146 research outputs found

    Transport properties of moderately disordered UCu4_4Pd

    Full text link
    We present a detailed study on the (magneto)transport properties of as-cast and heat treated material UCu4_4Pd. We find a pronounced sample dependence of the resistivity ρ\rho of as-cast samples, and reproduce the annealing dependence of ρ\rho. In our study of the Hall effect we determine a metallic carrier density for all samples, and a temperature dependence of the Hall constant which is inconsistent with the Skew scattering prediction. The magnetoresistive response is very small and characteristic for spin disorder scattering, suggesting that overall the resistivity is controlled mostly by nonmagnetic scattering processes. We discuss possible sources for the temperature and field dependence of the transport properties, in particular with respect to quantum criticality and electronic localization effects.Comment: 11 pages, 9 figures, submitted PR

    Effect of the strong metal-support interaction on hydrogen sorption kinetics of Pd-capped switchable mirrors

    Get PDF
    The morphology and electronic structure of Pd clusters grown on oxidized yttrium surfaces are investigated by scanning tunneling microscopy and ultraviolet photoelectron spectroscopy. The hydrogen sorption mediated by the Pd clusters is determined from the optically monitored switching kinetics of the underlying yttrium film. A strong thickness dependence of the hydrogen uptake is found. The electronic structure of the as-grown Pd clusters depends only weakly on their size. Strong changes of the photoemission spectra are found after hydrogenation, in particular the oxide peak shifts and the Pd peaks vanish. Both phenomena are due to a strong metal-support interaction (SMSI) state, characterized by a complete encapsulation of the clusters by a reduced yttrium oxide layer. Scanning tunneling spectroscopy confirms the SMSI state of small Pd clusters after hydrogen exposure. The SMSI effect is less important with increasing Pd thickness. This explains the critical thickness for the catalyzed hydrogen uptake by the Pd/Y

    Sharp lines in the absorption edge of EuTe and Pb0.1_{0.1}Eu0.9_{0.9}Te in high magnetic fields

    Full text link
    The optical absorption spectra in the region of the \fd transition energies of epitaxial layers of of EuTe and \PbEuTe, grown by molecular beam epitaxy, were studied using circularly polarized light, in the Faraday configuration. Under \sigmam polarization a sharp symmetric absorption line (full width at half-maximum 0.041 eV) emerges at the low energy side of the band-edge absorption, for magnetic fields intensities greater than 6 T. The absorption line shows a huge red shift (35 meV/T) with increasing magnetic fields. The peak position of the absorption line as a function of magnetic field is dominated by the {\em d-f} exchange interaction of the excited electron and the \Euion spins in the lattice. The {\em d-f} exchange interaction energy was estimated to be JdfS=0.15±0.01J_{df}S=0.15\pm 0.01 eV. In \PbEuTe the same absorption line is detected, but it is broader, due to alloy disorder, indicating that the excitation is localized within a finite radius. From a comparison of the absorption spectra in EuTe and \PbEuTe the characteristic radius of the excitation is estimated to be 10\sim 10\AA.Comment: Journal of Physics: Condensed Matter (2004, at press

    The dual nature of 5f electrons and origin of heavy fermions in U compounds

    Full text link
    We develop a theory for the electronic excitations in UPt3_3 which is based on the localization of two of the 5f5f electrons. The remaining ff electron is delocalized and acquires a large effective mass by inducing intra-atomic excitations of the localized ones. The measured deHaas-vanAlphen frequencies of the heavy quasiparticles are explained as well as their anisotropic heavy mass. A model calculation for a small cluster reveals why only the largest of the different 5f5f hopping matrix elements is operative causing the electrons in other orbitals to localize.Comment: 6 pages, 3 figure

    Magneto-optical Kerr effect in Eu1xCaxB6Eu_{1-x}Ca_{x}B_{6}

    Full text link
    We have measured the magneto-optical Kerr rotation of ferromagnetic Eu1xCaxB6Eu_{1-x}Ca_{x}B_{6} with x=0.2 and 0.4, as well as of YbB6YbB_{6} serving as the non-magnetic reference material. As previously for EuB6EuB_{6}, we could identify a feature at 1 eVeV in the Kerr response which is related with electronic transitions involving the localized 4f electron states. The absence of this feature in the data for YbB6YbB_{6} confirms the relevance of the partially occupied 4f states in shaping the magneto-optical features of EuEu-based hexaborides. Disorder by CaCa-doping broadens the itinerant charge carrier contribution to the magneto-optical spectra

    Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides

    Full text link
    Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied by means of fully-relativistic spin-polarized band structure calculations within the local spin-density approximation. It is found that the size of the magnetic anisotropy is fairly large (about 10 meV/unit formula), which is comparable with experiment. This strong anisotropy is discussed in view of a pseudo-gap formation, of which crucial ingredients are the exchange splitting of U 5f states and their hybridization with chalcogen p states (f-p hybridization). An anomalous trend in the anisotropy is found in the series (US>>USe<UTe) and interpreted in terms of competition between localization of the U 5f states and the f-p hybridization. It is the spin-orbit interaction on the chalcogen p states that plays an essential role in enlarging the strength of the f-p hybridization in UTe, leading to an anomalous systematic trend in the magnetic anisotropy.Comment: 4 pages, 5 figure

    Field Reentrance of the Hidden Order State of URu2Si2 under Pressure

    Full text link
    Combination of neutron scattering and thermal expansion measurements under pressure shows that the so-called hidden order phase of URu2Si2 reenters in magnetic field when antiferromagnetism (AF) collapses at H_AF (T). Macroscopic pressure studies of the HO-AF boundaries were realized at different pressures via thermal expansion measurements under magnetic field using a strain gauge. Microscopic proof at a given pressure is the reappearance of the resonance at Q_0=(1,0,0) under field which is correlated with the collapse of the AF Bragg reflections at Q_0.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp

    Magneto-optical properties of MnBiAl thin films

    Get PDF
    Mn-Bi-Al thin films. were produced by sequential evaporation of the constituents, followed by an anneal at 300 °C. The temperature and composition dependencies of the Kerr rotation angle, absolute reflectivity, and magnetic anisotropy were measured. The results show that, up to 30 at. % Al concentration, the thin films retain the pure MnBi hexagonal structure. Further, for suitable Al content, the films have the same large Kerr rotation as MnBi. Pure MnBi films exhibit perpendicular anisotropy at room temperature and in-plane anisotropy for temperatures below 142 K. In contrast,. the Al-doped films prepared here have perpendicular anisotropy down to at least 85 K. The increased coercivities of the Al-doped films are attributed to the occupation of grain-boundary and interstitial sites of the NiAs-type hexagonal structure by the Al-atoms

    Carrier-Induced Magnetic Circular Dichloism in the Magnetoresistive Pyrochlore Tl2Mn2O7

    Full text link
    Infrared magnetic circular dichloism (MCD), or equivalently magneto-optical Kerr effect, has been measured on the Tl2Mn2O7 pyrochlore, which is well known for exhibiting a large magnetoresistance around the Curie temperature T_C ~ 120 K. A circularly polarized, infrared synchrotron radiation is used as the light source. A pronounced MCD signal is observed exactly at the plasma edge of the reflectivity near and below T_c. However, contrary to the conventional behavior of MCD for ferromagnets, the observed MCD of Tl2Mn2O7 grows with the applied magnetic field, and not scaled with the internal magnetization. It is shown that these results can be basically understood in terms of a classical magnetoplasma resonance. The absence of a magnetization-scaled MCD indicates a weak spin-orbit coupling of the carriers in Tl2Mn2O7. We discuss the present results in terms of the microscopic electronic structures of Tl2Mn2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Approximative treatment of 5f-systems with partial localization due to intra-atomic correlations

    Get PDF
    Increasing experimental and theoretical evidence points towards a dual nature of the 5ff electrons in actinide-based strongly correlated metallic compounds, with some 5ff electrons being localized and others delocalized. In a recent paper (PRB xxx, 2004), we suggested the interplay of intra-atomic correlations as described by Hund's rules and a weakly anisotropic hopping (hybridization) as a possible mechanism. The purpose of the present work is to provide a first step towards a microscopic description of partial localization in solids by analyzing how well various approximation schemes perform when applied to small clusters. It is found that many aspects of partial localization are described appropriately both by a variational wavefunction of Gutzwiller type and by a treatment which keeps only those interactions which are present in LDA+U calculations. In contrast, the energies and phase diagram calculated within the Hartree Fock approximation show little resemblence with the exact results. Enhancement of hopping anisotropy by Hund's rule correlations are found in all approximations.Comment: 9 pages, 9 figure
    corecore