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Abstract

Cognitive ability measures are often taken as explanatory variables in regression
analysis, e.g., as a factor affecting a market outcome such as an individual’s wage, or a
decision such as an individual’s education acquisition. Cognitive ability is a latent
construct; its true value is unobserved. Nonetheless, researchers often assume that a
test score, constructed via standard psychometric practice from individuals’ responses
to test items, can be safely used in regression analysis. We examine problems that can
arise, and suggest that an alternative approach, a “mixed effects structural equations”
(MESE) model, may be more appropriate in many circumstances.

JEL Code: J01

Keywords: Labor economics, Structural equations modeling, Item response theory

1 Introduction
Cognitive test scores—whether from standardized achievement tests or from cogni-
tive items on surveys—are used widely as explanatory or control variables in the social
sciences.1 Political scientists use cognitive test scores as a descriptive demographic vari-
able to characterize voting behavior (Venezky and Kaplan 1998). Health researchers are
interested in how cognitive ability (and other latent constructs, e.g., depression) affects
a patient’s understanding of and likelihood of following prescribed therapies (Schillinger
et al. 2002). Social scientists control for “ability” in analyses that seek to evaluate the role
of parental financial resources in determining post-secondary education (Dynarski 2002).
The analyses in such studies often proceed using linear regression models, such as

yi = β0 + β1θi + β2Zi + β3Wi + εi, (1)

where yi is an outcome for individual i, θi is a measure of the latent construct from a
test, Zi indicates the contrast of central interest, and Wi represents other covariates. For
example, equation (1) has been used extensively in labor economics—in analyses intended
to tease apart the influences of cognitive ability (as measured by θi) and possible market
effects of race or gender status (Zi) on log wage (yi). Prominent examples include Neal
and Johnson (1996), Bollinger (2003), and Lang and Manove (2011).
The variable Zi is typically a 0/1 indicator for two groups. In the case of designed exper-

iments (or natural quasi-experiments), the groups are treatment vs. control; in the case
of observational studies that examine disparate outcomes for some specific group (e.g.,

© 2012 Junker et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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a racial or ethnic group), we might refer to groups as focal vs. reference (Holland and
Thayer 1988; Penfield and Camilli 2007). In a study of wage disparities between reference
and focal groups, for example, β1 is the “return to cognitive ability,” and β2 is intended to
measure disparate treatment in the labor market for members of the focal group.
A key obstacle to obtaining (asymptotically) unbiased estimates of β1 and β2 in (1) is

the possibility of measurement error in θi. Indeed, standard theory for scoring cognitive
tests (Lord and Novick 1968) takes as axiomatic that θi is a latent variable, and any proxy
for it entails some measurement error. It is well known that regression coefficients are
biased if measurement error is ignored. Standard approaches for dealing with this sort
of measurement error include the use of nonparametric bounds, instrumental variable
estimation, and direct modeling.
Nonparametric bounds are invaluable, especially when little is known about the data-

generating process. For example, Bollinger (2003) shows that failing to correct for
measurement error in (1) can lead the researcher to estimate a black-white wage differ-
ence that is biased downward, and calculates Klepper and Leamer (1984) bounds for the
regression coefficients. Such nonparametric bounds can be wide. In Bollinger’s empirical
example, which studies the impact of race on log wage (the focal group is black and the
reference group is white), the estimated bounds for men are (−0.07, 1.26) and for women
are (0.04, 1.39).2

Instrumental variable methods provide a standard answer to measurement error in a
regressor when instruments of sufficient quality and relevance can be found. However,
the measurement error in cognitive test scores is itself exogenous; it is dependent only
upon the measurement procedure in a well-designed test, and not on omitted variables
that might be associated with any outcome of interest. Thus instrumental variables will
typically not be of use in correcting for it. In cases where instruments can be found, one
would expect them to be rather weak (leading to problems discussed in Staiger and Stock
(1997)).
When θi is to be obtained from a well-constructed cognitive assessment using stan-

dard modern technology (such as the assessments listed in footnote a), a direct model for
measurement error has already been used as part of the quality-control process of con-
structing the test, and is available to produce scores θi with known measurement error
properties. The class of models used to construct many standard cognitive assessments is
known as item response theory (IRT) models (van der Linden and Hambleton 1997).
The existence of IRT as a direct model obviates the need for refining nonparametric

bounds or searching for suitable instruments to adjust for measurement error in cognitive
test scores. Indeed, because the cognitive assessment was constructed to fit this model,
answers obtained using this model have more authority than answers using other meth-
ods, regardless of raw comparisons of effect size estimates, statistical significance, etc.
The class of IRT models is flexible enough that it should be considered as a direct model
for measurement error even in cases in which number-correct score might be used, even
if the test was not constructed using IRT techniques.
In this paper we explore the use of IRT as a direct model for measurement error in cog-

nitive ability in applications common in labor economics.We consider both linear models
such as (1) and generalized linear models such as logistic regression. First, we review the
basic features of the IRT family of models, and their role in determining measurement
error. Second, we combine the IRTmodel with linear and generalized linear models along
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the lines of equation (1). Third, we illustrate the methodology in two applications, one
linear and one non-linear.
We note finally that our work is focused on a particular kind of error in a particu-

lar kind of variable in errors-in-variables regressions such as equation (1): measurement
error inherent in psychometric measures of cognitive status. We have nothing to add
here about problems that emerge due to other variables being measured with error, e.g.,
self-reported years of schooling, parents’ schooling, parents’ income, etc.

