134 research outputs found

    A Helix Propensity Scale Based on Experimental Studies of Peptides and Proteins

    Get PDF
    AbstractThe average globular protein contains 30% α-helix, the most common type of secondary structure. Some amino acids occur more frequently in α-helices than others; this tendency is known as helix propensity. Here we derive a helix propensity scale for solvent-exposed residues in the middle positions of α-helices. The scale is based on measurements of helix propensity in 11 systems, including both proteins and peptides. Alanine has the highest helix propensity, and, excluding proline, glycine has the lowest, ∼1kcal/mol less favorable than alanine. Based on our analysis, the helix propensities of the amino acids are as follows (kcal/mol): Ala=0, Leu=0.21, Arg=0.21, Met=0.24, Lys=0.26, Gln=0.39, Glu=0.40, Ile=0.41, Trp=0.49, Ser=0.50, Tyr=0.53, Phe=0.54, Val=0.61, His=0.61, Asn=0.65, Thr=0.66, Cys=0.68, Asp=0.69, and Gly=1

    Peptide Sequence and Conformation Strongly Influence Tryptophan Fluorescence

    Get PDF
    AbstractThis article probes the denatured state ensemble of ribonuclease Sa (RNase Sa) using fluorescence. To interpret the results obtained with RNase Sa, it is essential that we gain a better understanding of the fluorescence properties of tryptophan (Trp) in peptides. We describe studies of N-acetyl-L-tryptophanamide (NATA), a tripeptide: AWA, and six pentapeptides: AAWAA, WVSGT, GYWHE, HEWTV, EAWQE, and DYWTG. The latter five peptides have the same sequence as those surrounding the Trp residues studied in RNase Sa. The fluorescence emission spectra, the fluorescence lifetimes, and the fluorescence quenching by acrylamide and iodide were measured in concentrated solutions of urea and guanidine hydrochloride. Excited-state electron transfer from the indole ring of Trp to the carbonyl groups of peptide bonds is thought to be the most important mechanism for intramolecular quenching of Trp fluorescence. We find the maximum fluorescence intensities vary from 49,000 for NATA with two carbonyls, to 24,400 for AWA with four carbonyls, to 28,500 for AAWAA with six carbonyls. This suggests that the four carbonyls of AWA are better able to quench Trp fluorescence than the six carbonyls of AAWAA, and this must reflect a difference in the conformations of the peptides. For the pentapeptides, EAWQE has a fluorescence intensity that is more than 50% greater than DYWTG, showing that the amino acid sequence influences the fluorescence intensity either directly through side-chain quenching and/or indirectly through an influence on the conformational ensemble of the peptides. Our results show that peptides are generally better models for the Trp residues in proteins than NATA. Finally, our results emphasize that we have much to learn about Trp fluorescence even in simple compounds

    Early non-psychotic deviant behaviour as an endophenotypic marker in bipolar disorder, schizo-affective disorder and schizophrenia

    Get PDF
    Objective: To determine and compare the incidence of early non-psychotic deviant behaviour (i.e. under the age of ten) in Afrikaner patients with bipolar disorder, schizo-affective disorder and schizophrenia. Methods: Patients with bipolar disorder, schizo-affective disorder and schizophrenia were interviewed using a structured questionnaire probing for early deviant childhood behaviour starting before the age of 10 years. Information from close family members was also obtained where possible. Seven areas of possible deviance were probed into: social dysfunction, unprovoked aggression, extreme anxiety, chronic sadness, extreme odd behaviours, attention impairment and learning difficulties. Demographic data included: age, marital status, gender, and years of formal education. The following clinical features were also recorded: age of onset of illness and suicide attempts. Results: A total of 74 patients diagnosed with bipolar disorder, 43 patients diagnosed with schizo-affective disorder and 80 patients diagnosed with schizophrenia were interviewed. Early deviant behaviour was statistically more prevalent in schizophrenia (65%) and schizo-affective disorder (60,5%), than in the bipolar group (21,6%). Deviant childhood behaviour was grouped into 3 clusters: social functioning impairment cluster (social isolation, aggression, extreme odd behavior), mood/anxiety cluster (extreme fears, chronic sadness) and a cognitive impairment cluster (attention impairment, learning disability). Bipolar patients showed significantly less social functioning and cognitive impairment compared to patients with schizo-affective disorder and schizophrenia. Conclusion: Our findings suggest that early deviant behaviour may be a possible endophenotypic marker in schizophrenia and schizoaffective disorder. Keywords: early non-psychotic deviant behaviour, endophenotype, bipolar disorder, schizo-affective disorder, schizophrenia South African Psychiatry Review Vol. 8(4) 2005: 153-15

