We report on the observation of photoluminescence from positive, neutral and
negative charge states of single semiconductor quantum dots. For this purpose
we designed a structure enabling optical injection of a controlled unequal
number of negative electrons and positive holes into an isolated InGaAs quantum
dot embedded in a GaAs matrix. Thereby, we optically produced the charge states
-3, -2, -1, 0, +1 and +2. The injected carriers form confined collective
'artificial atoms and molecules' states in the quantum dot. We resolve
spectrally and temporally the photoluminescence from an optically excited
quantum dot and use it to identify collective states, which contain charge of
one type, coupled to few charges of the other type. These states can be viewed
as the artificial analog of charged atoms such as H−, H−2, H−3,
and charged molecules such as H2+ and H3+2. Unlike higher
dimensionality systems, where negative or positive charging always results in
reduction of the emission energy due to electron-hole pair recombination, in
our dots, negative charging reduces the emission energy, relative to the
charge-neutral case, while positive charging increases it. Pseudopotential
model calculations reveal that the enhanced spatial localization of the
hole-wavefunction, relative to that of the electron in these dots, is the
reason for this effect.Comment: 5 figure