2 Models used to construct cognitive test scores
Well-constructed cognitive tests use statistical methodology as a quality control device
in the construction of the test. The process inevitably involves the interplay of defining
and refining the construct to be measured, designing test items to measure it, defining a
space of responses and scoring rules for each possible response in the space, and finally
developing a statistical measurement model to assemble responses to test items into an
observed “score” that measures the construct with some quantifiable level of error (e.g.,
Wilson 2005). Candidate test items that do not produce data consistent with the measure-
ment model are rejected in favor of those that do; in this sense, the data from a well-built
cognitive test fits the statistical measurement model by construction.
Some cognitive assessments—especially ones intended for smaller-scale use—are built

using a measurement model called classical true-score theory (CTT). Under this model
the observed test score Xi is expressed in terms of a true score (or latent cognitive status)
θi and measurement error νi,

Xi = θi + νi . (2)

This model, together with standard distributional assumptions, has been useful for
thinking about measurement error νi when Xi is the total score (number-correct score).
For example, standard psychometric formulae such as the Spearman-Brown formula for
expressing the reliability of a total score as a function of test length, or Cronbach’s alpha
lower-bound for reliability—are based on elaborations of CTT (see Lord and Novick
1968).
More commonly, especially for large-scale assessments or for cognitive portions of

large-scale surveys, the measurement model used to build the test is an item response
theory (IRT) model. IRT models can be thought of as a generalization of mixed effects
logistic regression models (Stiratelli et al. 1984). Instead of modeling the total score Xi for
individual i, IRT models focus on the individual responses Xij of individual i to test item j.
One of the most common IRTmodels in cognitive testing is the three-parameter logistic

(3PL) model. Letting Xij = 0 for an incorrect answer and Xij = 1 for a correct answer, the
3PL model posits the probability of a correct response as

Pj(θi) ≡ P[Xij = 1]= cj + 1 − cj
1 + exp[ aj(θi − bj)]

, (3)

where θi is the latent “amount” of cognitive skill for individual i, usually treated as a ran-
dom effect, and aj, bj, and cj are parameters reflecting characteristics of the item, usually
treated as fixed effects. The parameter bj is the “item difficulty”—the larger is bj, the lower
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is the probability that Xij = 1. The parameter cj is a “guessing parameter” measuring the
likelihood that a very low-ability examinee would respond correctly simply by guessing.
The parameter aj measures how influential changes in θi are on changes in P[Xij = 1],
and conversely, drives the level of measurement error. Sijtsma and Junker (2006) give a
brief overview of CTT, IRT and related models; Rao and Sinharay (2007) provide more
in-depth reviews.

2.1 Measurement error in IRT models

Measurement error in IRT models can be thought of as the standard error of estimation
for θi from the pattern of scored item responses from examinee i (van der Linden and
Hambleton 1997). For example, conditional on knowing the item parameters aj, bj and
cj, the likelihood for a particular pattern of wrong and right answers on a test of J items
following the 3PL model is

P[Xi1 = xi1, . . . ,XiJ = xiJ |θj]=
J∏

j=1
Pj(θi)xij(1 − Pj(θi))1−xij ,

from which it is straightforward to calculate that the Fisher information for estimating θi
is

I(θi) =
J∑

j=1

[P′
j(θi)]2

Pj(θi)(1 − Pj(θi))
; (4)

the measurement error is then SE(θi) = 1/
√
I(θi).

This immediately suggests that the IRT model imposes some constraints on the mag-
nitude of the measurement error for θi. Indeed, taking the simplest case, if all aj = 1 and
bj = cj = 0, then

SE(θi) =
(

1√
J

) (
1 + eθi
eθi/2

)
. (5)

While in principle θi may be any real number, as a practical matter any θi less than
roughly −4 is indistinguishable in data from any other; and similarly for any θi greater
than roughly +4. The first panel of Figure 1 depicts the measurement error curve for
equation (5) over the range −4 ≤ θ ≤ 4, for a test of length J = 20 items; the other three
panels illustrate the measurement error for more typical 3PL tests. (See Schofield (2008)
for additional discussion.)
Such a precise specification of measurement error might normally be rejected as

reflecting unacceptably strong modeling assumptions. In this case, however, the strong
assumptions are not being made by the analyst but rather are guaranteed by the construc-
tor of the test. Even in cases where the test was not constructed explicitly with IRT in
mind, IRTmodels can fit well and provide strong information aboutmeasurement error. It
would be foolish not to use these assumptions to the fullest extent, since they are available
to us by construction.

2.2 Estimation in IRT models

As with most statistical models, a variety of methods are used to estimate IRTmodels (see
Sijtsma and Junker 2006). Here we treat only the most common maximum likelihood and
Bayesian methods.



Junker et al. IZA Journal of Labor Economics 2012, 1:4 Page 5 of 19
http://www.izajole.com/content/1/1/4

-4 -2 0 2 4

0.
0

1.
0

2.
0

3.
0

(a) 

S
E

(
)

-4 -2 0 2 4

0.
0

1.
0

2.
0

3.
0

(b)

S
E

(
)

-4 -2 0 2 4

0.
0

1.
0

2.
0

3.
0

(c)

S
E

(
)

-4 -2 0 2 4

0.
0

1.
0

2.
0

3.
0

(d)

S
E

(
)

Figure 1 Measurement error under IRT models: (a) for the simple model whose measurement error is
expressed in equation (5); (b), (c), (d) for more typical 3PL tests of length 20, 40 and 80 items.
(a)Measurement error for simple model, J = 20, (b)Measurement error for typical 3PL, J = 20,
(c)Measurement error for typical 3PL, J = 40, (d)Measurement error for typical 3PL, J = 80.

Since θi is a random effect it is typical to assume θi is iid Normal, with mean 0 and
variance τ 2 to be estimated. This leads to the marginal likelihood for N examinees and J
items,

L(a1, . . . , aJ , b1, . . . , bJ , c1, . . . , cJ , τ 2) =
N∏
i=1

∫ J∏
j=1

Pj(θi)xij(1 − Pj(θi))1−xijn(θj|μ, τ 2) ,

(6)

where μ = 0 is assumed, and all other parameters are to be estimated. In some situations
the μ = 0 assumption and even the simple normality assumption may be relaxed, as in
the next Section, for example.
The a, b, c and τ 2 parameters may be estimated from equation 6 using direct maximum

likelihood, an E-M algorithm, or Bayesian methods (after endowing all of the parameters
with suitable prior distributions). In practice there is little difference between ML and
Bayesian estimates for these models (Fox 2010). Because of this, and because of its conve-
nience for constructing and estimating hybrid models, we focus on Bayesian estimation
for the remainder of the paper.
Estimates of θi in IRT models are typically fully Bayesian (that is, jointly estimated with

the a, b, c and τ 2 parameters) or some form of empirical Bayes estimates (that is, condi-
tional on point estimates of the a, b, c and τ 2 parameters). Estimates of θi should be used
in place of total score Xi whenever possible, because they make more efficient use of cog-
nitive testing data, and because their measurement error properties are well understood,
as sketched below.
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3 Accounting for cognitive score measurement error
In order to use θi in an analysis like that of equation (1), we must either (a) combine the
IRTmodel with the regressionmodel to estimate coefficients in (1) directly, or (b) provide
estimates or imputations for each θi that incorporate suitable measurement error into
equation (1). We consider each method in turn.