    Distinct Secondary Structures of the Leucine-Rich Repeat Proteoglycans Decorin and Biglycan: Glycosylation-Dependent Conformational Stability

    Get PDF
    Biglycan and decorin, closely related small leucine-rich repeat proteoglycans, have been overexpressed in eukaryotic cers and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans. A comparative biophysical study of these glycoforms has revealed that the overall secondary structures of biglycan and decorin are different. Far-UV Circular Dichroism (CD) spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly Beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to. the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the fmal form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that at least in this specific domain, the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provided further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1-2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1-6 M urea, probably indicating the presence of stable unfolding intermediates

    Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2)

    Get PDF
    The pK values of the titratable groups in ribonuclease Sa (RNase Sa) (pI=3.5), and a charge-reversed variant with five carboxyl to lysine substitutions, 5K RNase Sa (pI=10.2), have been determined by NMR at 20 °C in 0.1 M NaCl. In RNase Sa, 18 pK values and in 5K, 11 pK values were measured. The carboxyl group of Asp33, which is buried and forms three intramolecular hydrogen bonds in RNase Sa, has the lowest pK (2.4), whereas Asp79, which is also buried but does not form hydrogen bonds, has the most elevated pK (7.4). These results highlight the importance of desolvation and charge–dipole interactions in perturbing pK values of buried groups. Alkaline titration revealed that the terminal amine of RNase Sa and all eight tyrosine residues have significantly increased pK values relative to model compounds. A primary objective in this study was to investigate the influence of charge–charge interactions on the pK values by comparing results from RNase Sa with those from the 5K variant. The solution structures of the two proteins are very similar as revealed by NMR and other spectroscopic data, with only small changes at the N terminus and in the α-helix. Consequently, the ionizable groups will have similar environments in the two variants and desolvation and charge–dipole interactions will have comparable effects on the pK values of both. Their pK differences, therefore, are expected to be chiefly due to the different charge–charge interactions. As anticipated from its higher net charge, all measured pK values in 5K RNase are lowered relative to wild-type RNase Sa, with the largest decrease being 2.2 pH units for Glu14. The pK differences (pKSa−pK5K) calculated using a simple model based on Coulomb's Law and a dielectric constant of 45 agree well with the experimental values. This demonstrates that the pK differences between wild-type and 5K RNase Sa are mainly due to changes in the electrostatic interactions between the ionizable groups. pK values calculated using Coulomb's Law also showed a good correlation (R=0.83) with experimental values. The more complex model based on a finite-difference solution to the Poisson–Boltzmann equation, which considers desolvation and charge–dipole interactions in addition to charge–charge interactions, was also used to calculate pK values. Surprisingly, these values are more poorly correlated (R=0.65) with the values from experiment. Taken together, the results are evidence that charge–charge interactions are the chief perturbant of the pK values of ionizable groups on the protein surface, which is where the majority of the ionizable groups are positioned in proteins.This work was supported by grants GM-37039 and GM-52483 from the National Institutes of Health (USA), grants BE-1060 and BE-1281 from the Robert A. Welch Foundation, and a grant PB-93-06777 to M.R. from the Dirección General de Investigación Cientı́fica y Técnica (Spain

    The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata

    Get PDF
    © The Author(s). 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Naupliar and Metanaupliar development of Thysanoessa raschii (Malacostraca, Euphausiacea) from Godthåbsfjord, Greenland, with a reinstatement of the ancestral status of the free-living Nauplius in Malacostracan evolution

