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A B S T R A C T   

Early and skilful prediction of the Negro River maximum water levels at Manaus is critical for effective miti
gation measures to safeguard lives and livelihoods. Using dynamical seasonal prediction hindcasts, from six 
prediction centres, we investigate extending the lead time of previously developed statistical models, which issue 
forecasts in March for Manaus. The original statistical forecast models used observed rainfall as the major 
predictor. We advance the capability to issue skilful forecasts earlier, in February. We develop ensemble forecasts 
by combining predictor data from observations and seasonal hindcasts. We compare those forecasts against the 
original statistical forecast models and forecasts using the observed climatology or persistence of predictors. The 
ensemble-mean forecasts, issued in February, using European Centre for Medium-Range Weather Forecasts 
(ECMWF) hindcast input, perform similarly as the original forecasts issued in March and gain one month of lead 
time. The ECMWF-based ensemble forecasts skilfully predict the likelihood of water levels exceeding the severe 
flood level of 29 m. Forecast performance reduces and ensemble spread increases with increasing lead time from 
February to January. We conclude that forecasts for Manaus maximum water levels can be produced using 
combined input from observations and real-time ECMWF forecasts.   

Practical Implications 

Most cities, rural settlements and indigenous villages in the Cen
tral Amazon region are established along the main river and 
tributaries. The river valleys have been settled and used for cen
turies by indigenous and traditional populations performing ac
tivities for subsistence and commerce such as agriculture, 
livestock production, fishery and forestry which are intrinsically 
related to the annual hydrological cycle. Due to the amount and 

seasonality of rainfall in the Amazon basin, the large rivers have 
regularly occurring high-water (around June) and low-water 
seasons (October/November) with annual water level ampli
tudes of about 10 m in the Central Amazon region. During the last 
three decades scientists have observed increasing magnitude and 
frequency of severe flood events which endanger thousands of 
people, result in severe health problems, loss to infrastructure, 
properties and other socioeconomic sectors (Marengo et al., 2012; 
Gloor et al., 2013; Barichivich et al., 2018). During the last ten 
years the Central Amazon region has been affected by six severe 
flood events (2012, 2013, 2014, 2015, 2017, 2019) attaining the 
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critical threshold to declare the situation of emergency. To prevent 
and mitigate severe impacts on the urban and rural populations 
and on socioeconomic sectors, seasonal forecasts of severe flood 
events with a long lead time are required, to provide a reliable 
decision-making tool for public policymakers. 

Based on previous studies, during the IV CSSP (Climate Science for 
Service Partnership) Brazil Annual Scientific Workshop 2019 a 
consortium of scientists from UK and Brazil, to develop a skilful 
forecasting system with sufficiently long lead time to forecast 
annual maximum water level for the Negro River at Manaus, 
Brazil with the potential to expand it in future to other strategic 
locations in the Amazon basin. This project named PEACFLOW 
(Predicting the Evolution of the Amazon Catchment to Forecast 
the Level Of Water) is designed to support the official forecast of 
flood events performed by the Brazilian Geological Survey 
(CPRM) in Manaus end of March, providing essential and addi
tional information for effective implementation of disaster risk 
management actions. The new method included the use of various 
predictors from preceding months, such as rainfall, river water 
level, and Pacific and Atlantic Ocean conditions. The regularity of 
delay between the catchment rainfall and peak water level at 
Manaus allowed for the development of skilful statistical forecast 
models for issuing reliable forecasts with the same skill as existing 
operational models at longer lead times. 

In this study, we gained an additional month of lead time when we 
replaced the observed input data with the ECMWF (European 
Centre for Medium-Range Weather Forecasts) dynamical seasonal 
ensemble forecast. We developed two operational models using 
this data, which provide probabilistic forecasts at the beginning of 
January and February. The probabilistic forecasts, using ECMWF 
input, show good skill for the likelihood of river stage exceeding 
the 29 m emergency flood stage threshold. The methods devel
oped in this project can also be used to develop forecast models for 
water levels over other Amazon basin regions. The fully auto
mated PEACFLOW project models are provided in an open access 
GitHub repository (https://github.com/achevuturi/PEAC
FLOW_Manaus-flood-forecasting). PEACFLOW models can be used 
to provide operational forecasts. Using the PEACFLOW models we 
retrospectively forecasted the annual maximum water levels at 
Manaus for 2020, and we actively forecasted for 2021 in real time. 
Our forecast for the year 2021 shows the maximum water levels 
exceeding 29 m, which correctly indicated emergency conditions 
due to floods for Manaus.   

1. Introduction 

The Amazon is the largest river basin in the world (Callède et al., 
2010) and one of the few remaining networks of free-flowing large rivers 
(Grill et al., 2019). The Amazon river system provides water for do
mestic use, irrigation, livestock, hydro-power generation, river-based 
transportation, and essential ecosystem services (Junk et al., 2014). 
Variations in river water levels (flood and droughts) in the Amazon 
basin can cause considerable regional environmental and socio- 
economic impacts (Marengo and Espinoza, 2016). Many parts of the 
Amazon Basin lack integrated flood and drought disaster management 
plans (Dolman et al., 2018). More frequent and intense flood hazards in 
the last two decades (e.g., Gloor et al., 2013; Barichivich et al., 2018) 
make it essential to have early and skillful forecasting systems for annual 
maximum water levels of Amazonian rivers, to better prepare for 
extreme floods. 

The Negro River, like most of the Amazon network rivers, has sea
sonal flood levels during May–July and low levels during Septem
ber–November (Schöngart and Junk, 2007; Chevuturi et al., 2021). The 
Amazonian rivers present a regular hydrological annual cycle with a 
single annual flood event that lasts for weeks to months. This regular 
monomodal flood-pulse offers an opportunity to predict, months in 
advance, the maximum water level of the free-flowing river system. The 

hydrograph for River Negro at Manaus showing the evolution of water 
level through out the year is shown in Fig. 1. Currently, the Brazilian 
Geological Survey (CPRM) uses simple linear regression models to issue 
forecasts at end of March, April and May for maximum water level at 
Manaus, using current water levels of the respective issuance month as a 
predictor (Maciel et al., 2020; Maciel et al., 2022). Another seasonal 
forecasting model for Manaus was developed collaboratively by Insti
tuto Nacional de Pesquisas da Amazonia (INPA) and Max-Planck Soci
ety, using multiple linear regressions of maximum water level against 
prior Manaus water levels and indices representing large-scale modes of 
climate variability connected to basin rainfall (Schöngart and Junk, 
2007). The INPA model issues forecasts by the first week of March for 
annual maximum water levels for Manaus, using Niño3.4 sea surface 
temperature (SST) anomalies for December–February, the Southern 
Oscillation Index for November–January, the Pacific Decadal Oscillation 
for February, the previous year’s minimum water level and the 7th 

