2,095 research outputs found
Field-induced domain wall propagation: beyond the one-dimensional model
We have investigated numerically the field-driven propagation of
perpendicularly magnetized ferromagnetic layers. It was then compared to the
historical one-dimensional domain wall (DW) propagation model widely used in
spintronics studies of magnetic nanostructures. In the particular regime of
layer thickness (h) of the order of the exchange length, anomalous velocity
peaks appear in the precessional regime, their shape and position shifting with
h. This has also been observed experimentally. Analyses of the simulations show
a distinct correlation between the curvature of the DW and the twist of the
magnetization vector within it, and the velocity peak. Associating a
phenomenological description of this twist with a four-coordinate DW
propagation model, we reproduce very well these kinks and show that they result
from the torque exerted by the stray field created by the domains on the
twisted magnetization. The position of the peaks is well predicted from the
DW's first flexural mode frequency, and depends strongly on the layer
thickness. Comparison of the proposed model to DW propagation data obtained on
dilute semiconductor ferromagnets GaMnAs and GaMnAsP sheds light on the origin
of the measured peaks
Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges
Vehicular Communication (VC) systems are on the verge of practical
deployment. Nonetheless, their security and privacy protection is one of the
problems that have been addressed only recently. In order to show the
feasibility of secure VC, certain implementations are required. In [1] we
discuss the design of a VC security system that has emerged as a result of the
European SeVeCom project. In this second paper, we discuss various issues
related to the implementation and deployment aspects of secure VC systems.
Moreover, we provide an outlook on open security research issues that will
arise as VC systems develop from today's simple prototypes to full-fledged
systems
Enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices
We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs
superlattices grown by low-temperature molecular beam epitaxy, which is due to
thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced
increase of the Curie temperature is strongly correlated to the In
concentration in the embedded layers. Curie temperatures up to 110 K are
observed in such structures compared to 60 K in GaMnAs single layers grown
under the same conditions. A further increase in T up to 130 K can be
achieved using post-growth annealing at temperatures near the growth
temperature. Pronounced thickness fringes in the high resolution X-ray
diffraction spectra indicate good crystalline quality and sharp interfaces in
the structures.Comment: 4 pages, 4 figures, submitted to Appl. Phys. Let
Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network
The application of deep learning to symbolic domains remains an active
research endeavour. Graph neural networks (GNN), consisting of trained neural
modules which can be arranged in different topologies at run time, are sound
alternatives to tackle relational problems which lend themselves to graph
representations. In this paper, we show that GNNs are capable of multitask
learning, which can be naturally enforced by training the model to refine a
single set of multidimensional embeddings and decode them
into multiple outputs by connecting MLPs at the end of the pipeline. We
demonstrate the multitask learning capability of the model in the relevant
relational problem of estimating network centrality measures, focusing
primarily on producing rankings based on these measures, i.e. is vertex
more central than vertex given centrality ?. We then show that a GNN
can be trained to develop a \emph{lingua franca} of vertex embeddings from
which all relevant information about any of the trained centrality measures can
be decoded. The proposed model achieves accuracy on a test dataset of
random instances with up to 128 vertices and is shown to generalise to larger
problem sizes. The model is also shown to obtain reasonable accuracy on a
dataset of real world instances with up to 4k vertices, vastly surpassing the
sizes of the largest instances with which the model was trained ().
Finally, we believe that our contributions attest to the potential of GNNs in
symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure
Accounting Profession in Singapore; Professional Accounting in Foreign Country Series
https://egrove.olemiss.edu/aicpa_guides/1692/thumbnail.jp
Geoglossomycetes cl. nov., Geoglossales ord. nov. and taxa above class rank in the Ascomycota Tree of Life
Featuring a high level of taxon sampling across Ascomycota, we evaluate a multi-gene phylogeny and propose a novel order and class in Ascomycota. We describe two new taxa, Geoglossomycetes and Geoglossales, to host three earth tongue genera: Geoglossum, Trichoglossum and Sarcoleotia as a lineage of ‘Leotiomyceta’. Correspondingly, we confirm that these genera are not closely related to the genera Neolecta, Mitrula, Cudonia, Microglossum, Thuemenidum, Spathularia and Bryoglossum, all of which have been previously placed within the Geoglossaceae. We also propose a non-hierarchical system for naming well-resolved nodes, such as ‘Saccharomyceta’, ‘Dothideomyceta’, and ‘Sordariomyceta’ for supraordinal nodes, within the current phylogeny, acting as rankless taxa. As part of this revision, the continued use of ‘Leotiomyceta’, now as a rankless taxon, is proposed
The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon
The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules
that connect the Compton scattering amplitudes to the inclusive photoproduction
cross sections of the target under investigation. Being based on such universal
principles as causality, unitarity, and gauge invariance, these sum rules
provide a unique testing ground to study the internal degrees of freedom that
hold the system together. The present article reviews these sum rules for the
spin-dependent cross sections of the nucleon by presenting an overview of
recent experiments and theoretical approaches. The generalization from real to
virtual photons provides a microscope of variable resolution: At small
virtuality of the photon, the data sample information about the long range
phenomena, which are described by effective degrees of freedom (Goldstone
bosons and collective resonances), whereas the primary degrees of freedom
(quarks and gluons) become visible at the larger virtualities. Through a rich
body of new data and several theoretical developments, a unified picture of
virtual Compton scattering emerges, which ranges from coherent to incoherent
processes, and from the generalized spin polarizabilities on the low-energy
side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl
Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As
The effect of annealing at 250 C on the carrier depth profile, Mn
distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As
layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low
temperatures, is studied by a variety of analytical methods. The vertical
gradient in hole concentration, revealed by electrochemical capacitance-voltage
profiling, is shown to play a key role in the understanding of conductivity and
magnetization data. The gradient, basically already present in as-grown
samples, is strongly influenced by post-growth annealing. From secondary ion
mass spectroscopy it can be concluded that, at least in thick layers, the
change in carrier depth profile and thus in conductivity is not primarily due
to out-diffusion of Mn interstitials during annealing. Two alternative possible
models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.
Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee : Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results.
Background:
Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment.
Purpose:
To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results.
Study Design:
Cross-sectional study; Level of evidence, 3.
Methods:
To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2).
Results:
Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm2) were of no importance regarding the prediction of the strength deficit. The quadriceps strength deficit between the injured and the uninjured leg was best predicted by the results of the single-leg hop test.
Conclusion:
Patients with isolated cartilage defects of the knee joint have significant deficits in quadriceps muscle strength of the injured leg compared with the uninjured leg. The single-leg hop test may be used to predict quadriceps strength deficits. Future research should address whether preoperative strength training in patients with cartilage defects of the knee could be effective and should be taken into consideration in addition to surgical treatment.
Keywords muscle strength, isokinetic, cartilage defect, cartilage repair, knee joint, rehabilitatio
- …