    Get PDF
    The presence of a characteristic crustacean larval type, the nauplius, in many crustacean taxa has often been considered one of the few uniting characters of the Crustacea. Within Malacostraca, the largest crustacean group, nauplii are only present in two taxa, Euphauciacea (krill) and Decapoda Dendrobranchiata. The presence of nauplii in these two taxa has traditionally been considered a retained primitive characteristic, but free-living nauplii have also been suggested to have reappeared a couple of times from direct developing ancestors during malacostracan evolution. Based on a re-study of Thysanoessa raschii (Euphausiacea) using preserved material collected in Greenland, we readdress this important controversy in crustacean evolution, and, in the process, redescribe the naupliar and metanaupliar development of T. raschii. In contrast to most previous studies of euphausiid development, we recognize three (not two) naupliar (= ortho-naupliar) stages (N1-N3) followed by a metanauplius (MN). While there are many morphological changes between nauplius 1 and 2 (e.g., appearance of long caudal setae), the changes between nauplius 2 and 3 are few but distinct. They involve the size of some caudal spines (largest in N3) and the setation of the antennal endopod (an extra seta in N3). A wider comparison between free-living nauplii of both Malacostraca and non-Malacostraca revealed similarities between nauplii in many taxa both at the general level (e.g., the gradual development and number of appendages) and at the more detailed level (e.g., unclear segmentation of naupliar appendages, caudal setation, presence of frontal filaments). We recognize these similarities as homologies and therefore suggest that free-living nauplii were part of the ancestral malacostracan type of development. The derived morphology (e.g., lack of feeding structures, no fully formed gut, high content of yolk) of both euphausiid and dendrobranchiate nauplii is evidently related to their non-feeding (lecithotrophic) status

    Topics in Noncommutative Geometry Inspired Physics

    Full text link
    In this review article we discuss some of the applications of noncommutative geometry in physics that are of recent interest, such as noncommutative many-body systems, noncommutative extension of Special Theory of Relativity kinematics, twisted gauge theories and noncommutative gravity.Comment: New references added, Published online in Foundations of Physic

    Annelid phylogeny and the status of Sipuncula and Echiura

    Get PDF
    BACKGROUND: Annelida comprises an ancient and ecologically important animal phylum with over 16,500 described species and members are the dominant macrofauna of the deep sea. Traditionally, two major groups are distinguished: Clitellata (including earthworms, leeches) and "Polychaeta" (mostly marine worms). Recent analyses of molecular data suggest that Annelida may include other taxa once considered separate phyla (i.e., Echiura, and Sipuncula) and that Clitellata are derived annelids, thus rendering "Polychaeta" paraphyletic; however, this contradicts classification schemes of annelids developed from recent analyses of morphological characters. Given that deep-level evolutionary relationships of Annelida are poorly understood, we have analyzed comprehensive datasets based on nuclear and mitochondrial genes, and have applied rigorous testing of alternative hypotheses so that we can move towards the robust reconstruction of annelid history needed to interpret animal body plan evolution. RESULTS: Sipuncula, Echiura, Siboglinidae, and Clitellata are all nested within polychaete annelids according to phylogenetic analyses of three nuclear genes (18S rRNA, 28S rRNA, EF1α; 4552 nucleotide positions analyzed) for 81 taxa, and 11 nuclear and mitochondrial genes for 10 taxa (additional: 12S rRNA, 16S rRNA, ATP8, COX1-3, CYTB, NAD6; 11,454 nucleotide positions analyzed). For the first time, these findings are substantiated using approximately unbiased tests and non-scaled bootstrap probability tests that compare alternative hypotheses. For echiurans, the polychaete group Capitellidae is corroborated as the sister taxon; while the exact placement of Sipuncula within Annelida is still uncertain, our analyses suggest an affiliation with terebellimorphs. Siboglinids are in a clade with other sabellimorphs, and clitellates fall within a polychaete clade with aeolosomatids as their possible sister group. None of our analyses support the major polychaete clades reflected in the current classification scheme of annelids, and hypothesis testing significantly rejects monophyly of Scolecida, Palpata, Canalipalpata, and Aciculata. CONCLUSION: Using multiple genes and explicit hypothesis testing, we show that Echiura, Siboglinidae, and Clitellata are derived annelids with polychaete sister taxa, and that Sipuncula should be included within annelids. The traditional composition of Annelida greatly underestimates the morphological diversity of this group, and inclusion of Sipuncula and Echiura implies that patterns of segmentation within annelids have been evolutionarily labile. Relationships within Annelida based on our analyses of multiple genes challenge the current classification scheme, and some alternative hypotheses are provided
    corecore