March water level at Manaus (Schöngart and Junk, 2020). 
Complex dynamical coupled hydrological models can issue daily 

river streamflow ensemble forecasts for South America on a grid-point 
level (Siqueira et al., 2020), and perform satisfactorily for water level 
forecasts when compared against in situ station data and remote sensing 
estimates (Siqueira et al., 2018). Catchment-based hydrologic-hydro
dynamic models use discretization of the river networks to successfully 
simulate water levels in the Amazon basin (Fan et al., 2021), even with 
limited data for the river features and geometry (Paiva et al., 2011). The 
water level forecasts can have meaningful skill for Amazon river flow, 
even for seasonal timescales, by assimilating in situ and radar altimetry 
data (Paiva et al., 2013); can be used to map the flood hazards, which 
compare well against CPRM estimates for different flood return periods 
(Alves et al., 2022). However, the hydrological models used over the 
Amazon basin have errors due to the precipitation forcing and the river- 
floodplain parameters used (de Paiva et al., 2013); the uncertainty from 
the model initial conditions degrades river flow forecast skill at seasonal 
timescales (Paiva et al., 2012). Further, hydrological models usually 
perform better at the subseasonal and regional scales (Towner et al., 
2019). Thus, along-with large-scale flood forecasts from hydrological 

Fig. 1. Hydrograph climatology (over 1903–2021 period) with daily mean 
(black solid line) and standard deviation (grey shaded area), and maximum 
(black dashed line) and minimum (black dot-dashed line) water levels (m) for 
the Negro river at Manaus over the annual cycle along with the 29 m flood 
emergency threshold (blue dotted line). 
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models, station-level statistical forecasts for maximum water level are 
operationally useful for the Amazon region (Maciel et al., 2020). 

The large drainage basins of the Amazonian rivers integrate small- 
scale precipitation variability; the river valley topography and wet
lands attenuate and delay the impact of rainfall on river water levels 
(Junk et al., 2011). This allows statistical seasonal forecast models to 
predict reliably the magnitude of hydrological peak water levels 
(Schöngart and Junk, 2007) from prior catchment rainfall observations 
(Richey et al., 1989). As Amazonian rainfall and subsequently river 
water level are also influenced by large-scale coupled ocean–atmosphere 
modes of variability (Towner et al., 2020), these modes of variability can 
also be potential predictors for water level forecast models (Schöngart 
and Junk, 2020). 

Using this premise, Chevuturi et al. (2021) developed three statisti
cal forecast models for annual maximum water level for the Negro River 
at Manaus, that use observed antecedent rainfall, antecedent water 
level, large-scale modes of variability represented by climate indices and 
the linear trend of historical water levels as predictors. The models 
developed by Chevuturi et al. (2021) can issue forecasts at three lead 
times: March (the current earliest operational lead time), February and 
January; and were compared against the models from INPA (Schöngart 
and Junk, 2007; Schöngart and Junk, 2020) and CPRM (Maciel et al., 
2020; Maciel et al., 2022). The results show that these forecasts gain one 
month of lead time against the CPRM models with similar forecast 
performance (Chevuturi et al., 2021). 

Seasonal forecasts show medium-to-high performance for rainfall 
anomalies over Amazonia during austral summer, as shown by statisti
cally significant anomaly correlation coefficients (0.6–0.8; Nobre et al., 
2006). Seasonal forecast performance for rainfall over South America 
depends on an accurate representation of the SST variability of the 
surrounding oceans (e.g., Montecinos et al., 2000). Predictions systems 
combining a SST-based empirical models and European multi-model 
seasonal forecasts show good performance for austral summer rainfall 
over South America (Coelho et al., 2006). Dynamical seasonal forecasts 
for rainfall over South America from the European Centre for Medium- 
Range Weather Forecasts (ECMWF) outperform forecasts from empirical 
prediction systems using Niño3.4 SST as predictor (Gubler et al., 2020). 
Current forecast models of maximum water level rely on the linear 
relationship between modes of variability and water levels connected 
through rainfall, but the findings of Gubler et al. (2020); Siqueira et al. 
(2020) suggest that dynamical seasonal rainfall predictions could be 
used to skilfully forecast maximum water levels. 

We investigate extending the lead time of the Chevuturi et al. (2021) 
maximum water level forecast models, by replacing the observed rain
fall and SST inputs to the statistical models with forecast values from 
dynamical seasonal forecast models. Longer lead times allow for earlier 
warnings of, and additional preparation time for, high-impact floods 
events. Using ensemble forecast data as input to the statistical models, 
we generate ensemble forecasts of the maximum water level. Ensemble 
forecasts provide a range of possible outcomes and can quantify forecast 
uncertainty. We evaluate the deterministic and probabilistic skill of 
these longer lead time ensemble forecasts and compare that skill to those 
of the original observation based models and to benchmark models 
where the dynamical forecast rainfall and SST indices are replaced with 
climatology or persistence. 

The paper is organized as follows: Section 2 introduces the data 
(Section 2.1) and describes the methods used (Section 2.2); seasonal 
hindcast performance is discussed in Section 3; verification of ensemble 
mean deterministic forecasts (Section 4.1), probabilistic forecasts (Sec
tion 4.2) and real-time forecasts (Section 4.3) for annual maximum 
water level at Manaus is discussed in Section 4; Section 5 concludes this 
study. 

2. Data and Methods 

2.1. Data 

Chevuturi et al. (2021) developed three statistical models for 
maximum water levels at Manaus, using multiple linear regression, 
which can issue forecasts by the middle of March, February and January. 
These statistical models use combinations of predictors, including 
antecedent rainfall, antecedent Atlantic Multi-decadal Oscillation index 
(AMO), the previous year’s minimum water level (Lmin) and the year of 
the forecast (Year), which represents the linear trend. For forecasts is
sued in March, November–February (NDJF) mean rainfall, NDJF mean 
AMO, Lmin and Year are used as input. For February issued forecasts, 
November–January (NDJ) mean rainfall and NDJ mean AMO along with 
Year are used as input variables. For January issued forecasts, Novem
ber–December (ND) mean rainfall, Year and Lmin are used as predictors. 
These models are further discussed in the Section 2.2. 