3.1 Joint modeling to account for cognitive score measurement error

Schofield (2008) sets out a mixed effects structural equations (MESE) model, which we
employ here for the problem of adjusting our key regression (1) when we replace θ with a
fallible test score.3 The latent cognitive variable is a random effect and the IRT and linear
model parameters are all fixed effects, so this is a “mixed effects” model.
Mislevy (1991) shows, in the context of estimating subpopulation parameters for the

National Assessment of Educational Progress (NAEP) and similar large-scale surveys,
that incorporating latent variables from a measurement model into a regression analy-
sis requires more elaborate random-effects distribution for θi than shown in equation 6
above. Instead of assuming μ = 0 in the n(θ |μ, τ 2) density shown there, we must assume
that μ = α0 + α1Zi + α2Wi (with α0, α1 and α2 to be estimated). The need for this more
elaborate conditioning is also discussed by Schofield et al. (2012).
Thus, for equation (1) the MESE model takes the form

yi|Zi,Wi, θi ∼ N(β0 + β1θi + β2Zi + β3Wi, σ 2) (7)

xij|θi ∼ IRT(xij|θi, γj) (8)

θi|Zi,Wi ∼ n(θi|α0 + α1Zi + α2Wi, τ 2) (9)

where θi, Zi, Wi and yi have the same roles as in (1) and IRT(xij|θi, γj) is a suitable
IRT model with parameters γj for each item j (e.g., for the 3PL model, γj ≡ (aj, bj, cj)).
Equation (7) corresponds to equation (1), and is the regression of primary substantive
interest.
Equation (7) is easily modified to accommodate logistic regression, or any other gen-

eralized linear model. In the case of logistic regression, yi becomes an indicator variable
and equation (7) becomes

yi ∼ Bernoulli(pi)
log pi

1−pi = β0 + β1θi + β2Zi + β3Wi

}
. (10)

The MESE model solves some of the known identification problems often associated
with errors-in-variables models. Typically, errors-in-variables models cannot be identi-
fied unless there is additional data in one of three areas: (1) replicate measures of Xi,
the observed test score, (2) distribution information on θi, the unknown true score, or
(3) distributional or moment restrictions on the error distribution (Stefanski 2000). By
embedding the IRT model into the MESE model, we exploit the IRT model to provide
further information about the measurement error of the cognitive test score.
TheMESEmodel can be thought to have J measures ofXi where J is the number of items

on the test. For a test that is longer than one item, replicate measures (albeit crude mea-
sures) of Xi are available. The IRT model uses these multiple measures of Xi to estimate
the Fisher Information I(θi), which is then used to provide information about SE(θi).
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As for identification of the IRT model itself, the location and scale parameters of the
latent distribution are confounded with the difficulty and discrimination parameters of
the measurement model. In the 3-PL model, for example, the scales of bj and θi are iden-
tified only up to an additive constant and the scales of aj and both θi and bj are identified
only up to a multiplicative constant. This indeterminacy of the IRT scales has ramifica-
tions for the regression coefficients; the choice of the latent scale of θi affects the scale of
β̂1. This choice does not affect statistical tests for the significance of β̂1, nor does it affect
estimated coefficients for other covariates (Schofield 2008).
The indeterminacy of the IRT scales is easily dealt with, by fixing the scale of θ (e.g.,

μθ = 0 and σθ = 1.) Even when the item parameters are unknown and must also be esti-
mated, there are well-known estimation methods (e.g, Bayesian MCMC, Patz and Junker
1999) to appropriately fix the scale of θ and the item parameters to ensure that the model
is identified.4

As discussed below, in many empirical applications in economics analysts simply sub-
stitute a test score into regressions such as (7), thereby ignoring variation inherent in
the measurement of cognitive ability. Exceptions include important recent work by James
Heckman and co-authors: Hansen et al. (2004) and Cunha and Heckman (2008), for
example, extend classical test-score models (Lord and Novick 1968) and the subsequent
MIMIC approach (Joreskog and Goldberger 1975), which deals with measurement issues
for posited latent variables when there are multiple observed indicators.5 These papers
provide a template for the treatment of latent variables in applications for which multi-
ple measures are available—usually a small number of measures. As we have noted, the
MESE approach uses this same logic, but we are working with a case in which a typically
larger number of replicate measures (generally “item responses”) are available, and those
measures take a form that is appropriately handled by an embedded IRT model.

3.2 Multiple imputation to account for cognitive score measurement error

Starting with the U.S. National Assessment of Educational Progress (NAEP) in the 1980’s
(as reviewed byMislevy et al. 1992), many large scale educational surveys release multiple
plausible values (PVs)—known in the statistics literature as multiple imputations (Rubin
1987)—for each examinee’s proficiency, rather than a single proficiency estimate. PVs are
draws from a posterior distribution of θi for individual i, given that individual’s responses
to items on a test and a set of background characteristics in a “conditioning model.” Typ-
ically, agencies release five PVs for each individual, and secondary analysts are instructed
in the use of PVs for estimating statistics.
PVs solve three related problems for these agencies: (1) by law, certain government sur-

veys such as NAEP are proscribed from releasing individual test scores to the general
public, and PVs provide a potential way of protecting individual confidentiality; (2) many
more test questions are used by these surveys than one examinee can respond to, and PVs
provide for comparison on a common scale regardless of the difficulty of the questions
asked; and (e:3pl) PVs are constructed to represent the uncertainty (measurement error)
inherent in using a finite number of tasks or test questions to measure an unobservable
latent construct such as literacy or math proficiency.
IfM sets of PVs are made available by the survey agency, then a regression equation like

