1,537 research outputs found

    Local Density of States in a Dirty Normal Metal connected to a Superconductor

    Full text link
    A superconductor in contact with a normal metal not only induces superconducting correlations, known as proximity effect, but also modifies the density of states at some distance from the interface. These modifications can be resolved experimentally in microstructured systems. We, therefore, study the local density of states N(E,x)N(E,x) of a superconductor - normal metal heterostructure. We find a suppression of N(E,x)N(E,x) at small energies, which persists to large distances. If the normal metal forms a thin layer of thickness LnL_n, a minigap in the density of states appears which is of the order of the Thouless energy D/Ln2\sim \hbar D/L_n^2. A magnetic field suppresses the features. We find good agreement with recent experiments of Gu\'eron {\it et al.}Comment: 5 pages, RevTeX, 7 Figures (included), Submitted to PRB. Revised version: One figure changed, missprints correcte

    Manned geosynchronous mission requirements and systems analysis study add-on

    Get PDF
    An MOTV mission model was constructed in order to establish the baseline condition for SOC basing. A mission model to reflect satellite servicing was extended. Yearly traffic was projected. Driver missions were categorized. Cost trades and sensitivity to traffic rates were performed and service equipment needs were identified

    Burwell v. Hobby Lobby Stores, Inc.: Lots of Smoke, But No Fire

    Get PDF

    The role of string-like, supramolecular assemblies in reentrant supernematic liquid crystals

    Full text link
    Using a combination of isothermal-isobaric Monte Carlo and microcanonical molecular dynamics we investigate the relation between structure and self-diffusion in various phases of a model liquid crystal using the Gay-Berne-Kihara potential. These molecules are confined to a mesoscopic slit-pore with atomically smooth substrate surfaces. As reported recently [see M. G. Mazza {\em et al.}, Phys. Rev. Lett. {\bf 105}, 227802 (2010)], a reentrant nematic (RN) phase may form at sufficiently high pressures/densities. This phase is characterized by a high degree of nematic order and a substantially enhanced self-diffusivity in the direction of the director n^\hat{\bm{n}} which exceeds that of the lower-density nematic and an intermittent smectic A phase by about an order of magnitude. Here we demonstrate that the unique transport behavior in the RN phase may be linked to a confinement-induced packing effect which causes the formation of supramolecular, string-like conformations. The strings consist of several individual molecules that are capable of travelling in the direction of n^\hat{\bm{n}} as individual "trains" consisting of chains of molecular "cars". Individual trains run in parallel and may pass each other at sufficiently high pressures.Comment: 24 page

    Non-liftable Calabi-Yau spaces

    Full text link
    We construct many new non-liftable three-dimensional Calabi-Yau spaces in positive characteristic. The technique relies on lifting a nodal model to a smooth rigid Calabi-Yau space over some number field as introduced by the first author and D. van Straten.Comment: 16 pages, 5 tables; v2: minor corrections and addition

    A simple remark on a flat projective morphism with a Calabi-Yau fiber

    Full text link
    If a K3 surface is a fiber of a flat projective morphisms over a connected noetherian scheme over the complex number field, then any smooth connected fiber is also a K3 surface. Observing this, Professor Nam-Hoon Lee asked if the same is true for higher dimensional Calabi-Yau fibers. We shall give an explicit negative answer to his question as well as a proof of his initial observation.Comment: 8 pages, main theorem is generalized, one more remark is added, mis-calculation and typos are corrected etc

    Probabilistic computer model of optimal runway turnoffs

    Get PDF
    Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits

    The temperature dependence of FeRh's transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T=TmT = T_m between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T0T \geq 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of TmT_m, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    Gravitating Opposites Attract

    Full text link
    Generalizing previous work by two of us, we prove the non-existence of certain stationary configurations in General Relativity having a spatial reflection symmetry across a non-compact surface disjoint from the matter region. Our results cover cases such that of two symmetrically arranged rotating bodies with anti-aligned spins in n+1n+1 (n3n \geq 3) dimensions, or two symmetrically arranged static bodies with opposite charges in 3+1 dimensions. They also cover certain symmetric configurations in (3+1)-dimensional gravity coupled to a collection of scalars and abelian vector fields, such as arise in supergravity and Kaluza-Klein models. We also treat the bosonic sector of simple supergravity in 4+1 dimensions.Comment: 13 pages; slightly amended version, some references added, matches version to be published in Classical and Quantum Gravit

    The Action of Instantons with Nut Charge

    Full text link
    We examine the effect of a non-trivial nut charge on the action of non-compact four-dimensional instantons with a U(1) isometry. If the instanton action is calculated by dimensionally reducing along the isometry, then the nut charge is found to make an explicit non-zero contribution. For metrics satisfying AF, ALF or ALE boundary conditions, the action can be expressed entirely in terms of quantities (including the nut charge) defined on the fixed point set of the isometry. A source (or sink) of nut charge also implies the presence of a Misner string coordinate singularity, which will have an important effect on the Hamiltonian of the instanton.Comment: 25 page
    corecore