To develop the statistical models, 1903–2004 was selected as the 
training period, using GPCC (Global Precipitation Climatology Centre) 
rainfall (Schneider et al., 2017); models were validated over 2005–2019 
using CHIRPS (Climate Hazards Group InfraRed Precipitation with 
Station) rainfall, due to the lack of GPCC real-time data (Chevuturi et al., 
2021). CHIRPS version 2.0 (Funk et al., 2015), at 0.05◦ resolution, is 
available from 1981–present. 

We use daily Negro River water level (stage) at the Manaus harbour 
station (ID: 14990000), measured by Capitania dos Portos (Port Au
thority) since September 1902 (Maciel et al., 2020), to calculate annual 
maximum and minimum water levels for Manaus. The location of 
Manaus (3.14◦S, 60.03◦W) and the catchments of the Negro, Solimões 
and Madeira Rivers are shown in Fig. 2. The observed antecedent rain
fall in the catchment upstream of Manaus is an important predictability 
source for water levels. Chevuturi et al. (2021) used area-mean rainfall 
over the masked region (Fig. 2) within the three basins as a predictor for 
the original forecast models. The mask for each antecedent month is 
built from gridpoints with statistically significant correlation values at 
the 5% level between annual maximum water level and CHIRPS rainfall 
(grey shaded areas in Fig. 2). All three basins are considered as the 
upstream catchment for the Negro River, as its water levels are influ
enced by water levels in the Solimões and Madeira Rivers due to back
water effects (Meade et al., 1991; Schöngart and Junk, 2020). 

To extend the lead time for the original forecast model of annual 
maximum water level, we combine observed and seasonal hindcast 
rainfall and AMO as input to the forecast model. To evaluate this 
approach we use seasonal hindcasts from six prediction centres: Euro- 
Mediterranean Center on Climate Change (CMCC), Deutscher Wetter
dienst (DWD), European Centre for Medium-Range Weather Forecasts 
(ECMWF), Météo-France (METFR), National Centers for Environmental 
Prediction (NCEP), and UK Met Office (UKMO). For details of the 
hindcast sets please see Table 1. We use bias corrected (see Section 2.2) 
monthly total precipitation and sea surface temperature (SST) variables 
for 1st of January (Jan_Start) and 1st of February (Feb_Start) initialisa
tions (i.e., the dates when the hindcasts were ”produced”; Table 1) for 
each hindcast for the common period of 1994–2016, available at 1.0◦

spatial resolution. We also test a longer time period from ECMWF 
hindcasts, available from 1981–2016. 

2.2. Method 

We use CHIRPS observed rainfall and other observed variables 
(AMO, Lmin and Year) and calculate annual maximum water level 
forecasts for 1994–2019, using the original three models from Chevuturi 
et al. (2021). We refer to the original models’ forecasts as CHIRPS-ORI- 
Mar, CHIRPS-ORI-Feb and CHIRPS-ORI-Jan, based on their respective 
month of issue (Table 2). Full comparison between the operational 
models from CPRM (Maciel et al., 2020) and the original models using 
CHIRPS have been provided in Chevuturi et al. (2021). The results 
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showed that CHIRPS based original models are moderately better than 
CPRM forecast for the same issuance month, and show statistically 
similar performance to the CPRM forecasts one month ahead. Thus, we 
utilize the CHIRPS based original models as benchmark in this work, 
rather than CPRM models. 

We extend the lead time of CHIRPS-ORI-Mar model, which uses 
NDJF-mean rainfall, NDJF-mean AMO, Year and Lmin as predictors. By 
replacing either January and February or only February observed rain
fall and SST input with seasonal hindcast input, we produce maximum 
water level forecasts two or one months earlier, respectively. To calcu
late the forecasts we use the same model equation and parameters as 
CHIRPS-ORI-Mar. For rainfall input, we use the same mask used for 
CHIRPS rainfall (Fig. 2), regridded to the seasonal hindcast common grid 
of 1.0◦. The seasonal hindcast rainfall input is the monthly mean hind
cast rainfall averaged over the masked regions in Fig. 2. The seasonal 
hindcast AMO input is SST anomalies averaged over the Atlantic Ocean 
(0◦–70◦N and 75◦W–5E◦). 

The hindcasts have errors in the magnitude and variability for 
rainfall (Fig. 3, 4) and SST (not shown), as expected. Thus, we bias 
correct the rainfall and AMO hindcast input, using the standardized- 
reconstruction technique (Pan and Dool, 1998). This technique forces 
the hindcast to have the same mean and standard deviation as the ob
servations. We first standardize the hindcast by removing the hindcast 
mean and standard deviation. The corrected hindcast is reconstructed by 
applying the observed mean and standard deviation to the standardized 
hindcast anomalies. 

We combine the bias corrected seasonal hindcast February rainfall 
and February AMO index, from the 1st of February (Feb_Start) initiali
sations, with the observed NDJ rainfall and AMO index. By combining 

observed and hindcast rainfall and AMO index, along with observed 
Lmin and Year, as input in the CHIRPS-ORI-Mar model, we can issue 
forecasts by early February. Further, by combining bias corrected sea
sonal hindcast JF rainfall and AMO index, from the 1st of January 
(Jan_Start) initialisations, and observed ND rainfall and AMO index, 
along with observed Lmin and Year, we can issue forecasts by early 
January. Thus, for each seasonal hindcast set, we produce two forecasts 
that can be issued in February and January for each year (Table 2). We 
refer to the new forecasts using their hindcast name and issuance time 
(CMCC-Feb, DWD-Feb, ECMWF-Feb, METFR-Feb, NCEP-Feb, UKMO- 
Feb, CMCC-Jan, DWD-Jan, ECMWF-Jan, METFR-Jan, NCEP-Jan, 
UKMO-Jan). We produce a water level forecast from each ensemble 
member of each seasonal hindcast, to obtain an ensemble of water level 
forecasts for each year of 1994–2016. For ECMWF-Feb and ECMWF-Jan, 
we also produce forecasts over a longer 1981–2016 period (see Section 
4.3). 

By combining all the ensemble forecasts for maximum water level 
issued in February (CMCC-Feb, DWD-Feb, ECMWF-Feb, METFR-Feb, 
NCEP-Feb, UKMO-Feb), we generate a multi-model super-ensemble 
forecast (MM-Feb) that can be issued in February. This super-ensemble 
is a collection of all ensemble members from all six forecasts. Similarly, 
we combine all ensemble forecasts issued in January (CMCC-Jan, DWD- 
Jan, ECMWF-Jan, METFR-Jan, NCEP-Jan, UKMO-Jan), to generate a 
multi-model super-ensemble forecast (MM-Jan) that can be issued in 
January. 