(1) should be fitted M times, once with each set of PV’s. Results are then combined as
recommended by Mislevy et al. (1992).6
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When a well-constructed ensemble of PVs is used in accordance with their construction
(e.g., Mislevy 1991 and 1993, and Li et al. 2009) in a secondary analysis, biases due to mea-
surement error in cognitive score are negligible. Indeed, the posterior distribution from
which plausible values are drawn is typically given by a model similar to that of equations
(8) and (9) alone, with Z andW enlarged to include (proxies for) all possible regressors or
contrasts that a secondary analyst might use.7 Except for the larger conditioning model
for θ , correct use of PVs in (1) is in essence the same as estimating coefficients in (1) using
MCMCmethodology based on the MESE model.
There are three practical problems with PV methodology. First, there are only a few

national and international surveys with the resources to produce PVs for secondary ana-
lysts. Second, PVs released by survey agencies involve θs conditioned on many more
variables than are needed in any particular secondary analysis, and can create additional
problems (Schofield et al. 2012). Third, secondary analysts may be tempted to sidestep
the correct procedure for using PVs as outlined by Mislevy (1991) and others. For exam-
ple, in their study of international comparisons of wage inequality, Blau and Kahn (2005)
treat the means and medians of individuals’ PVs in the 1994–96 International Adult
Literacy Survey (IALS; Murray et al. 1997) as if they were the accurately measured levels
of cognitive skills. von Davier et al. (2009) argue that this undermines the bias-correction
built into PVs.

4 Applications in labor economics
4.1 Analyzing racial disparity in labor market outcomes

Several applications of equation (1) are found in labor economics. In this context the data
is usually observational, from surveys such as the 1979 National Longitudinal Study of
Youth (NLSY79; Zagorsky et al. 1997) or 1992 National Adult Literacy Survey (NALS;
Kirsch et al. 2000), the outcome yi is a market outcome or individual choice (e.g., log
wage, labor force participation, or educational attainment), Zi is an indicator of reference
(Zi = 0) vs. focal (Zi = 1) group (e.g., white vs. black), θi is a cognitive test score, andWi
are any other relevant explanatory variables.
Neal and Johnson (1996) provide a landmark example. In that study the authors evaluate

the role of cognitive skills acquired by youth (prior to entry in the labor market) on subse-
quent wage outcomes in U.S. labor markets. Using data from the NLSY79—which include
individuals’ scores the Armed Forces Qualifying Test (AFQT)—the authors show that
most of the black-white wage gap can be traced back to cognitive skills differentials that
emerge at young ages.
Another example is Ritter and Taylor’s (2011) examination of racial differences in unem-

ployment, using the same data and same basic approach as Neal and Johnson (1996).
They find that black individuals have substantially higher levels of unemployment over
their work careers than their white counterparts, and show further that much of this
gap remains after accounting for racial differences in cognitive skills as measured by the
AFQT.
The same basic structure appears in Lang and Manove’s (2011) test of a model in which

young individuals’ educational attainment decisions are determined by their existing cog-
nitive ability and by one’s race (owing to race-based differences in the way the education
signal is perceived by employers). Using the NLSY79, the authors show that individu-
als with stronger cognitive skills (higher AFQT scores) are more likely to pursue higher



Junker et al. IZA Journal of Labor Economics 2012, 1:4 Page 9 of 19
http://www.izajole.com/content/1/1/4

education, and, consistent with the posited theory, they find that among individuals
with similar cognitive skills, black men and women are more likely than their white
counterparts to pursue higher education.
In each of the examples listed above, a cognitive test score is used as an explanatory

variable, rather than treated as a latent construct. The hope presumably is that bias intro-
duced is not too large. At the present time, items response data are not available for the
AFQT for NLSY79 respondents, so it is not possible to assess empirically how problem-
atic errors-in-variables bias might be in the specific applications listed above. Instead, in
our analyses below we use data from similar sources, for which we do have item response
data.

4.2 Black-white wage differences in the U.S.

To illustrate the two direct modeling approaches for dealing with the measurement error
inherent in cognitive test scores—the MESE model and the use of PVs—we begin with an
example that uses data from the NALS. These data include an individually-administered
household survey of 24,944 adults aged 16 and over. The NALS is comprised of two sets
of questions: standard demographic questions (race, gender, labor force behavior, mari-
tal status, education, etc.) and cognitive items that measure functional literacy in three
domains: prose, document, and quantitative. The NALS was designed with 165 items to
test the literacy skills of examinees, but each examinee was administered a representative
sub-sample of approximately one-third of the full set of 165 items. Items not answered are
treated as missing at random in the analyses below, as is common practice for designed
missingness due to fractional designs and the like.
Our focus in our example is on racial differences in log wages. Table 1 provides some

demographic characteristics of the NALS sample for blacks and whites. Three features
merit attention. First, on average white men earn more than black men and white women
earn more than black women. Second, on average black adults have relatively less educa-
tion. Third, literacy skills, as measured by mean of plausible values, are relatively lower

Table 1 Sample characteristics, 1992 National Adult Literacy Survey (NALS)

Black men Black women White men White women

N 1665 2807 7449 9404

Average Age 39.4 39.4 40.5 42.4

Marital Status

Proportion never Married 0.39 0.38 0.28 0.19

Education

Proportion Still in HS 0.06 0.04 0.04 0.03

Proportion < HS 0.29 0.29 0.13 0.14

Proportion HS 0.29 0.29 0.27 0.30

Proportion < College 0.25 0.29 0.30 0.33

Proportion College + 0.11 0.09 0.26 0.21

Literacy Skills

Mean Plausible Value -0.66 -0.50 0.48 0.50

St. Dev. Plausible Value 1.14 1.18 1.03 0.96

Earnings of Full-Time Workers

Average Weekly Wage 452.3 397.5 674.6 440.9

Notes: Authors’ calculations, National Adult Literacy Survey.
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for black individuals than white individuals. NALS public-use data files from the National
Center for Education Statistics (NCES) contain only basic data elements; in order to
access individual cognitive item responses necessary for the IRT and MESE models, we
also obtained restricted-use files from NCES.
We restrict our attention to just two subsets of the full NALS data set: men, mar-

ried or single, aged 25–55, who work full time (work at least 35 hours for pay or profit
during the week of their interview, either in one full-time job or in two or more part-
time jobs), who report wages, and who answered at least one literacy item; and never
married women who meet the same age, work and reporting criteria. The two groups are
fitted separately because labor market outcomes might differ for men and women. Mar-
ried women are excluded from our analyses because of the difficulty of establishing their
work experience.8

