37 research outputs found
Non-target screening reveals time trends of polar micropollutants in a riverbank filtration system
The historic emissions of polar micropollutants in a natural drinking water source were investigated by nontarget screening with high-resolution mass spectrometry and open cheminformatics tools. The study area consisted of a riverbank filtration transect fed by the river Lek, a branch of the lower Rhine, and exhibiting up to 60-year travel time. More than 18,000 profiles were detected. Hierarchical clustering revealed that 43% of the 15 most populated clusters were characterized by intensity trends with maxima in the 1990s, reflecting intensified human activities, wastewater treatment plant upgrades and regulation in the Rhine riparian countries. Tentative structure annotation was performed using automated in silico fragmentation. Candidate structures retrieved from ChemSpider were scored based on the fit of the in silico fragments to the experimental tandem mass spectra, similarity to openly accessible accurate mass spectra, associated metadata, and presence in a suspect list. Sixty-seven unique structures (72 over both ionization modes) were tentatively identified, 25 of which were confirmed and included contaminants so far unknown to occur in bank filtrate or in natural waters at all, such as tetramethylsulfamide. This study demonstrates that many classes of hydrophilic organics enter riverbank filtration systems, persisting and migrating for decades if biogeochemical conditions are stable
Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment
Advanced treatment is increasingly being applied to improve abatement of micropollutants in wastewater effluent and reduce their load to surface waters. In this study, non-target screening of high-resolution mass spectrometry (HRMS) data, collected at three Swiss wastewater treatment plants (WWTPs), was used to evaluate different advanced wastewater treatment setups, including (1) granular activated carbon (GAC) filtration alone, (2) pre-ozonation followed by GAC filtration, and (3) pre-ozonation followed by powdered activated carbon (PAC) dosed onto a sand filter. Samples were collected at each treatment step of the WWTP and analyzed with reverse-phase liquid chromatography coupled to HRMS. Each WWTP received a portion of industrial wastewater and a prioritization method was applied to select non-target features potentially resulting from industrial activities. Approximately 37,000 non-target features were found in the influents of the WWTPs. A number of non-target features (1207) were prioritized as likely of industrial origin and 54 were identified through database spectral matching. The fates of all detected non-target features were assessed through a novel automated trend assignment method. A trend was assigned to each non-target feature based on the normalized intensity profile for each sampling date. Results showed that 73±4% of influent non-target features and the majority of industrial features (89%) were well-removed (i.e., >80% intensity reduction) during biological treatment in all three WWTPs. Advanced treatment removed, on average, an additional 11% of influent non-target features, with no significant differences observed among the different advanced treatment settings. In contrast, when considering a subset of 66 known micropollutants, advanced treatment was necessary to adequately abate these compounds and higher abatement was observed in fresh GAC (7,000–8,000 bed volumes (BVs)) compared to older GAC (18,000–48,000 BVs) (80% vs 56% of micropollutants were well-removed, respectively). Approximately half of the features detected in the WWTP effluents were features newly formed during the various treatment steps. In ozonation, between 1108-3579 features were classified as potential non-target ozonation transformation products (OTPs). No difference could be observed for their removal in GAC filters at the BVs investigated (70% of OTPs were well-removed on average). Similar amounts (67%) was observed with PAC (7.7–13.6 mg/L) dosed onto a sand filter, demonstrating that a post-treatment with activated carbon is efficient for the removal of OTPs.ISSN:0043-1354ISSN:1879-244
Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale
Ozonation is increasingly applied in water and wastewater treatment for the abatement of micropollutants (MPs). However, the transformation products formed during ozonation (OTPs) and their fate in biological or sorptive post-treatments is largely unknown. In this project, a high-throughput approach, combining laboratory ozonation experiments and detection by liquid chromatography high-resolution mass spectrometry (LC-HR-MS/MS), was developed and applied to identify OTPs formed during ozonation of wastewater effluent for a large number of relevant MPs (total 87). For the laboratory ozonation experiments, a simplified experimental solution, consisting of surrogate organic matter (methanol and acetate), was created, which produced ozonation conditions similar to realistic conditions in terms of ozone and hydroxyl radical exposures. The 87 selected parent MPs were divided into 19 mixtures, which enabled the identification of OTPs with an optimized number of experiments. The following two approaches were considered to identify OTPs. (1) A screening of LC-HR-MS signal formation in these experiments was performed and revealed a list of 1749 potential OTP candidate signals associated to 70 parent MPs. This list can be used in future suspect screening studies. (2) A screening was performed for signals that were formed in both batch experiments and in samples of wastewater