We compare the performance of the 14 new maximum water-level 
forecasts, produced using combined observations and seasonal hind
casts, against the original three statistical forecasts, which only use 
observations. Further, we also analyse whether the new forecasts 

Fig. 2. (a) Elevation (shaded; km), (b) drainage from rivers (blue contours), and rainfall masks (shaded) for (c) January and (d) February (more details at Chevuturi 
et al., 2021) identified using statistically significant correlation values at the 5% level between CHIRPS grid point monthly-mean rainfall and observed annual 
maximum water level for Negro River at Manaus (red circle; 3.14◦S, 60.03◦W), along with river basin catchments (regions surrounded by black lines). The Negro 
River basin is the northernmost basin; the Solimões River basin is the central basin; and the Madeira River basin is the southernmost basin. 
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outperform baseline forecasts produced with the same statistical models 
with climatological and persistence forecasts of rainfall and AMO as 
input. To do this, we replace the hindcast data in the models above with: 
(i) 1994–2010 climatological CHIRPS rainfall and AMO index of 
February and January (CHIRPS-CLIM-Feb, CHIRPS-CLIM-Jan); (ii) sea
sonal persistence of CHIRPS rainfall and AMO index of February and 
January (CHIRPS-SEAS-Feb, CHIRPS-SEAS-Jan); and (iii) monthly 
persistence CHIRPS rainfall and AMO index of February and January 
(CHIRPS-MON-Feb, CHIRPS-MON-Jan). For seasonal persistence, we 
replace February rainfall and AMO observations with the preceding 
NDJ-mean, to issue forecasts by February; and we replace JF rainfall and 
AMO with the preceding ND-mean, to issue forecasts by January. For 
monthly persistence, we replace February rainfall and AMO observa
tions with the preceding January, to issue forecasts by February; and we 
replace January rainfall and AMO with the preceding December, to issue 
forecasts by January. Please see Table 2 for the full list of forecasts 
compared. 

We validate ensemble mean forecasts using deterministic perfor
mance metrics (correlation coefficient, CC; root mean square error, 
RMSE) over the common period 1994–2016 (Table 2). To compare the 
models’ performance fairly, we calculate distributions of model per
formance metrics (CC and RMSE), using a bootstrapping approach, by 
randomly generating 10000 samples, from the validation years, with 
replacement, and show the 5th–95th percentiles of the distributions 
generated. To assess significance of improvement in the model perfor
mance against the baseline climatological forecast we calculate the 
percentage of a models’ distributions that falls outside the 95th 

percentile of CC distribution and 5th percentile of RMSE distribution of 
the forecast generated using climatological input of the respective 
months (CC Score and RMSE Score). Thus, we compare all the models 
issuing forecasts in February against CHIRPS-CLIM-Feb and all the 
models issuing forecasts in January against CHIRPS-CLIM-Jan. For the 
CHIRPS-ORI-Mar model we also use CHIRPS-CLIM-Feb as a baseline. 

We also validate the ensemble water-level forecasts for the 

probability that the river stage will exceed the reference level of 29 m, at 
which Brazilian government declares an emergency, during the forth
coming annual flood season. To evaluate the categorical skill of the 
probabilistic forecast we use skill metrics: Accuracy or Hit rate (ACC; 
Wilks, 2011), Heidke skill score (HSS; Heidke, 1926), discrete Brier Skill 
Score (BSS; Weigel et al., 2007), discrete Ranked Probability Skill Score, 
(RPSS; Weigel et al., 2007), Area under the relative operating charac
teristic curve (ROC; Mason, 1982). ACC and HSS are calculated for each 
ensemble member and then averaged over the ensemble. 

3. Precipitation and AMO hindcasts performance 

We use the 1st of February (Feb_Start) seasonal hindcasts from six 
prediction centres (CMCC, DWD, ECMWF, METFR, NCEP, UKMO), for 
February rainfall and SST (lead month 0) and 1st of January hindcasts 
(Jan_Start) for January (lead month 0) and February (lead month 1) 
rainfall and SST. Before we discuss the verification of the annual 
maximum water level forecasts, we discuss the performance of seasonal 
rainfall and SST hindcasts for 1994–2016. 

Rainfall performance for lead month 0 for both initialisations, 
measured by grid-point wise CC between CHIRPS and hindcast monthly- 
mean rainfall, is statistically similar among most investigated models 
over the northern parts of the catchment area (Fig. 3). The correlations 
are highest and cover most of the catchment for ECMWF, and weakest 
and cover the least of the catchment for METFR. As expected, the 
hindcasts show reduced performance at longer lead times, i.e. for lead 
month 1, February from Jan_Start (Fig. 3g-l), when compared to shorter 
lead times, i.e. for lead month 0, January from Jan_Start (Fig. 3a-f). As 
correlations between grid-point hindcast rainfall and observed 
maximum water levels show weaker relationships than correlations of 
observed rainfall with maximum water levels (not shown), we do not use 
the rainfall masks from the seasonal hindcasts. Instead we use the 
regridded CHIRPS rainfall mask to calculate the input hindcast rainfall 
index. This method allows us to represent the real-world relationship 
between rainfall and water level, and not the (likely) biased relationship 
in the models. 

Hindcast rainfall biases are well established by lead month 0 over 
most of South America (Fig. 4a-f, 4m-r). Within the catchment region, 
there are strong positive rainfall biases over the Andes, in all six hind
casts, which are most probably associated with errors in simulating 
orographic precipitation. CMCC, NCEP and UKMO show a dry bias over 
the catchment area, whereas ECMWF shows a wet bias and DWD and 
METFR have mixed wet and dry biases over different parts of the 
catchment area. These biases in the hindcasts grow with lead time 
(Fig. 4g-l). 

Using combinations of SST observations and hindcasts, we calculate 
the AMO index for all ensemble members for January and February lead 
time (Fig. 5). For forecasts issued in February, we combine the observed 
NDJ AMO index along with the Feb_Start hindcast data for February 
(lead month 0) AMO index. For forecasts issued in January, we combine 
the observed ND AMO index along with Jan_Start hindcast data for JF 
(lead months 0 and 1) AMO index. These AMO indices, from all six 
hindcast sets, for both lead times, show similar interannual variability as 
observed (Fig. 5). The hindcast AMO index intialised on the 1st of 
January shows a larger ensemble spread than the index for hindcasts 
initialised on the 1st of February, which is expected due to the increase in 
spread with lead time. The bias in the forecasted AMO index also in
creases with lead time. 