Our interest is the comparison of estimated coefficients when we ignore measurement
error in the literacy measure (i.e., the “unadjusted” case) and when we make appropriate
“adjustments” using theMESEmodel, i.e., equations (7)–(9). The NALS data also contains
M = 5 plausible values per content area and individual, constructed using the methods
outlined above. This allows us to also compare estimates when we make appropriate use
of PVs.
In all of the analyses reported here, yi is the log of self-reported weekly wage, Zi = 1 if

the individual identifies as black (and Zi = 0 if white), andWi is a vector containing three
covariates: “potential experience” (current age minus years of schooling minus 6) entered
as a quartic, urban/rural status (a binary indicator), and census region (an unordered
factor). For unadjusted analyses, θi is replaced with an IRT-based ML estimate of total
score on the entire 165 item pool.9 For adjusted analyses using the MESE model, θi is
merely the latent variable that links equations (8) and (9). For adjusted analyses using PVs,
the model (1) is fitted five times, once for each set of PVs, and the results are combined
using the using jackknife method recommended by Mislevy et al. (1992).
Both the unadjusted and adjusted models were estimated using Bayesian methods, in

particular using an MCMC algorithm specified in WinBUGS. This was done to enhance
comparability of estimates acrossmodels.Model fit for all models was compared using the
DIC fit statistic from WinBUGS (Spiegelhalter et al. 2002). All parameters are estimated,
except for item parameters in the IRT model.10

For the unadjusted model involving only equation (7), we used flat N(0, 10000) priors
on each β coefficient, and a Unif(0, 1000) prior on σ 2. Bayesian estimates with these
priors are extremely similar to OLS estimates.11 For the full MESE model, we used the
same priors on the β ’s and σ 2 in (7), and we fixed the item parameters to their NCES-
estimated values in (8). In (9) we use an inverse-Gamma(1,1) prior on τ , and we assume
flat N(0, 100) priors on each α coefficient. In order to further set the scale of θ , we
mean-centered each of the covariates in (9). These priors on θi allow for the possibil-
ity that blacks and whites, and people of different experience levels, census regions, and
urban/rural status, have different distributions of proficiency.
We begin with a comparison of “unadjusted results” and MESE estimates. See Table 2.

Columns (a) give baseline regressions in which we have no cognitive skill (i.e., literacy)
measure. Columns (b) give results in which we add point estimates of literacy as a regres-
sor. Finally, columns (c) give comparable estimates using the MESE model, equations
(7)–(9), appropriately adjusting for the latent structure of the cognitive measure.
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Table 2 Log wage regressions

Men Never married women

Model Unadj. Unadj. MESE Unadj. Unadj. MESE

Skill control No skill MLE of Literacy No skill MLE of Literacy
control Lit score skill control Lit score skill

(a) (b) (c) (a) (b) (c)

Lit. Skills: (β̂1)

Unadjusted 0.151 0.153

(0.008) (0.020)

Adjusted (MESE) 0.191 0.185

(0.010) (0.025)

Effect of a one SD 0.190 0.218 0.186 0.210

Change in Skills

Race (β̂2) −0.366 −0.144 −0.094 −0.233 −0.049 −0.012

(0.033) (0.033) (0.033) (0.055) (0.057) (0.060)

DIC 5904 5577 103839 1191 1114 20905

N 3267 3267 3267 640 640 640

Notes: Data are from the 1992 NALS, restricted to individuals aged 25–55 who work fulltime, reported wages, and who answered
at least one literacy item. Unadjusted regressions employ the wage equation (1) with either no cognitive measure (column a) or a
measure unadjusted for measurement error (column b). Column (c) provides estimates from the MESE model, equations (7)–(9),
adjusting for measurement error in the cognitive measure. All regressions also control for potential experience entered as a
quartic, census region (entered as dummy variables), and urban setting (entered as a dummy variable).

Standard arguments (Schofield 2008) suggest that if we ignore the errors-in-variables
problem, we are likely to bias estimates of β1 toward zero, and more importantly for our
purposes, bias estimates of β2 downward. With this in mind, consider first our estimates
of β1. Coefficients reported in columns (b) and (c) are not directly comparable, since
they depend on the scale of the cognitive measure. A better comparison can be made by
examining the estimated effect of an increase in skills equal to one standard deviation
(as measured using the white population). For men this is seen to be 0.190 under the
unadjusted model (column (b)) and 0.218 under the adjusted model (column (c)). Results
are similar for women. In short, we observe the attenuation bias in the expected direction
in the (b) columns.
More importantly, we see that for both men and women, failure to account appropri-

ately for the latent structure of cognitive ability leads to bias in estimates of the effect
of race in our wage regression. As expected, estimates of β2 are biased downward in the
unadjusted cases.
As discussed above, a defensible alternative approach to estimating equation (1) entails

the appropriate use of plausible values (PVs), the multiple imputations of cognitive scores
provided by some survey agencies in large scale surveys such as NALS. In Table 3 we
compare wage-equation estimates from our MESE model, with two possible approaches
for using plausible values (PVs). Columns (a) repeat our results for the MESE model from
Table 2; columns (b) report results using the five sets of PVs provided by NCES with the
NALS data set, combined using the procedure outlined in the Section entitled, Multiple
imputation to account for cognitive score measurement error; and columns (c) report
the result of using median PVs as a regressor in the wage equation (1). von Davier et
al. (2009) provide formal arguments and Schofield (2008) provides informal arguments
about potential biases for this sort of procedure–upward bias in the estimates of both β1
and β2.12
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Table 3 Plausible-values adjustments for log wage regressions

Men Never married women

Model MESE PVs Unadj. MESE PVs Unadj.

