1,097 research outputs found

    Grown-in defects and defects produced by 1-Me electron irradiated in Al0.3Ga0.7As P-N junction solar cells

    Get PDF
    Studies of grown-in defects and defects produced by the one-MeV electron irradiation in Al sub 0.3 Ga sub 0.7As p-n junction solar cells fabricated by liquid phase epitaxial (LPE) technique were made for the unirradiated and one-MeV electron irradiated samples, using DLTS and C-V methods. Defect and recombination parameters such as energy level, defect density, carrier capture cross sections and lifetimes were determined for various growth, annealing, and irradiation conditions

    Semiconductor quantum dot - a quantum light source of multicolor photons with tunable statistics

    Full text link
    We investigate the intensity correlation properties of single photons emitted from an optically excited single semiconductor quantum dot. The second order temporal coherence function of the photons emitted at various wavelengths is measured as a function of the excitation power. We show experimentally and theoretically, for the first time, that a quantum dot is not only a source of correlated non-classical monochromatic photons but is also a source of correlated non-classical \emph{multicolor} photons with tunable correlation properties. We found that the emitted photon statistics can be varied by the excitation rate from a sub-Poissonian one, where the photons are temporally antibunched, to super-Poissonian, where they are temporally bunched.Comment: 4 pages, 2 figure

    Optical spectroscopy of single quantum dots at tunable positive, neutral and negative charge states

    Full text link
    We report on the observation of photoluminescence from positive, neutral and negative charge states of single semiconductor quantum dots. For this purpose we designed a structure enabling optical injection of a controlled unequal number of negative electrons and positive holes into an isolated InGaAs quantum dot embedded in a GaAs matrix. Thereby, we optically produced the charge states -3, -2, -1, 0, +1 and +2. The injected carriers form confined collective 'artificial atoms and molecules' states in the quantum dot. We resolve spectrally and temporally the photoluminescence from an optically excited quantum dot and use it to identify collective states, which contain charge of one type, coupled to few charges of the other type. These states can be viewed as the artificial analog of charged atoms such as H−^{-}, H−2^{-2}, H−3^{-3}, and charged molecules such as H2+_{2}^{+} and H3+2_{3}^{+2}. Unlike higher dimensionality systems, where negative or positive charging always results in reduction of the emission energy due to electron-hole pair recombination, in our dots, negative charging reduces the emission energy, relative to the charge-neutral case, while positive charging increases it. Pseudopotential model calculations reveal that the enhanced spatial localization of the hole-wavefunction, relative to that of the electron in these dots, is the reason for this effect.Comment: 5 figure

    Beyond deficit-based models of learners' cognition: Interpreting engineering students' difficulties with sense-making in terms of fine-grained epistemological and conceptual dynamics

    Full text link
    Researchers have argued against deficit-based explanations of students' troubles with mathematical sense-making, pointing instead to factors such as epistemology: students' beliefs about knowledge and learning can hinder them from activating and integrating productive knowledge they have. In this case study of an engineering major solving problems (about content from his introductory physics course) during a clinical interview, we show that "Jim" has all the mathematical and conceptual knowledge he would need to solve a hydrostatic pressure problem that we posed to him. But he reaches and sticks with an incorrect answer that violates common sense. We argue that his lack of mathematical sense-making-specifically, translating and reconciling between mathematical and everyday/common-sense reasoning-stems in part from his epistemological views, i.e., his views about the nature of knowledge and learning. He regards mathematical equations as much more trustworthy than everyday reasoning, and he does not view mathematical equations as expressing meaning that tractably connects to common sense. For these reasons, he does not view reconciling between common sense and mathematical formalism as either necessary or plausible to accomplish. We, however, avoid a potential "deficit trap"-substituting an epistemological deficit for a concepts/skills deficit-by incorporating multiple, context-dependent epistemological stances into Jim's cognitive dynamics. We argue that Jim's epistemological stance contains productive seeds that instructors could build upon to support Jim's mathematical sense-making: He does see common-sense as connected to formalism (though not always tractably so) and in some circumstances this connection is both salient and valued.Comment: Submitted to the Journal of Engineering Educatio

    Body composition changes associated with fasted versus non-fasted aerobic exercise

    Get PDF
    It has been hypothesized that performing aerobic exercise after an overnight fast accelerates the loss of body fat. The purpose of this study was to investigate changes in fat mass and fat-free mass following four weeks of volume-equated fasted versus fed aerobic exercise in young women adhering to a hypocaloric diet. Twenty healthy young female volunteers were randomly assigned to 1 of 2 experimental groups: a fasted training (FASTED) group that performed exercise after an overnight fast (n = 10) or a post-prandial training (FED) group that consumed a meal prior to exercise (n = 10). Training consisted of 1 hour of steady-state aerobic exercise performed 3 days per week. Subjects were provided with customized dietary plans designed to induce a caloric deficit. Nutritional counseling was provided throughout the study period to help ensure dietary adherence and self-reported food intake was monitored on a regular basis. A meal replacement shake was provided either immediately prior to exercise for the FED group or immediately following exercise for the FASTED group, with this nutritional provision carried out under the supervision of a research assistant. Both groups showed a significant loss of weight (P = 0.0005) and fat mass (P = 0.02) from baseline, but no significant between-group differences were noted in any outcome measure. These findings indicate that body composition changes associated with aerobic exercise in conjunction with a hypocaloric diet are similar regardless whether or not an individual is fasted prior to training

    Migration and luminescence enhancement effects of deuterium in ZnO/ZnCdO quantum wells

    Get PDF
    ZnO/ZnCdO/ZnO multiple quantum well samples grown on sapphire substrates by molecular beam epitaxy and annealed in situ were exposed to D(2) plasmas at 150 degrees C. The deuterium showed migration depths of similar to 0.8 mu m for 30 min plasma exposures, with accumulation of (2)H in the ZnCdO wells. The photoluminescence (PL) intensity from the samples was increased by factors of 5 at 5 K and similar to 20 at 300 K as a result of the deuteration, most likely due to passivation of competing nonradiative centers. Annealing up to 300 degrees C led to increased migration of (2)H toward the substrate but no loss of deuterium from the sample and little change in the PL intensity. The initial PL intensities were restored by annealing at \u3e = 400 degrees C as (2)H was evolved from the sample (similar to 90% loss by 500 degrees C). By contrast, samples without in situ annealing showed a decrease in PL intensity with deuteration. This suggests that even moderate annealing temperatures lead to degradation of ZnCdO quantum wells. (c) 2008 American Institute of Physics
    • …
    corecore