4. Maximum water level forecast verification 

We validate the seven forecasts (one for each of the six models, plus 
the multi-model ensemble of these six models) for annual maximum 
water level for the Negro River at Manaus calculated using hindcast 
input for two start dates: February and January. Thus, we have 14 
forecasts using hindcast input: CMCC-Feb, DWD-Feb, ECMWF-Feb, 

Table 1 
Details of all the seasonal hindcasts used in this study. Please note that despite 
being produced in a lagged mode, the data from METFR, NCEP and UKMO 
systems are provided as if all the members were initialized on the 1st of the 
month.  

System Ensemble 
Size 

Initialisation Time 
Extent 

CMCC seasonal 
ensemble prediction 
system v3 (SPS3;  
Sanna et al., 2017) 

40 40 members start on the 
1st 

1993–2016 

DWD German Climate 
Forecast System v2.0 
(GCFS2.0; Fröhlich 
et al., 2020) 

30 30 members start on the 
1st 

1993–2016 

ECMWF seasonal 
forecast system v5 
(SEAS5; Johnson 
et al., 2019) 

25 25 members start on the 
1st 

1981–2016 

METFR CNRM seasonal 
forecast system v6.4 
(CNRM-CM6; Batté 
and Déqué, 2016) 

25 1 starts on the 1st , 12 
start on the last Thursday 
of the previous month, 
12 start on the 
penultimate Thursday of 
the previous month 

1993–2016 

NCEP coupled forecast 
system model v2 
(CFSv2; Saha et al., 
2014) 

28 (Jan), 24 
(Feb) 

4 members start every 5 
days 

1993–2016 

UKMO global seasonal 
forecasting system v5 
(GloSea5;  
MacLachlan et al., 
2015) 

28 7 members on the 1st , 9th, 
17th and 25th of each 
month 

1993(Feb)- 
2016  
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METFR-Feb, NCEP-Feb, UKMO-Feb, MM-Feb, CMCC-Jan, DWD-Jan, 
ECMWF-Jan, METFR-Jan, NCEP-Jan, UKMO-Jan, MM-Jan (Fig. 7). 
These 14 forecasts have an ensemble computed from the hindcast 
ensemble members. We first compare the performance of the ensemble 
mean forecasts (Section 4.1) against the three original statistical fore
casts developed by Chevuturi et al. (2021), that can issue forecasts in 
January (CHIRPS-ORI-Jan), February (CHIRPS-ORI-Feb) and March 
(CHIRPS-ORI-Mar), and forecasts developed using observed climatology 
(CHIRPS-CLIM-Feb, CHIRPS-CLIM-Jan), seasonal persistence (CHIRPS- 
SEAS-Feb, CHIRPS-SEAS-Jan) and monthly persistence (CHIRPS-MON- 
Feb, CHIRPS-MON-Jan) as input for rainfall and AMO (Fig. 6). Next we 
verify the performance of probabilistic forecasts given by each of the 14 
ensemble-based forecasts against the observed annual maximum water 
level (Section 4.2). Please see Section 2.2 for more details about the 
forecasts discussed here. 

4.1. Deterministic forecasting 

Variability of the annual maximum water level at Manaus, over 
1994–2015, is generally well represented by the original statistical 
models (Fig. 6a) and and even the forecasts that use observed persis
tence and climatology as input for rainfall and AMO (Fig. 6b-d). The 
ensemble mean forecasts, using seasonal hindcast input, also adequately 
represent the variability of the annual maximum water level (Fig. 7). For 
the years 2000, 2002, 2010 and 2013 we note similarly strong negative 
biases in all forecasts. As in Chevuturi et al. (2021), the forecasts show 
reduced performance for CC and RMSE with increased lead time (March- 
to-February-to-January; Table 2). We further look at distributions of CC 
and RMSE for a fair comparison of all forecasts (Fig. 8a-b). 

The baseline forecasts with seasonal and monthly persistence and 
climatology issued in February have similar performance (CC; Fig. 8a) as 

Table 2 
Description of input predictors for statistical forecast models for annual maximum water level for Manaus. The statistical forecasts are issued using original Chevuturi 
et al. (2021) models (ORI) in March (CHIRPS-ORI-Mar), February (CHIRPS-ORI-Feb) and January (CHIRPS-ORI-Jan). Forecasts from this study are calculated using 
observed seasonal persistence (SEAS), monthly persistence (MON) and climatology (CLIM), and seasonal hindcasts (CMCC, DWD, ECMWF, METFR, NCEP, UKMO and 
MM) for both February and January. Columns CC and RMSE show metrics for the deterministic and ensemble mean forecasts. Columns CC Score and RMSE Score shows 
the percentage of bootstrap samples for each metric that are outside the 5th – 95th percentile of the distributions of CHIRPS-CLIM-Feb (for March and February models) 
and for CHIRPS-CLIM-Jan (for January models).  

Forecast 
Model 

Input Predictors CC RMSE CC 
Score 

RMSE 
Score  

Rain_Nov Rain_Dec Rain_Jan Rain_Feb AMO_Nov AMO_Dec AMO_Jan AMO_Feb Year Lmin     

CHIRPS- 
ORI- 
Mar 

OBS OBS OBS OBS OBS OBS OBS OBS OBS OBS 0.92 0.52 51.59 21.86 

CHIRPS- 
ORI-Feb 

OBS OBS OBS - OBS OBS OBS - OBS - 0.86 0.53 4.82 13.38 

CHIRPS- 
SEAS- 
Feb 

OBS OBS OBS SEAS OBS OBS OBS SEAS OBS OBS 0.86 0.59 5.56 4.89 

CHIRPS- 
MON- 
Feb 

OBS OBS OBS MON OBS OBS OBS MON OBS OBS 0.87 0.58 8.98 7.67 

CHIRPS- 
CLIM- 
Feb 

OBS OBS OBS CLIM OBS OBS OBS CLIM OBS OBS 0.86 0.59 5.00 5.00 

CMCC- 
Feb 

OBS OBS OBS CMCC OBS OBS OBS CMCC OBS OBS 0.88 0.56 13.69 6.64 

DWD-Feb OBS OBS OBS DWD OBS OBS OBS DWD OBS OBS 0.87 0.57 8.37 5.82 
ECMWF- 

Feb 
OBS OBS OBS ECMWF OBS OBS OBS ECMWF OBS OBS 0.92 0.51 43.84 20.54 

METFR- 
Feb 

OBS OBS OBS METFR OBS OBS OBS METFR OBS OBS 0.88 0.56 11.90 9.06 

NCEP-Feb OBS OBS OBS NCEP OBS OBS OBS NCEP OBS OBS 0.88 0.55 12.29 9.08 
UKMO- 

Feb 
OBS OBS OBS UKMO OBS OBS OBS UKMO OBS OBS 0.88 0.56 10.82 8.13 

MM-Feb CMCC-Feb, DWD-Feb, ECMWF-Feb, METFR-Feb, NCEP-Feb, UKMO-Feb 0.90 0.54 20.85 10.26 
CHIRPS- 
ORI-Jan 