Skill control Literacy All Median Literacy All Median

skill PVs PV skill PVs PV

(a) (b) (c) (a) (b) (c)

Lit. Skills (β̂1):

MESE 0.191 0.185

(0.010) (0.025)

All PVs 0.221 0.220

(0.015) (0.033)

Median PV 0.276 0.276

(0.012) (0.031)

Effect of a one SD 0.218 0.221 0.251 0.210 0.220 0.259

Change in Skills

Race (β̂2) −0.094 −0.121 −0.065 −0.012 −0.031 0.022

(0.033) (0.041) (0.033) (0.061) (0.062) (0.059)

DIC 103839 5492 5462 20905 1127 1114

N 3267 3267 3267 640 640 640

Notes: Data are from the 1992 NALS, restricted to individuals aged 25–55 who work fulltime, reported wages, and who answered
at least one literacy item. MESE model estimates (column a) are from Table 2. “All PV’s” estimates (column b) employ the
recommended procedure (Mislevy et al. 1992) for combining regression results for multiple imputations. “Unadjusted Median PV”
estimates (column c) employ the median PV in the wage equation (1), with no adjustment for measurement error. All regressions
also control for potential experience entered as a quartic, census region (entered as dummy variables), and urban setting (entered
as a dummy variable).

In Table 3, as in Table 2, estimates of return to skills (β1) are not directly comparable,
because of scale dependence. However, estimates of the effect of a one SD increase in skills
are very similar in columns (a) and (b), but somewhat inflated in columns (c), as expected
given arguments in von Davier et al. (2009). Similarly, for both men and women, β̂2 is
reasonably similar in columns (a) and (b), but appears biased upward in the (c) columns.
As discussed in the preceding Sections of our paper, either of the estimation procedures

in columns (a) or (b) of Table 3 are defensible. The MESE model used in column (a) is
designed to take full advantage of the directmodel formeasurement error that comes with
NALS, and the PV method in column (b) duplicates this approach, using multiple impu-
tations designed for secondary users. Numerical differences between columns (a) and (b)
are small, and can be attributed to differences in the “conditioning model” expressed in
equation (9): in our MESE model, only variables used in the wage equation were included
in the conditioning, whereas for PVs, equation (9) is expanded to condition on (proxies
for) all possible regressors and interactions that secondary analysts might use. For more
details on differences one might expect to see with different conditioning models in (9),
see Schofield et al. (2012).
The primary message from our empirical exercise is that the use of a “cognitive ability

measure” as an error-free independent variable in a wage regression can lead to quite
different inferences than a more defensible approach (MESE) that treats cognitive ability
as a latent construct. For example, for men the estimated portion of the black-white log
wage gap that is “unexplained” once we control for ability is −0.09 in our MESE model,
which is more than one third smaller than the −0.14 estimate we get when we use the ML
estimate of cognitive ability as a regressor. Our estimate also differs substantially from the
−0.065 estimate that comes if we use the median PV of cognitive ability as a regressor.
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It is important to note that our estimates rely on a contemporaneous measures of
skills, which is the consequence of skills development when individuals are young, which
could be shaped by disparate pre-market treatment, and skills development among indi-
viduals over time, which could be shaped in part by disparate treatment in the labor
market. Our results are not directly comparable to those of Neal and Johnson (1996), for
example. Although the regression framework is similar, conceptually their study is quite
different: they use a measure of cognitive skills taken when individuals are quite young
(still teenagers)—prior to their completion of school and entry into the labor market.
Thus, their regression conceptually allows an assessment of the role of racial disparities
of pre-market human capital development on eventual labor market outcomes. Our esti-
mates might be of independent interest; for example Ferrer et al. (2006), Murnane et al.
(1995), and Blau and Kahn (2005) all use contemporaneous measures of literacy skills in
analyses of various sorts.

4.3 The Black-white educational attainment gap in the U.S.

Lang and Manove (2011) recently investigated the possibility that education is a gen-
erally more valuable signal of productivity for blacks that it is for whites. If so, their
model predicts that young black individuals will invest more heavily in education than
comparably-skilled whites. Evidence in support of this prediction comes from regressions
that use data from the 1979 National Longitudinal Survey of Youth (NLSY79). In their
regressions “educational attainment” is the dependent variable, and explanatory variables
include a race indicator variable and a measure of cognitive ability (the AFQT). For most
levels of the AFQT score, black men are found to have higher educational attainment than
similarly skilled white men, and the same is true for women.
We estimate a similar regression to Lang and Manove (2011) using a different

data source, the 1997 National Longitudinal Survey of Youth (NLSY97).13 This survey
follows 8,894 youth born between 1980 and 1984. At the time of their first inter-
view, individuals were aged 12-18. Since 1997, surveys have been conducted every
year with data gathered on education attainment and enrollment, race, gender, and
many other demographic items. Additionally, respondents have taken a standard skills
assessment, the Peabody Individual Achievement Test-Revised mathematics assessment
(PIAT; Markwardt 1998). We are therefore examining the determinants of the attain-
ment of higher education for a more recent cohort than in Lang and Manove’s (2011)
analysis.
The PIAT mathematics assessment contains 100 multiple choice items written to test

the knowledge and application of mathematics concepts and facts, ranging from concrete
problems like number recognition to more abstract problems like trigonometry. To save
time, PIAT items are ordered from easiest to hardest and each individual is administered
a customized set of items between those that are too easy (student would get them all
correct) and those that are too hard (student would get them all incorrect). The raw PIAT
score calculated from the individual’s item responses is, effectively, an estimate of the
individual’s total score on all 100 items. This raw score is then converted into a standard
PIAT score, normed by age to havemean 100 and standard deviation 15 in each age group;
the usual NLSY public use data contain these standard PIAT scores. In addition, unlike the
AFQT for which item responses are not available for either the NLSY79 or NLSY97, item
response data have recently been made available for the PIAT assessment.14 Although an
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Table 4 Sample characteristics, National Longitudinal Study of Youth 1997 (NLSY97)

Black men Black women White men White women

N 1169 1165 2286 2127

Avg. Age 24.4 24.5 24.3 24.3

Education

Proportion Still in HS 0.003 0.007 0.002 0

Proportion < HS 0.16 0.11 0.07 0.06

Proportion HS/GED 0.32 0.25 0.26 0.19

Proportion Some College 0.30 0.43 0.34 0.35

Proportion College + 0.05 0.11 0.16 0.23

Math Skills

Mean Std PIAT Score 88.06 88.67 98.99 98.39

St. Dev Std PIAT Score 14.57 14.51 14.04 13.55

Notes: Authors’ calculations, National Longitudinal Survey of Youth 1997.

