155 research outputs found
Is the magnetic field in the heliosheath laminar or a turbulent bath of bubbles?
All the current global models of the heliosphere are based on the assumption
that the magnetic field in the heliosheath, in the region close to the
heliopause is laminar. We argue that in that region the heliospheric magnetic
field is not laminar but instead consists of magnetic bubbles. Recently, we
proposed that the annihilation of the "sectored" magnetic field within the
heliosheath as it is compressed on its approach to the heliopause produces the
anomalous cosmic rays and also energetic electrons. As a product of the
annihilation of the sectored magnetic field, densely-packed magnetic
islands/bubbles are produced. These magnetic islands/bubbles will be convected
with the ambient flows as the sector region is carried to higher latitudes
filling the heliosheath. We further argue that the magnetic islands/bubbles
will develop upstream within the heliosheath. As a result, the magnetic field
in the heliosheath sector region will be disordered well upstream of the
heliopause. We present a 3D MHD simulation with very high numerical resolution
that captures the north-south boundaries of the sector region. We show that due
to the high pressure of the interstellar magnetic field a north-south asymmetry
develops such that the disordered sectored region fills a large portion of the
northern part of the heliosphere with a smaller extension in the southern
hemisphere. We suggest that this scenario is supported by the following changes
that occur around 2008 and from 2009.16 onward: a) the sudden decrease in the
intensity of low energy electrons detected by Voyager 2; b) a sharp reduction
in the intensity of fluctuations of the radial flow; and c) the dramatic
differences in intensity trends between GCRs at V1 and 2. We argue that these
observations are a consequence of V2 leaving the sector region of disordered
field during these periods and crossing into a region of unipolar laminar
field.Comment: 36 pages, 15 figures, submitted to Ap
Extreme Plasma Astrophysics
This is a science white paper submitted to the Astro-2020 and Plasma-2020
Decadal Surveys. The paper describes the present status and emerging
opportunities in Extreme Plasma Astrophysics -- a study of
astrophysically-relevant plasma processes taking place under extreme conditions
that necessitate taking into account relativistic, radiation, and QED effects.Comment: A science white paper submitted to the Astro-2020 and Plasma-2020
Decadal Surveys. 7 pages including cover page and references. Paper updated
in late March 2019 to include a several additional co-authors and references,
and a few small change
Enhancement by postfiltering for speech and audio coding in ad-hoc sensor networks
Enhancement algorithms for wireless acoustics sensor networks~(WASNs) are
indispensable with the increasing availability and usage of connected devices
with microphones. Conventional spatial filtering approaches for enhancement in
WASNs approximate quantization noise with an additive Gaussian distribution,
which limits performance due to the non-linear nature of quantization noise at
lower bitrates. In this work, we propose a postfilter for enhancement based on
Bayesian statistics to obtain a multidevice signal estimate, which explicitly
models the quantization noise. Our experiments using PSNR, PESQ and MUSHRA
scores demonstrate that the proposed postfilter can be used to enhance signal
quality in ad-hoc sensor networks
Observation of enhanced chiral asymmetries in the inner-shell photoionization of uniaxially oriented methyloxirane enantiomers
Most large molecules are chiral in their structure: they exist as two
enantiomers, which are mirror images of each other. Whereas the rovibronic
sublevels of two enantiomers are almost identical, it turns out that the
photoelectric effect is sensitive to the absolute configuration of the ionized
enantiomer - an effect termed Photoelectron Circular Dichroism (PECD). Our
comprehensive study demonstrates that the origin of PECD can be found in the
molecular frame electron emission pattern connecting PECD to other fundamental
photophysical effects as the circular dichroism in angular distributions
(CDAD). Accordingly, orienting a chiral molecule in space enhances the PECD by
a factor of about 10
A Symmetric Dual Feedback System Provides a Robust and Entrainable Oscillator
Many organisms have evolved molecular clocks to anticipate daily changes in their environment. The molecular mechanisms by which the circadian clock network produces sustained cycles have extensively been studied and transcriptional-translational feedback loops are common structures to many organisms. Although a simple or single feedback loop is sufficient for sustained oscillations, circadian clocks implement multiple, complicated feedback loops. In general, different types of feedback loops are suggested to affect the robustness and entrainment of circadian rhythms
High Confidence Prediction of Essential Genes in Burkholderia Cenocepacia
BACKGROUND: Essential genes are absolutely required for the survival of an organism. The identification of essential genes, besides being one of the most fundamental questions in biology, is also of interest for the emerging science of synthetic biology and for the development of novel antimicrobials. New antimicrobial therapies are desperately needed to treat multidrug-resistant pathogens, such as members of the Burkholderia cepacia complex.
METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that essential genes may be highly conserved within a group of evolutionary closely related organisms. Using a bioinformatics approach we determined that the core genome of the order Burkholderiales consists of 649 genes. All but two of these identified genes were located on chromosome 1 of Burkholderia cenocepacia. Although many of the 649 core genes of Burkholderiales have been shown to be essential in other bacteria, we were also able to identify a number of novel essential genes present mainly, or exclusively, within this order. The essentiality of some of the core genes, including the known essential genes infB, gyrB, ubiB, and valS, as well as the so far uncharacterized genes BCAL1882, BCAL2769, BCAL3142 and BCAL3369 has been confirmed experimentally in B. cenocepacia.
CONCLUSIONS/SIGNIFICANCE: We report on the identification of essential genes using a novel bioinformatics strategy and provide bioinformatics and experimental evidence that the large majority of the identified genes are indeed essential. The essential genes identified here may represent valuable targets for the development of novel antimicrobials and their detailed study may shed new light on the functions required to support life
Exploiting bacterial DNA gyrase as a drug target: current state and perspectives
DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme
DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the ‘exit gate’ may be an important determinant of this process
- …