OBS OBS - - - - - - OBS OBS 0.79 0.63 3.48 8.20 

CHIRPS- 
SEAS- 
Jan 

OBS OBS SEAS SEAS OBS OBS SEAS SEAS OBS OBS 0.83 0.62 12.19 9.42 

CHIRPS- 
MON- 
Jan 

OBS OBS MON MON OBS OBS MON MON OBS OBS 0.85 0.59 28.84 15.38 

CHIRPS- 
CLIM- 
Jan 

OBS OBS CLIM CLIM OBS OBS CLIM CLIM OBS OBS 0.80 0.65 5.00 5.00 

CMCC- 
Jan 

OBS OBS CMCC CMCC OBS OBS CMCC CMCC OBS OBS 0.79 0.64 5.60 8.17 

DWD-Jan OBS OBS DWD DWD OBS OBS DWD DWD OBS OBS 0.82 0.62 9.11 9.73 
ECMWF- 

Jan 
OBS OBS ECMWF ECMWF OBS OBS ECMWF ECMWF OBS OBS 0.84 0.59 21.58 18.78 

METFR- 
Jan 

OBS OBS METFR METFR OBS OBS METFR METFR OBS OBS 0.79 0.64 10.48 9.54 

NCEP-Jan OBS OBS NCEP NCEP OBS OBS NCEP NCEP OBS OBS 0.81 0.62 7.90 10.92 
UKMO- 

Jan 
OBS OBS UKMO UKMO OBS OBS UKMO UKMO OBS OBS 0.78 0.65 2.22 5.41 

MM-Jan CMCC-Jan, DWD-Jan, ECMWF-Jan, METFR-Jan, NCEP-Jan, UKMO-Jan 0.83 0.60 11.56 13.75  
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CHIRPS-ORI-Feb but show larger errors (RMSE; Fig. 8b), and have 
reduced performance compared to CHIRPS-ORI-Mar (Table 2), as ex
pected. We see similarly reduced performance in baseline forecasts is
sued in January, except for CHIRPS-MON-Jan, which shows similar 
performance (high confidence) as the CHIRPS-ORI-Feb. We say high 
confidence, when at least 95% of the forecast falls within the 5th–95th 

percentiles ranges of another forecast’s CC and RMSE while comparing 
forecasts. 

The forecasts, issued in February using seasonal hindcasts, have 
similar performance as CHIRPS-ORI-Feb and are not significantly better 

than the forecasts issued using persistence and climatology, except for 
ECMWF-Feb and MM-Feb (Fig. 8). ECMWF-Feb outperforms CHIRPS- 
ORI-Feb, and shows similar performance as CHIRPS-ORI-Mar (high 
confidence). This suggests that we can gain one month of lead time by 
combining observations and ECMWF seasonal forecasts, for the same 
performance (Table 2; Fig. 8). 

The forecasts issued in January, using seasonal hindcasts, also have 
similar performance as the CHIRPS-ORI-Jan, except for ECMWF-Jan and 
MM-Jan. For January, the ECMWF-Jan forecasts outperform CHIRPS- 
ORI-Jan, but perform similarly to CHIRPS-MON-Jan (high 

Fig. 3. Correlation coefficients (shaded) of monthly rainfall anomalies between CHIRPS and hindcasts from (a) CMCC, (b) DWD, (c) ECMWF, (d) METFR, (e) NCEP 
and (f) UKMO for the Jan_Start initialisations at lead month 0 (January) over 1994–2016. (g-l) same as (a-f) but for Jan_Start initialisations at lead month 1 
(February). (m-r) same as (a-f) but for Feb_Start initialisations at lead month 0 (February). Correlations statistically significant at the 5% level are shown with 
stippling. The regions bounded by blue lines shows the combined catchment area for the Negro, Solimões and Madiera Rivers. 

Fig. 4. Same as Fig. 3 but for rainfall bias (mm day− 1).  
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confidence). However, the ECMWF-Jan forecasts are similar to CHIRPS- 
ORI-Feb (moderate confidence). Moderately confidence in comparison 
between forecast performance is considered when only 75% of the dis
tributions for CC and RMSE overlap between the forecasts. 

For ECMWF-Feb we find that 50% of the CC distribution and 20% of 
the RMSE distribution is outside the 5th–95th percentile range of 
CHIRPS-CLIM-Feb, as with CHIRPS-ORI-Mar (Table 2). For the ECMWF- 

Jan forecasts, these percentages fall to 20% of CC and RMSE distribu
tions being outside the 5th–95th percentile range of CHIRPS-CLIM-Jan. 
CHIRPS-MON-Jan performs slightly better than ECMWF-Jan. Howev
er, the ECMWF-based maximum water level forecasts are significantly 
better than the water level forecasts using climatology as input. All other 
hindcast-based forecasts perform similarly to, or worse than, the 
climatology-based forecasts. Further, multi-model mean forecasts (MM- 

Fig. 5. Observed (black solid line) and statistical forecasts for AMO index over the period of 1994–2016 using (a) CMCC seasonal hindcast data issued in February 
(ensemble, magenta boxplot; ensemble mean, magenta star and dotted line) and January (ensemble, cyan boxplot; ensemble mean, cyan star and dotted line). (b-f) is 
same as (a) but for (b) DWD, (c) ECMWF, (d) METFR, (e) NCEP and (f) UKMO. Please note the boxplot whiskers represent the minimum and maximum 
ensemble range. 

Fig. 6. Observed water level (black solid line) and (a) statistical forecasts of water level using observed data issued in March (CHIRPS-ORI-Mar; back dotted line), 
February (CHIRPS-ORI-Feb; red dotted line) and January (CHIRPS-ORI-Jan; blue dotted line) over 1994–2016. (b-d) are same as (a) but for forecasts issued in 
February and January using (b) seasonal persistence (CHIRPS-SEAS-Feb, CHIRPS-SEAS-Jan), (c) monthly persistence (CHIRPS-MON-Feb, CHIRPS-MON-Jan), and (d) 
climatology (CHIRPS-CLIM-Feb, CHIRPS-CLIM-Jan) of observations for rainfall and AMO. 