IRT model is not provided for the PIAT, we show below that a suitable IRT model fits the
data well and provides a good direct model for measurement error.
Table 4 provides some demographic characteristics of the NLSY97 sample for the 2006

wave. A few features of the data are worth noting. First, individuals are still young enough
that many are likely to attain additional education in coming years. Still, they are old
enough that virtually no one is still in high school. A much higher proportion of blacks
than whites in this sample have failed to complete high school, and amuch higher fraction
of whites than blacks have some post-secondary education. Second, on average, blacks
have lower PIAT mathematics standard scores than whites. The average standard score is
two-thirds of a standard deviation lower for blacks than for whites.
We proceed to analyze the role of race and measured cognitive ability on educational

attainment. Our outcome variable of interest is yi = 1 if individual i has enrolled in a
four-year post-secondary institution and 0 otherwise (as of 2006), and yi = 0 otherwise.
Our basic model is the logistic regression model (10), where pi = P(yi = 1). As before
we take Zi = 1 if the individual reports as black (Zi = 0 otherwise), and we include in
Wi covariates for age, urban/rural status (as a binary indicator), and census region (as
an unordered factor). For a cognitive measure we consider both the standard PIAT score
from the first (1997) NLSY data round, and a latent θi provided by an IRT fit to the item-
level data on which the standard PIAT scores were based. Our investigation is very much
in the spirit of the Lang-Manove work; we are interested in the impact of race on the
enrollment in a four-year institution conditional on the skill levels that young people hold
prior to enrollment.
We compare estimates from the logistic regression (10) using standard PIAT scores,

unadjusted for measurement error, with the logistic MESE model comprising equations
(8), (9) and (10). Once again, all models were fitted using the Bayesian methodology
entailed in the WinBUGS software.
For the basic logistic regression model (10), we used very flat N(0, 100) priors for the

β parameters. Bayesian estimates using these priors are very similar to standard ML esti-
mates of the same logistic regression model.15 For the full logistic MESE model, we used
the same priors on the β ’s in 10, and for τ in 9 we again used an inverse-Gamma(1, 1)
prior and we assume flat N(0, 100) priors on each α coefficient. In order to set the scale
of θ , we mean-centered each of the covariates in (9). In line with our discussion above,
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the prior on θi is conditioned on race, age, census region, and urban/rural status, thereby
allowing for the possibility that there are differences in distributions of proficiency for
blacks and whites of different age groups, census regions, and urban/rural status. We also
estimated item parameters in (8), since we do not have them from the test publishers. For
each discrimination parameter aj we used a 
(1, 1) prior, and for each guessing param-
eter cj a Unif (0, 1) prior. Finally, for each difficulty parameter bj we used a normal prior
with a standard deviation of 0.1 and a mean dependent on the item number ranging from
−4 to 4. The priors on the difficulty parameter reflect the PIAT’s structure that item 1 is
supposed to be easier than item 2 which should be easier than item 3 and so on.
Before proceeding with the full analysis we did a preliminary fit of our IRTmodel to the

PIAT data, because the PIAT test was not (to our knowledge) originally constructed using
the IRT model. Regardless, IRT models can fit well and can still provide us with infor-
mation about the measurement error. We use the “outfit” mean square statistic Tj(x|θ , γ )

(Johnson et al. 1999) to diagnose possible misfit of any particular item,

Tj(x|θ , γ ) =
N∑
i=1

xij − Eij
NWij

, (11)

where xij is respondent i’s response to question j, Eij and Wij are the expected value and
variance respectively of xij conditional on the item parameters and θ . Because the outfit
statistic is conditional on the item parameters and θ , we calculate posterior predictive
p-values (Gelman et al. 1996). Posterior predictive p-values allow us to average over the
uncertainty in θ and γ using M simulated replicated datasets (x∗) from the predictive
distribution of the data. We then estimate the posterior predictive p-value as

p ≈ #s : Tj(x|θs, γs) < Tj(x∗
s |θs, γs)

M
; s = 1, . . . ,M (12)

If the value of the posterior predictive p-value is small, there is reason to be concerned
about the fit of our model for that item.
For the 100 items on the PIAT (with an M = 1000, our posterior predictive p-values

range in value from 0.182 to 0.674. Therefore, the IRT model fits quite well and provides
a good direct model for PIAT measurement error.
Since NLSY did not produce plausible values for PIAT scores, our analysis does not

include a comparison with PV methodology.
In Table 5 we provide estimates for three versions of our regressions, separately for

men and women. Columns (a) and (b) report results using the logistic regression model
(10), without any cognitive measure (columns (a)), and using the standard PIAT score as
a cognitive measure, unadjusted for measurement error (columns (b)). The (c) columns
report the result of the logistic MESE model.
As in Table 2, the results in Table 5 reflect well-known attenuation bias in assessing

the impact of cognitive ability on the outcome of interest, as is seen by comparing the
estimated effects in columns (b) with columns (c) of a one standard deviation changes in
the skills measure on college enrollment.
More important are our inferences regarding the role of race. When we treat the PIAT

score as a regressor, in the (b) columns, we infer the black men are substantially less likely
than similarly-skilled white counterparts to enroll in college. We infer that comparably-
skilled black and white women are equally likely to enroll in college.
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Table 5 Four year college enrollment, logistic regressions

Men Women

Model Logistic Logistic MESE Logistic Logistic MESE

Skill control No skill Standard PIAT No skill Standard PIAT

control PIAT score control PIAT score

(a) (b) (c) (a) (b) (c)

Lit. Skills (β̂1):

Std. PIAT Score 0.058 0.052

(0.004) (0.004)

PIAT MESE 0.528 0.509

(0.050) (0.048)

Effect of a one SD 0.814 0.950 0.704 0.817

Change in Skills

Race (β̂2) −0.768 −0.239 0.022 −0.495 0.005 0.258

(0.105) (0.120) (0.128) (0.106) (0.121) (0.129)

DIC 2677 2424 63066 2500 2323 58076

N 2035 2035 2035 1853 1853 1853

Notes: National Longitudinal Survey of Youth 1997 for waves through 2006. All regressions control also for age, census region
(an unordered factor), and urban/rural area (a binary indicator).

