6,851 research outputs found

    Translating evidence-based guidelines to improve feedback practices:the interACT case study

    Get PDF
    Background: There has been a substantial body of research examining feedback practices, yet the assessment and feedback landscape in higher education is described as ‘stubbornly resistant to change’. The aim of this paper is to present a case study demonstrating how an entire programme’s assessment and feedback practices were re-engineered and evaluated in line with evidence from the literature in the interACT (Interaction and Collaboration via Technology) project.Methods: Informed by action research the project conducted two cycles of planning, action, evaluation and reflection. Four key pedagogical principles informed the re-design of the assessment and feedback practices. Evaluation activities included document analysis, interviews with staff (n = 10) and students (n = 7), and student questionnaires (n = 54). Descriptive statistics were used to analyse the questionnaire data. Framework thematic analysis was used to develop themes across the interview data.Results: InterACT was reported by students and staff to promote self-evaluation, engagement with feedback and feedback dialogue. Streamlining the process after the first cycle of action research was crucial for improving engagement of students and staff. The interACT process of promoting self-evaluation, reflection on feedback, feedback dialogue and longitudinal perspectives of feedback has clear benefits and should be transferable to other contexts.Conclusions: InterACT has involved comprehensive re-engineering of the assessment and feedback processes using educational principles to guide the design taking into account stakeholder perspectives. These principles and the strategies to enact them should be transferable to other contexts

    Interaction Correction of Conductivity Near a Ferromagnetic Quantum Critical Point

    Full text link
    We calculate the temperature dependence of conductivity due to interaction correction for a disordered itinerant electron system close to a ferromagnetic quantum critical point which occurs due to a spin density wave instability. In the quantum critical regime, the crossover between diffusive and ballistic transport occurs at a temperature T=1/[τγ(EFτ)2]T^{\ast}=1/[\tau \gamma (E_{F}\tau)^{2}], where γ\gamma is the parameter associated with the Landau damping of the spin fluctuations, τ\tau is the impurity scattering time, and EFE_{F} is the Fermi energy. For a generic choice of parameters, TT^{\ast} is few orders of magnitude smaller than the usual crossover scale 1/τ1/\tau. In the ballistic quantum critical regime, the conductivity has a T(d1)/3T^{(d-1)/3} temperature dependence, where dd is the dimensionality of the system. In the diffusive quantum critical regime we get T1/4T^{1/4} dependence in three dimensions, and ln2T\ln^2 T dependence in two dimensions. Away from the quantum critical regime we recover the standard results for a good metal.Comment: 15 pages, 8 figure

    The Use of Cognitive Ability Measures As Explanatory Variables In Regression Analysis

    Get PDF
    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual’s wage, or a decision such as an individual’s education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score, constructed via standard psychometric practice from individuals’ responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a “mixed effects structural equations” (MESE) model, may be more appropriate in many circumstances

    Methyl 6-amino-6-oxohexanoate

    Get PDF
    The title compound, C7H13NO3, adopts an approximately planar conformation. The torsion angles in the aliphatic chain between the carbonyl group C atoms range from 172.97 (14) to 179.38 (14)° and the r.m.s. deviation of all non-H atoms is 0.059 Å. The crystal packing is dominated by two strong N—H⋯O hydrogen bonds involving the amide groups and forming R 2 2(8) rings and C(4) chains. Overall, a two-dimensional network parallel to (100) is formed. A weak inter­molecular C—H⋯O inter­action is also present

    3-Meth­oxy-3-oxopropanaminium chloride

    Get PDF
    In the title compound, C4H10NO2 +·Cl−, the central ethyl­ene bond of the cation adopts a gauche conformation. The three H atoms of the –NH3 + group are engaged in strong and highly directional inter­molecular N—H⋯Cl hydrogen bonds, which result in a tape-like arrangement along [010] of the respective ion pairs. In addition, weak inter­molecular C—H⋯Cl and C—H⋯O inter­actions are present

    STM characterization of the Si-P heterodimer

    Full text link
    We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to study the behavior of adsorbed phosphine (PH3_{3}) on Si(001), as a function of annealing temperature, paying particular attention to the formation of the Si-P heterodimer. Dosing the Si(001) surface with {\sim}0.002 Langmuirs of PH3_{3} results in the adsorption of PHx_{x} (x=2,3) onto the surface and some etching of Si to form individual Si ad-dimers. Annealing to 350^{\circ}C results in the incorporation of P into the surface layer to form Si-P heterodimers and the formation of short 1-dimensional Si dimer chains and monohydrides. In filled state STM images, isolated Si-P heterodimers appear as zig-zag features on the surface due to the static dimer buckling induced by the heterodimer. In the presence of a moderate coverage of monohydrides this static buckling is lifted, rending the Si-P heterodimers invisible in filled state images. However, we find that we can image the heterodimer at all H coverages using empty state imaging. The ability to identify single P atoms incorporated into Si(001) will be invaluable in the development of nanoscale electronic devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi

    Energetic Instability Unjams Sand and Suspension

    Full text link
    Jamming is a phenomenon occurring in systems as diverse as traffic, colloidal suspensions and granular materials. A theory on the reversible elastic deformation of jammed states is presented. First, an explicit granular stress-strain relation is derived that captures many relevant features of sand, including especially the Coulomb yield surface and a third-order jamming transition. Then this approach is generalized, and employed to consider jammed magneto- and electro-rheological fluids, again producing results that compare well to experiments and simulations.Comment: 9 pages 2 fi

    Analysis of the Dynamics of Liquid Aluminium: Recurrent Relation Approach

    Full text link
    By use of the recurrent relation approach (RRA) we study the microscopic dynamics of liquid aluminium at T=973 K and develop a theoretical model which satisfies all the corresponding sum rules. The investigation covers the inelastic features as well as the crossover of our theory into the hydrodynamical and the free-particle regimes. A comparison between our theoretical results with those following from a generalized hydrodynamical approach is also presented. In addition to this we report the results of our molecular dynamics simulations for liquid aluminium, which are also discussed and compared to experimental data. The received results reveal that (i) the microscopical dynamics of density fluctuations is defined mainly by the first four even frequency moments of the dynamic structure factor, and (ii) the inherent relation of the high-frequency collective excitations observed in experimental spectra of dynamic structure factor S(k,ω)S(k,\omega) with the two-, three- and four-particle correlations.Comment: 11 pages, 4 figure
    corecore