A. Chevuturi et al.                                                                                                                                                                                                                              



Climate Services 30 (2023) 100342

9

Feb and MM-Jan) show no improvement over their respective ECMWF 
counterparts (ECMWF-Feb and ECMWF-Jan) and offer little value over 
climatology or persistence for forecasting water levels. 

4.2. Probabilistic forecasting 

To verify the 14 probabilistic forecasts of maximum water level at 
Manaus issued in January and February, we compare probabilities 
derived from the forecast ensemble against the observed annual 
maximum water level for 1994–2016. Ensemble forecasts issued in 
January have a much larger ensemble spread than the forecasts issued in 
February (Fig. 7), as expected. For the January forecasts, we include lead 
month 0 and 1, whereas for February forecasts, we only include lead 
month 0. We see similar increase in ensemble spread with lead time for 
AMO forecasts (Fig. 5). 

The ensemble forecasts of all models include the observed maximum 
water level values for most years, with few exceptions (e.g. 1998, 2001, 
2002, 2010, 2013; Fig. 7). We objectively measure the probabilistic skill 
for a two-category forecast (above and below the 29 m water level 
threshold) using ACC, HSS, RPSS and ROC (Section 2.2). As for ensemble 
mean forecasts, the ECMWF-based probabilistic forecasts (ECMWF-Feb 
and ECMWF-Jan) are also best at both lead times. Further, the multi- 
model super-ensemble forecasts (MM-Feb and MM-Jan) are not signifi
cantly better than the ECMWF-based forecasts. 

As ECMWF-based water level forecasts (ECMWF-Feb and ECMWF- 
Jan) clearly outperform the other hindcast-based forecasts, we eval
uate the ECMWF forecasts further for the full period available 
(1981–2016). Over 1981–2016 the performance metrics for the 
ensemble mean ECMWF-Feb forecasts (CC = 0.91, RMSE = 0.45 m) and 
ECMWF-Jan forecasts (CC = 0.83, RMSE = 0.59 m) remain similar to 
those for the 1993–2016 period (Table 2). 

We also evaluate the probabilistic skill of the ECMWF forecasts over 
1981–2016 (Fig. 8c). The ECMWF-Feb ensemble forecast has 90% ac
curacy (ACC ≈ 0.90) in forecasting the category (above and below 29 m 
water level), with 65% accuracy after correcting for those forecasts 

which would be correct due to chance (HSS ≈ 0.65). ECMWF-Feb also 
shows better probabilistic forecast performance relative to the reference 
climatological forecast for the two categories (RPSS > 0); the forecast 
can clearly discriminate between the two alternative outcomes (ROC >
0.9). This suggests that ECMWF-Feb probabilistic forecasts have clear 
potential for operational use. ECMWF-Jan probabilistic forecasts have 
lower skill than ECMWF-Feb probabilistic forecasts, as expected, asso
ciated with loss of sharpness in the ECMWF-Jan ensemble forecasts 
relative to ECMWF-Feb (Fig. 7c). However, the probabilistic skill for 
January is still moderate and may have some use for earlier warnings of 
flood events. 

For forecasts of terciles of maximum water level, the ECMWF fore
casts have higher skill in the lower and the upper tercile than the middle 
tercile (not shown), which suggests that the forecasts predict extreme 
conditions much better than near-normal conditions. This improved skill 
may stem from higher forecast skill for upper-tercile and lower-tercile 
rainfall, at subseasonal timescales over the Amazon basin (Klingaman 
et al., 2021). Better performance of ECMWF ensemble forecasts over 
South America not only produce skilful forecasts of water level using 
statistical models as in the current study, but have also been used to 
provide skilful streamflow forecasts using hydrologic–hydrodynamic 
models (Siqueira et al., 2020). 

4.3. Real-time forecasting 

To further test our method for real-time operational forecasting 
application, we use the operational seasonal forecasts provided by the 
ECMWF available for 2017–2021. The only difference between the 
seasonal forecasts (2017–2021) and the hindcasts (1981–2016) is the 
ensemble size: 51 vs 25 members respectively. We cannot test this for all 
models as some prediction centres do not make forecasts available for 
the full 2017–2021 period. We retrospectively issue forecasts of the 
annual maximum water level at Manaus for 2017–2020 January and 
February, using combined data from observations and ECMWF forecasts. 
We compare these retrospective forecasts with observations and 

Fig. 7. Same as Fig. 5 but for annual maximum water level (m) at Manaus.  
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CHIRPS-ORI-Mar forecasts (Fig. 8d). The ECMWF-Jan and ECMWF-Feb 
forecast ensemble spread includes the observations for most years, with 
only the 2017 and 2021 values outside the ECMWF-Feb distribution. For 
2017, both ECMWF-Feb and CHIRPS-ORI-Mar overestimate the 
maximum water level; the ECMWF-Jan ensemble mean is much closer to 
the observations. The January issued forecasts have a much larger 
spread and thus are more likely to include the observations, but also 
have higher forecast uncertainty. For 2021, all of the forecasts under
estimate the extreme flood (30.02 m), with only some extreme ensemble 
members for ECMWF-Jan coming close to the observations. However, 
we note that ECMWF-Feb and ECMWF-Jan predict extreme flood levels 
(greater than 29 m) for 2021 with 90% and 73% probability respec
tively. For all the other years, ECMWF-Feb outperforms ECMWF-Jan, 
with a much lower spread and thus lower forecast uncertainty. Our 
analysis of the ECMWF-based forecasts indicates that ECMWF-Feb and 
ECMWF-Jan ensemble forecasts can provide useful and skilful real-time 
operational probabilistic forecasts. 

5. Summary and Conclusions 

Flooding in the rivers of the Amazon basin, like the Negro River that 
flows through Manaus, can be devastating to the surrounding areas 
(Marengo et al., 2013; Marengo and Espinoza, 2016). It is therefore 
critical to advance the prediction of high water levels of Amazonian 
rivers, to provide more effective and earlier warnings of impending di
sasters, for more effective action to safeguard lives and livelihoods 
(Schöngart and Junk, 2007; Maciel et al., 2020). Operational forecasts of 

maximum water level for Manaus are provided by Brazilian institutes 
CPRM (Maciel et al., 2020; Maciel et al., 2022) and INPA (Schöngart and 
Junk, 2007; Schöngart and Junk, 2020). 