Inferences are quite different when we use the MESE model. Results reported in the
(c) columns suggest that black men are in fact as likely as their similarly-skilled white
counterparts to enroll in college, and that black women are more likely to enroll than
comparable white women.16

It is worth noting that on the basis of the regressions that follow standard practice
(reported in the (b) columns) we would have rejected the hypothesis that blacks get
more education that whites with similar levels of cognitive aptitude. TheMESE approach,
in contrast, is reasonably consistent with the Lang-Manove hypothesis, particularly for
women. Again, recall that individuals in our sample were quite young (average age 24).
As data become available with successive waves of the NLSY97, it will become possi-
ble to shed additional light on the racial differences in completed education, and the
role of cognitive skills (developed among young students) in the educational-attainment
decision.

5 Conclusions
Many analyses in labor economics, and in the social sciences more generally, entail esti-
mation of regressions in which “cognitive ability” θi appears as an explanatory variable. It
this paper we have investigated problems that arise with the standard practice of simply
using a test score as a regressor in this context.
Our central point is that any candidate point estimate of θi entails measurement error.

When θi is obtained from awell-constructed cognitive assessment using standardmodern
technology, a direct model for measurement error is usually available in the form of an
item response theory (IRT) model. Indeed, many cognitive tests are constructed specifi-
cally so that the data is well-fit by an IRT model. The existence of IRT as a direct model
for measurement error obviates the need for such remedies as nonparametric bounds
and instrumental variable methods. Indeed, because the cognitive assessment was con-
structed to fit this model, answers obtained using the IRT model have more authority
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than answers using other methods, regardless of raw comparisons of effect size estimates,
statistical significance, etc.
In this paper we have discussed two essentially equivalent approaches to incorporating

the IRT model directly into regression analyses using a cognitive measure as an inde-
pendent variable: directly fitting the mixed-effects structural equations (MESE) model
of Schofield (2008), and, when available, the use of multiple imputations of cognitive
skill measures known as plausible values (PVs; Mislevy et al. 1992). With two illus-
trative analyses, a linear and a nonlinear regression, we show that failing to account
properly for measurement error produces predictable biases, which can lead to serious
misunderstandings.
Our work leads us to a final observation. Analysts who use secondary data are obviously

at the mercy of the teams that collect and release data; analysts can only use data that
are made available. In cases where researchers want to estimate models in which cogni-
tive ability (or other latent constructs) are used as an explanatory variable, it is essential
that those data include item response data or, at a minimum, well-constructed plausible
values. It is important that the research community communicate the value of such data
to agencies who collect and disseminate data.

Endnotes
1Examples for standardized tests used in regression analysis include the Armed
Services Vocational Aptitude Battery (Department of Defense 1984), the Peabody Individ-
ual Achievement Test (Markwardt 1998), the National Assessment of Education Progress
(Allen et al. 1999), and the National Adult Literacy Survey (Kirsch et al. 2000).
2Thus, black men earn (roughly) between 7% less than and 126% more than white men,
and bounds for the estimated black-white gap for women are similarly large.
3The model is a form of “structural equations model” (SEM), as discussed, e.g., in Bollen
(2002), and Fox and Glas (2003) in which the measurement model is an IRT model and
the “structural model” is a normal linear model.
4Below we use Bayesian estimation. After supplying prior distributions for parame-
ters it is straightforward to specify an MCMC algorithm using the WinBUGS software
(Spiegelhalter et al. 2000).
5Additional contributions include Heckman et al. (2006) and Cunha et al. (2010).
Importantly, this work deals with issues that arise in the evaluation of both cognitive and
non-cognitive skills.
6Standard errors estimates of regression coefficients incorporate both model-based
uncertainty and Monte-Carlo uncertainty; see Mislevy et al. (1992) for a complete
overview.
7This remarkable fact follows directly from the work of Mislevy (1991) for example.
8Neal (2004) provides a discussion of the difficulties in assessing labor market effects of
race for women. In our analyses, we control for “potential experience,” using essentially
number of years past school, but for married women this is likely to be a poor measure of
participation in the labor market outside the home. Moreover, the extent of the problem
with this measure likely differs by race.
9This rather indirect calculation is needed because different respondents saw different
subsets of the 165 item pool, and the subsets differ in difficulty. It is, essentially, an IRT-
based equating (Kolen and Brennan 2004) of the different subsets of items seen by each
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respondent.
10Item parameter estimates obtained by NCES are provided in the NALS data set, and are
based on such a large sample that their SE’s are essentially zero.
11For example, the unadjusted OLS estimate for the race coefficient in the no skills con-
trol regression for men is −0.365 and for women it is −0.236. Standard error estimates
for both of these OLS estimates are the same as the Bayesian estimates.
12We provide this last set of results because this approach has been used by previous
researchers.
13Like Lang and Manove, we are interested in the effect of race on the decision to attend
college. However, our primary goal here is to compare results from ordinary regression to
the MESE model, so we use a simpler specification; we do not enter the aptitude measure
as a quadratic nor do we interact it with the race indicator variable.
14We are grateful to Dan Black for his role in making the data available.
15For example, the unadjusted ML estimate for the race coefficient in the no skills control
logistic regression for men is−0.767 and for women it is−0.494. Standard error estimates
for both of these ML estimates are the same as the Bayesian estimates.
16We are using a non-linear model here, so arguments about the bias that results when
ignoring measurement error in linear models is not directly applicable. Nonetheless the
bias is just as predicted by those simple arguments.
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