82 research outputs found

    Livestock trade networks for guiding animal health surveillance

    Get PDF
    BACKGROUND: Trade in live animals can contribute to the introduction of exotic diseases, the maintenance and spread endemic diseases. Annually millions of animals are moved across Europe for the purposes of breeding, fattening and slaughter. Data on the number of animals moved were obtained from the Directorate General Sanco (DG Sanco) for 2011. These were converted to livestock units to enable direct comparison across species and their movements were mapped, used to calculate the indegrees and outdegrees of 27 European countries and the density and transitivity of movements within Europe. This provided the opportunity to discuss surveillance of European livestock movement taking into account stopping points en-route. RESULTS: High density and transitivity of movement for registered equines, breeding and fattening cattle, breeding poultry and pigs for breeding, fattening and slaughter indicates that hazards have the potential to spread quickly within these populations. This is of concern to highly connected countries particularly those where imported animals constitute a large proportion of their national livestock populations, and have a high indegree. The transport of poultry (older than 72 hours) and unweaned animals would require more rest breaks than the movement of weaned animals, which may provide more opportunities for disease transmission. Transitivity is greatest for animals transported for breeding purposes with cattle, pigs and poultry having values of over 50%. CONCLUSIONS: This paper demonstrated that some species (pigs and poultry) are traded much more frequently and at a larger scale than species such as goats. Some countries are more vulnerable than others due to importing animals from many countries, having imported animals requiring rest-breaks and importing large proportions of their national herd or flock. Such knowledge about the vulnerability of different livestock systems related to trade movements can be used to inform the design of animal health surveillance systems to facilitate the trade in animals between European member states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0354-4) contains supplementary material, which is available to authorized users

    Global Diversity Hotspots and Conservation Priorities for Sharks

    Get PDF
    Sharks are one of the most threatened groups of marine animals, as high exploitation rates coupled with low resilience to fishing pressure have resulted in population declines worldwide. Designing conservation strategies for this group depends on basic knowledge of the geographic distribution and diversity of known species. So far, this information has been fragmented and incomplete. Here, we have synthesized the first global shark diversity pattern from a new database of published sources, including all 507 species described at present, and have identified hotspots of shark species richness, functional diversity and endemicity from these data. We have evaluated the congruence of these diversity measures and demonstrate their potential use in setting priority areas for shark conservation. Our results show that shark diversity across all species peaks on the continental shelves and at mid-latitudes (30–40 degrees N and S). Global hotspots of species richness, functional diversity and endemicity were found off Japan, Taiwan, the East and West coasts of Australia, Southeast Africa, Southeast Brazil and Southeast USA. Moreover, some areas with low to moderate species richness such as Southern Australia, Angola, North Chile and Western Continental Europe stood out as places of high functional diversity. Finally, species affected by shark finning showed different patterns of diversity, with peaks closer to the Equator and a more oceanic distribution overall. Our results show that the global pattern of shark diversity is uniquely different from land, and other well-studied marine taxa, and may provide guidance for spatial approaches to shark conservation. However, similar to terrestrial ecosystems, protected areas based on hotspots of diversity and endemism alone would provide insufficient means for safeguarding the diverse functional roles that sharks play in marine ecosystems

    Spatial and Sex-Specific Variation in Growth of Albacore Tuna (Thunnus alalunga) across the South Pacific Ocean

    Get PDF
    Spatial variation in growth is a common feature of demersal fish populations which often exist as discrete adult sub-populations linked by a pelagic larval stage. However, it remains unclear whether variation in growth occurs at similar spatial scales for populations of highly migratory pelagic species, such as tuna. We examined spatial variation in growth of albacore Thunnus alalunga across 90° of longitude in the South Pacific Ocean from the east coast of Australia to the Pitcairn Islands. Using length-at-age data from a validated ageing method we found evidence for significant variation in length-at-age and growth parameters (L∞ and k) between sexes and across longitudes. Growth trajectories were similar between sexes up until four years of age, after which the length-at-age for males was, on average, greater than that for females. Males reached an average maximum size more than 8 cm larger than females. Length-at-age and growth parameters were consistently greater at more easterly longitudes than at westerly longitudes for both females and males. Our results provide strong evidence that finer spatial structure exists within the South Pacific albacore stock and raises the question of whether the scale of their “highly migratory” nature should be re-assessed. Future stock assessment models for South Pacific albacore should consider sex-specific growth curves and spatial variation in growth within the stock

    Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors

    Get PDF
    Purpose: Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods: Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results: Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion: Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX
    corecore