Chevuturi et al. (2021) developed statistical forecast models for the 
annual maximum water level of the Negro River at Manaus, based on 
catchment rainfall (the predominant predictor), large-scale tele
connection indices, the long-term linear trend of water level and ante
cedent water levels. These forecasts, which only use observations as 
input, showed operationally viable performance, at the current earliest 
operational lead time of March, by advancing the skill of the operational 
models. 

In this study, we investigated extending the lead time of the original 
statistical model, issued in March, by incorporating dynamical seasonal 
forecast information, to develop operationally useful and skilful fore
casts for annual maximum water level at Manaus. We generated fore
casts, which combine observations and seasonal hindcasts from six 
prediction centres as input to the original model. The new forecasts can 
be issued operationally at two lead times: February and January. We 
compare the new forecasts against the original statistical models and 
forecasts generated using persistence and climatology of rainfall and 
AMO observations over the period of 1994–2016. Our results are sum
marized below:  

• Of all hindcast-based forecasts issued in February, only ECMWF- 
based forecasts perform better than the original statistical February 
forecast (75% confidence). The improved performance of ECMWF 

Fig. 8. (a) Comparison of statistical fore
casts for annual maximum water level for 
Manaus over the validation period of 
1994–2016. Forecasts shown are based on 
observed rainfall and issued in Januar
y–March (ORI; black), issued in February 
and January based on climatology (CLIM; 
light grey), monthly persistence (MON; 
grey), or seasonal persistence (SEAS; dark 
grey) and based on seasonal hindcasts (col
ours). Metrics shown are correlation coeffi
cient (CC) and the 5th–95th percentile range 
of its bootstrap distribution. (b) same as (a) 
but for root mean square error (RMSE) and 
the 5th–95th percentile range of its bootstrap 
distribution. For hindcast-based forecasts, 
CC and RMSE are calculated for the 
ensemble mean. (c) Categorical skill scores 
(Accuracy, ACC; Heidke skill score, HSS; 
Ranked probability skill score, RPSS; Rela
tive operating characteristic score; ROC) for 
ECMWF-based probabilistic forecasts issued 
in February (red circle) and January (red 
star) for 1981–2016, calculated for the cat
egories of above and below 29 m. (d) 
Retrospective ECMWF-based forecasts for 
2017–2021 issued in January (ensemble 
mean, cyan star; ensemble, cyan boxplots) 
and February (ensemble mean, magenta star; 
ensemble, magenta boxplots), and compared 
against observations (black solid line) and 
original CHIRPS-ORI-Mar forecast (black 
dotted line). Please note the boxplot whis
kers represent the minimum and maximum 
ensemble range.   
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seasonal rainfall and SST forecasts lead to the improved ECMWF- 
based maximum water level forecasts.  

• The multi-model super-ensemble does not offer useful additional 
seasonal performance over the individual models or the climato
logical and persistence forecasts.  

• Ensemble-mean ECMWF-based forecasts, issued in February, have 
performance similar to original statistical forecast issued in March 
(95% confidence). Thus, we effectively gain one month of lead time: 
the original statistical March model issues forecasts by the middle of 
March; ECMWF-based forecasts can be issued by the middle of 
February, as seasonal forecasts are currently made publicly available 
on the 13th day of each month.  

• At January lead time, ensemble mean ECMWF-based forecasts 
perform similarly to the original statistical forecasts issued in 
February (75% confidence) and to the forecasts using monthly 
persistence (95% confidence).  

• Forecast performance deteriorates with increased lead time 
(February-to-January). The ensemble spread of forecasts issued in 
January is much larger than for forecasts issued in February, which 
means larger uncertainty and lower skill for forecasts issued in 
January.  

• ECMWF-based ensemble forecasts issued in February show potential 
for operational use, as they accurately forecast the correct categories 
of above and below 29 m water level (emergency conditions), even 
after correcting for the probability of correct forecasts due to chance. 
Further, these forecasts are better than the reference climatological 
forecast at discriminating between the two alternative outcomes 
(above or below 29 m).  

• Forecasts for Manaus, issued in February, using real-time ECMWF 
seasonal forecasts, show adequate performance. Thus, we conclude 
that ECMWF seasonal forecast data can be combined with observed 
data to operationally forecast maximum water level at Manaus, one 
month ahead of the original statistical forecasts issued by mid- 
March. 

Further studies may be able to extend our work to other regions in the 
Amazon basin. Our results also suggest further research could combine 
forecast rainfall data at shorter range (e.g., seasonal forecasts) when 
model performance is higher, with persistence/climatological rainfall 
data at longer range when model performance is lower, to develop 
forecasts at longer-lead times. Using subseasonal forecasts could also 
lead to forecasts with more frequent updates than the monthly updated 
forecasts produced here. 
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tualization, Investigation, Data curation, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This study was supported by the Newton Fund through the Met Of
fice Climate Science for Service Partnership Brazil (CSSP Brazil) Pre
dicting the Evolution of the Amazon Catchment to Forecast the Level Of 

Water (PEACFLOW) project. NPK and SJW were supported by the 
ACREW programme of the National Centre for Atmospheric Science 
(NCAS) and Global Challenges Research Fund (GCRF). CASC thanks 
CNPq, process 305206/2019–2, and Fundação de Amparo ́a Pesquisa do 
Estado de São Paulo (FAPESP), process 2015/50687–8 (CLIMAX Proj
ect) for the support received. 

Daily river water level data for Negro River at Manaus is provided by 
Brazilian Water Agency (ANA; www.snirh.gov.br/hidroweb/publico/ 
medicoes_historicas_abas.jsf). Source for CHIRPS is https://data.chc. 
ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/. The obse 
rved AMO data is from https://psl.noaa.gov/data/correlation/amon.us. 
long.data. Source for existing original forecasts for annual maximum 
water level at Manaus is Chevuturi et al. (2021). Seasonal forecasts from 
different prediction centres are available at https://cds.climate.coper
nicus.eu/cdsapp#!/dataset/seasonal-monthly-single-levels?tab = form. 
The code for forecasting annual maximum water level for the Negro 
River at Manaus is available at ”Using_Seasonal-Forecasts” module of 
https://github.com/achevuturi/PEACFLOW_Manaus-flood-forecasting. 

References 

Alves, M.E.P., Fan, F.M., Paiva, R.C.D.d., Siqueira, V.A., Fleischmann, A.S., Brêda, J.P., 
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