720 research outputs found

    A quotient of the Lubin-Tate tower II

    Get PDF
    In this article we construct the quotient M_1/P(K) of the infinite-level Lubin-Tate space M_1 by the parabolic subgroup P(K) of GL(n,K) of block form (n-1,1) as a perfectoid space, generalizing results of one of the authors (JL) to arbitrary n and K/Q_p finite. For this we prove some perfectoidness results for certain Harris-Taylor Shimura varieties at infinite level. As an application of the quotient construction we show a vanishing theorem for Scholze's candidate for the mod p Jacquet-Langlands and the mod p local Langlands correspondence. An appendix by David Hansen gives a local proof of perfectoidness of M_1/P(K) when n = 2, and shows that M_1/Q(K) is not perfectoid for maximal parabolics Q not conjugate to P.Comment: with an appendix by David Hanse

    Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations ismissing. Such data can reveal whether joint effects at the receptor are induced at low levels andmay support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicalswere combined at threemixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists froma wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity

    Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past. © 2014 Scholze et al

    Genotoxic mixtures and dissimilar action: Concepts for prediction and assessment

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the creative commons Attribution license which permits any use, distribution, and reproduction in any medium, provided the original author(s)and the source are credited.Combinations of genotoxic agents have frequently been assessed without clear assumptions regarding their expected (additive) mixture effects, often leading to claims of synergisms that might in fact be compatible with additivity. We have shown earlier that the combined effects of chemicals, which induce micronuclei (MN) in the cytokinesis-block micronucleus assay in Chinese hamster ovary-K1 cells by a similar mechanism, were additive according to the concept of concentration addition (CA). Here, we extended these studies and investigated for the first time whether valid additivity expectations can be formulated for MN-inducing chemicals that operate through a variety of mechanisms, including aneugens and clastogens (DNA cross-linkers, topoisomerase II inhibitors, minor groove binders). We expected that their effects should follow the additivity principles of independent action (IA). With two mixtures, one composed of various aneugens (colchicine, flubendazole, vinblastine sulphate, griseofulvin, paclitaxel), and another composed of aneugens and clastogens (flubendazole, doxorubicin, etoposide, melphalan and mitomycin C), we observed mixture effects that fell between the additivity predictions derived from CA and IA. We achieved better agreement between observation and prediction by grouping the chemicals into common assessment groups and using hybrid CA/IA prediction models. The combined effects of four dissimilarly acting compounds (flubendazole, paclitaxel, doxorubicin and melphalan) also fell within CA and IA. Two binary mixtures (flubendazole/paclitaxel and flubendazole/doxorubicin) showed effects in reasonable agreement with IA additivity. Our studies provide a systematic basis for the investigation of mixtures that affect endpoints of relevance to genotoxicity and show that their effects are largely additive.UK Food Standards Agenc

    Sea bass (Dicentrarchus labrax) : a model organism for the screening of estrogenic chemicals in marine surface waters?

    Get PDF
    Society of Environmental Toxicology and Chemistry - SETAC Europe 14th Annual Meeting, Prague, Czech Republic, April 2004.There is growing concern that aquatic wildlife in surface waters of the European Union is exposed to natural and man-made chemicals that have the ability to mimic estrogens and lead to reproductive dysfunction. Estrogenic responses in fish are the net result of complex chains of events involving the uptake, distribution and metabolism of test agents until they interact with their target sites. Typically these aspects cannot be modelled in short-term cell-based assays, only studies with vertebrates offer the opportunity to assess potential interactions of test compounds at higher organisational levels. However, studies with endocrine disrupting chemicals have been performed mainly with freshwater organisms. The sensitivity of a marine fish species to different estrogenic chemicals was investigated under chronic exposure conditions. This work is part of a study focusing on the combination effects of mixtures of estrogenic chemicals in marine and freshwater organisms (ACE, EVK1-CT-2001-100). As test organism the sea bass (Dicentrarchus labrax) was selected, a common species in European marine systems. Juveniles were exposed under a flow-through system for 14 days for a set of reference chemicals (17Ã -estradiol, ethynylestradiol, nonylphenol, octylphenol, bisphenol A). Effects at subcellular level were analysed using vitellogenesis as endpoint. Its relevance is evaluated by further investigations about the individual fitness (condition factor, hepatossomatic index), as well as the liver cytochrome P450 activity. The general suitability of the sea bass as a model organism for the screening of estrogenic chemicals in the marine environment is discussed.Comissãoo Europeia (CE) - ACE, EVK1-CT-2001-100
    corecore