78 research outputs found
Possibilistic Boolean games: strategic reasoning under incomplete information
Boolean games offer a compact alternative to normal-form games, by encoding the goal of each agent as a propositional formula. In this paper, we show how this framework can be naturally extended to model situations in which agents are uncertain about other agents' goals. We first use uncertainty measures from possibility theory to semantically define (solution concepts to) Boolean games with incomplete information. Then we present a syntactic characterization of these semantics, which can readily be implemented, and we characterize the computational complexity
Mining topological relations from the web
Topological relations between geographic regions are of interest in many applications. When the exact boundaries of regions are not available, such relations can be established by analysing natural language information from web documents. In particular we demonstrate how redundancy-based techniques can be used to acquire containment and adjacency relations, and how fuzzy spatial reasoning can be employed to maintain the consistency of the resulting knowledge base
Reasoning about uncertainty and explicit ignorance in generalized possibilistic logic
© 2014 The Authors and IOS Press. Generalized possibilistic logic (GPL) is a logic for reasoning about the revealed beliefs of another agent. It is a two-tier propositional logic, in which propositional formulas are encapsulated by modal operators that are interpreted in terms of uncertainty measures from possibility theory. Models of a GPL theory represent weighted epistemic states and are encoded as possibility distributions. One of the main features of GPL is that it allows us to explicitly reason about the ignorance of another agent. In this paper, we study two types of approaches for reasoning about ignorance in GPL, based on the idea of minimal specificity and on the notion of guaranteed possibility, respectively. We show how these approaches naturally lead to different flavours of the language of GPL and a number of decision problems, whose complexity ranges from the first to the third level of the polynomial hierarchy
Bipolar querying of valid-time intervals subject to uncertainty
Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition
Measuring Relations Between Concepts In Conceptual Spaces
The highly influential framework of conceptual spaces provides a geometric
way of representing knowledge. Instances are represented by points in a
high-dimensional space and concepts are represented by regions in this space.
Our recent mathematical formalization of this framework is capable of
representing correlations between different domains in a geometric way. In this
paper, we extend our formalization by providing quantitative mathematical
definitions for the notions of concept size, subsethood, implication,
similarity, and betweenness. This considerably increases the representational
power of our formalization by introducing measurable ways of describing
relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final
publication is available at Springer via
https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial
text overlap with arXiv:1707.05165, arXiv:1706.0636
Towards a Proof Theory of G\"odel Modal Logics
Analytic proof calculi are introduced for box and diamond fragments of basic
modal fuzzy logics that combine the Kripke semantics of modal logic K with the
many-valued semantics of G\"odel logic. The calculi are used to establish
completeness and complexity results for these fragments
Investigating behavioural and computational approaches for defining imprecise regions
People often communicate with reference to informally agreedplaces, such as “the city centre”. However, views of the spatial extent of such areas may vary, resulting in imprecise regions. We compare perceptions of Sheffield’s City Centre from a street survey to extents derived from various web-based sources. Such automated approaches have advantages of speed, cost and repeatability. We show that footprints from web sources are often in concordance with models derived from more labour-intensive methods. Notable exceptions however were found with sources advertising or selling residential property. Agreement between sources was measured by aggregating them to identify locations of consensus
- …