treatment plants (WWTPs). This second approach was ultimately more time-efficient and was applied to four different WWTPs with ozonation (specific ozone doses in the range 0.23-0.55 gO3/gDOC), leading to the identification of 84 relevant OTPs of 40 parent MPs in wastewater effluent. Chemical structures could be proposed for 83 OTPs through the interpretation of MS/MS spectra and expert knowledge in ozone chemistry. Forty-eight OTPs (58%) have not been reported previously. The fate of the verified OTPs was studied in different post-treatment steps. During sand filtration, 87-89% of the OTPs were stable. In granular activated carbon (GAC) filters, OTPs were abated with decreasing efficiency with increasing run times of the filters. For example, in a GAC filter with 16,000 bed volumes, 53% of the OTPs were abated, while in a GAC filter with 35,000 bed volumes, 40% of the OTPs were abated. The highest abatement (87% of OTPs) was observed when 13 mg/L powdered activated carbon (PAC) was dosed onto a sand filter.ISSN:0043-1354ISSN:1879-244
Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products
High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.]. © 2017, American Society for Mass Spectrometry
Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments
Ozonation and subsequent post-treatments are increasingly implemented in wastewater treatment plants (WWTPs) for enhanced micropollutant abatement. While this technology is effective, micro pollutant oxidation leads to the formation of ozonation transformation products (OTPs). Target and suspect screening provide information about known parent compounds and known OTPs, but for a more comprehensive picture, non-target screening is needed. Here, sampling was conducted at a full-scale WWTP to investigate OTP formation at four ozone doses (2, 3, 4, and 5 mg/L, ranging from 0.3 to 1.0 gO(3)/gDOC) and subsequent changes during five post-treatment steps (i.e., sand filter, fixed bed bioreactor, moving bed bioreactor, and two granular activated carbon (GAC) filters, relatively fresh and pre loaded). Samples were measured with online solid-phase extraction coupled to liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) using electrospray ionization (ESI) in positive and negative modes. Existing non-target screening workflows were adapted to (1) examine the formation of potential OTPs at four ozone doses and (2) compare the removal of OTPs among five post treatments. In (1), data processing included principal component analysis (PCA) and chemical knowledge on possible oxidation reactions to prioritize non-target features likely to be OTPs. Between 394 and 1328 unique potential OTPs were detected in positive ESI for the four ozone doses tested; between 12 and 324 unique potential OTPs were detected in negative ESI. At a specific ozone dose of 0.5 gO(3)/gDOC, 27 parent compounds were identified and were related to 69 non-target features selected as potential OTPs. Two OTPs were confirmed with reference standards (venlafaxine N-oxide and chlorothiazide); 34 other potential OTPs were in agreement with literature data and/or reaction mechanisms. In (2), hierarchical cluster analysis (HCA) was applied on profiles detected in positive ESI mode across the WWTP and revealed 11 relevant trends. OW removal was compared among the five post-treatments and 54 -83% of the non-target features that appeared after ozonation were removed, with the two GAC filters performing the best. Overall, these data analysis strategies for non-target screening provide a useful tool to understand the behavior of unknown features during ozonation and post-treatment and to prioritize certain non-targets for further identification. (C) 2018 Elsevier Ltd. All rights reserved
Non-target metabolomic profiling of the marine microalgae Dunaliella tertiolecta after exposure to diuron using complementary high-resolution analytical techniques
Traditionally, bioassays are used to assess the toxicity of chemicals. Bioassays often focus on one specific mode of action or end point and their responses offer a limited understanding of the health status and underlying pathways of the species under consideration. Metabolomics can be used to detect hundreds of metabolites in which each metabolite, or set of metabolites, represents short term and long term changes, indicating the status of the organism. The effects of the herbicide diuron, one of the compounds of concern for European water bodies, on the marine microalgae Dunaliella tertiolecta were investigated through non-target metabolomic profiling and bioassay testing. The pulse amplitude modulation (PAM) fluorometry bioassay was employed to measure the effective photosystem II efficiency (ϕPSII), while non-target metabolomic profiling using complementary analytical techniques characterized the metabolomic response in the algae during diuron exposure. The use of complementary analytical techniques was necessary to identify a broad range of metabolites. Twenty-eight compounds were identified as metabolites affected by diuron exposure, including several amino acids, adenosine, lactic acid, and citric acid. Collectively, these metabolites indicated that diuron negatively affects energy processes in the algae both at the citric acid cycle pathway as well as on the amino acid metabolism at realistic environmental concentrations. In addition, dose-response relationships were found between a number of affected metabolites and the inhibition of the ΦPSII of D. tertiolecta. Non-target metabolomic profiling using complementary analytical techniques proved to have additional and complementary benefits to traditional toxicology tests