevations, an encroachment of secondary tree species from upland (terra firme) forests occurred. 5. More than 35 years after the implementation of the Balbina dam, the downstream impacts caused massive losses of macrohabitats, ecosystem services, and diversity of flood‐adapted tree species, probably cascading down to the entire food web, which must be considered in conservation management. 6. These findings are discussed critically, emphasizing the urgent need for the Brazilian environmental regulatory agencies to incorporate downstream impacts in the environmental assessments of several dam projects planned for the Amazon region.Additional co-authors: Flávia Machado Durgante, Aline Lopes, Susan E. Trumbore, Hans ter Steege, Adalberto Luis Val, Wolfgang J. Junk, Maria Teresa Fernandez Piedad

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions. © 2023 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society

    How sustainable are tropical forest managements in Amazonia?

    No full text

    Dendroecologia em florestas da Amazonia Central

    No full text

    Sustainable Forest Management in Central Amazonian White-water Floodplains Based on Tree Ring-Data

    No full text

    Manejo Florestal Sustentável em Florestas da Amazônia Central com Base na Análise de Anéis de Crescimento

    No full text

    How old are trees in central Amazonia?

    No full text

    Growth-Oriented Logging (GOL): The use of species-specific growth information for forest management in central Amazonian forests

    No full text
    corecore